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Abstract—Distributed aggregation algorithms have tradition-
ally been applied to environments with no or rather low rates of
node churn. The proliferation of mobile devices in recent years
introduces high mobility and node churn to these environments,
thus imposing a new dimension on the problem of distributed
aggregation in terms of scalability and convergence speed. To
address this, we present DiVote, a distributed voting protocol for
mobile device-to-device communication. We investigate a partic-
ular use case, in which pedestrians equipped with mobile phones
roam around in an urban area and participate in a distributed
yes/no poll, which has both spatial and temporal relevance to
the community. Each node casts a vote and collects votes from
other participants in the system whenever in communication
range; votes are immediately integrated into a local estimate. The
objective of DiVote is to produce a precise mapping of the local
estimate to the anticipated global voting result while preserving
node privacy. Since mobile devices may have limited resources
allocated for mobile sensing activities, DiVote utilizes D-GAP
compression. We evaluate the proposed protocol via extensive
trace-driven simulations of realistic pedestrian behavior, and
demonstrate that it scales well with the number of nodes in
the system. Furthermore, in densely populated areas the local
estimate of participants does not deviate by more than 3 % from
the global result. Finally, in certain scenarios the achievable
compression rate of DiVote is at least 19 % for realistic vote
distributions.

I. INTRODUCTION

Distributed tasks and computations, e.g., to estimate the

average or sum of a set of values, are often conducted based

on inputs supplied by collaborative users. Such aggregation

functions are of high importance in large-scale distributed

systems where there is a need to compute global system

properties [1].

In this paper, we focus on a specific class of distributed

tasks, namely distributed voting in the context of urban
polling. Potential urban polling applications collect and pro-

cess information on locally-relevant questions and provide

users in a community with answers to them [2]. Such questions

can relate to urban planning optimization (”Is the switching

behavior of this traffic light fast enough?”) or to safety in a

given region (”Do you feel safe in this area?”).

In general, the information obtained during a poll can be

processed either in a centralized or in a decentralized manner.

Centralized processing requires nodes to submit their votes to

a central entity. However, this approach lacks scalability and

poses privacy concerns as users might in general not want

their votes to be seen by a central entity [3]. In particular,

this may be of high importance in countries where people do

not trust authorities. Contrary, decentralized (or distributed)

processing requires nodes to compute local estimates of the

result based on partial system knowledge. As opposed to

conventional distributed processing scenarios where nodes are

considered to be static or semi-static [4], in this work we

examine scenarios, in which nodes exhibit high mobility. We

consider a node to be a pedestrian carrying some device

equipped with a wireless communication interface such as a

mobile phone. We rely on device-to-device communication for

disseminating votes among participants in the poll. Mobile

nodes opportunistically exchange data whenever they come

in direct communication range [5]. For the purpose of urban

polling, this data comprises voting information conveyed by

means of broadcast messages and nodes immediately update

their local estimate upon reception of a message.

In the context of distributed voting in urban environments, a

distributed voting protocol needs to comply with the following

requirements: (1) be scalable, (2) have fast convergence and

high accuracy, and (3) preserve node privacy. Thus, in this

work we present DiVote, a distributed voting protocol for

mobile device-to-device communication, which provides all

of the above characteristics. The main contributions are:

• We show that DiVote is suitable for operation in dynamic

environments with high node mobility. DiVote makes use

of the benefits of D-GAP compression for scalability
of the protocol [6]. Furthermore, DiVote preserves node
privacy by applying a cryptographic hash function to user

identities.

• We perform extensive trace-driven simulations using real-

istic pedestrian mobility. We show that DiVote scales well

with the number of nodes in the system. Furthermore,

DiVote demonstrates both fast convergence and high
accuracy, with local estimates deviating at most by 3 %

from the global value in dense scenarios.

• DiVote is able to achieve at least 19 % compression rate
for realistic vote distributions, which makes it appropriate

for execution on mobile devices with limited storage

capabilities or with restrictions on the memory to be used.

• DiVote exhibits low processing load at the application

layer as it requires only a fraction of the received broad-

cast messages (34 % in dense scenarios and even less

in sparser scenarios) to be processed to achieve accurate
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local estimates.

The remainder of this paper is organized as follows: In

Section II, we provide an overview of previous work in the

field of distributed aggregation, and reason why current so-

lutions are not suitable for operation in mobile environments.

Section III introduces DiVote, a distributed voting protocol for

mobile device-to-device communication. Section IV outlines

the evaluation scenarios, and Section V presents results from

realistic pedestrian mobility scenarios. Finally, we conclude

the study in Section VI, and present directions for future work.

II. RELATED WORK

Distributed voting belongs to the class of distributed aggre-

gation problems. Distributed aggregation in general comprises

computations such as sum, average, minimum, or maximum

over unreliable networks, in which no central entity is accessi-

ble or required. There are two main paradigms to address this

problem, namely gossip-based and tree-based aggregation.

Tree-based aggregation protocols have been shown to perform

poorly in dynamic environments with high levels of churn [4],

therefore for the rest of this section we focus on discussing

the applicability of state-of-the-art gossip-based protocols to

our scenario.

Gossip-based aggregation protocols that react to environ-

ment changes can be broadly classified in restarted and

bookkeeping protocols.

We first discuss restarted protocols, many of which are

based on the the push-sum algorithm presented in [7]. The

basic idea of the algorithm is that nodes periodically exchange

stored values with their neighbors and are thus able to compute

the sum or average of all values. However, the main assump-

tion in [7] is that values stay unchanged over time. In [8], the

authors propose executing the push-sum algorithm in epochs

to reflect changes in the network; the protocol is restarted

after each epoch. The distributed random grouping algorithm

(DRG) is proposed in [9]. In this algorithm, some nodes can

periodically become group leaders and then determine group

members by exchanging messages in a handshake manner.

The establishment of several roles as well as the information

exchange by means of a handshake makes this algorithm too

slow to react on changes induced by moving nodes in our

envisaged scenario. Another gossip-based distribution estima-

tion approach is suggested in [10]. This algorithm exchanges

and merges lists consisting of pairs with value and respective

counter between nodes. However, duplicates may occur when

applying this approach, which distorts the computed estimate.

Most of the restarted gossip algorithms show this shortcoming

and do therefore not achieve a high accuracy. In [11], the

authors tackle the data duplication problem by simultaneously

executing multiple instances of the proposed protocol however

the solution exhibits low accuracy [12].

Bookkeeping gossip-based protocols are able to revert

changes in the nodes’ states. In [13], a node saves the states

on its neighbors and recovery is triggered when a node

crashes or disappears. Here, a tradeoff between accuracy and

protocol overhead has to be chosen so either scalability in

TABLE I
COMPARISON OF DIVOTE WITH STATE-OF-THE-ART APPROACHES FOR

DYNAMIC ENVIRONMENTS.

TREE- RESTARTED BOOKKEEPING DIVOTE

FEATURE BASED GOSSIP GOSSIP

CONVER- Low Low-medium Low High

GENCE SPEED

ACCURACY High Low-medium High High

SCALABILITY Low High Low-medium High

PRIVACY Depends on extra measures Yes

terms of memory consumption or accuracy are decreased.

In [14], the authors propose LiMoSense, an algorithm for

live monitoring in dynamic sensor networks, which takes into

account node churn and link failures at runtime. LiMoSense is

not appropriate for dynamically changing environments, since

it assumes a known set of neighbors, from which it randomly

chooses a single neighbor at a time for message exchange.

In [15], the authors present Flow Updating, a bookkeeping

algorithm, which iteratively averages values towards the global

network mean. Every node computes a flow value for each of

its neighbors and stores the value in a matrix. The algorithm

tries to enforce skew symmetry of this matrix. This however

significantly decreases the convergence speed. To summarize,

bookkeeping protocols usually require up to thousands of

rounds to converge, thus they are not applicable in scenarios

with high dynamics.

In Section I, we outlined the main characteristics of a

protocol suitable for distributed aggregation in dynamic en-

vironments. In Table I, we compare tree-based, restarted, and

bookkeeping gossip-based protocols with respect to these char-

acteristics. We also show how our protocol DiVote compares to

others in the literature. In the next section, we present DiVote

in detail.

III. DIVOTE: A DISTRIBUTED VOTING PROTOCOL

In this section, we present DiVote, a distributed voting pro-

tocol for mobile device-to-device communication. We begin by

introducing some of the building blocks of the protocol, i.e.,

the vector compression scheme and the fundamental vector

operations that are introduced by the protocol. We then present

the details of the algorithm behind DiVote.

A. The need for D-GAP compression

In the context of distributed voting, each node can cast a

binary vote (0 or 1) to a poll. (We note that the assumption

of binary votes does not limit the reasoning to follow, and

can easily be extended to any number of votes. In this paper,

we only consider binary votes for the sake of brevity.) For

nodes to be able to calculate the anticipated global vote, they

need to keep track of the votes of other peers in their vicinity

throughout their lifetime. However, keeping track of a simple

moving average may result in votes being counted multiple

times if a node and a peer come in communication range more
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1 1    0 0 0   1 1 1 1 1   0 0   

[1] 2 23{

Bit vector  (12 bits):

D-GAP vector (9 bits): 5 }

Fig. 1. An example of D-GAP compression. A bit vector of 12 bits is
converted into an integer D-GAP vector of 9 bits. The leading bit in the
D-GAP vector indicates if the vector starts with 0s or 1s.

than once. Furthermore, keeping track of votes in the form of a

binary vector may be consuming a lot of resources, especially

if the vector contains long sequences of 0s or 1s. To address

these problems, in DiVote we leverage the concept of D-GAP
compression [6]. D-GAP compression provides a compressed

representation of bit vectors in the form of integer vectors

(later referred to as D-GAP vectors) and can be treated as a

specialized variant of run length encoding. Each integer in a D-

GAP vector represents the number of consecutive 0s or 1s that

are present in the bit vector at a given position. Whether the

integer corresponds to a sequence of 0s or 1s is determined by

the leading bit of the D-GAP vector. A leading bit of 0 shows

that the first integer corresponds to a number of consecutive 0s,

followed by a number of consecutive 1s and so on; a leading

bit of 1 indicates the opposite behavior.

An example of converting a 12-bit vector into a 9-bit D-

GAP vector is illustrated in Figure 1. We calculate the total

number of bits required for representing the D-GAP vector,

N(DGAP), as follows:

N(DGAP) =

n∑

i=1

(�log2 di�+ 1) (1)

where di is the integer representation at position i of the

D-GAP vector, and n is the size of the vector.

For decoding purposes, each D-GAP vector needs to have

a corresponding D-GAP mask vector. In essence, a D-GAP

mask vector is a bit vector of consecutive sequences of 0s and

1s, and each sequence indicates the boundaries of an integer in

the D-GAP vector. Let us assume the following D-GAP vector:

{[0] 2 1} as an illustration of the problem. For the vector to be

stored in memory it will be converted to {[0] 10 1}. However

this representation alone is not enough for decoding, i.e., it

is impossible to tell whether the original D-GAP vector was

{[0] 2 1} or {[0] 5}. To decode the D-GAP vector, we need

to apply a mask vector {[0] 001}. The mask vector shows

that the initial two bits correspond to the first integer while

the third bit corresponds to the second integer. For longer D-

GAP vectors, the D-GAP vector mask will iterate between

sequences of consecutive 0s and sequences of consecutive 1s.

B. Operations on D-GAP vectors

A D-GAP vector is solely a data structure. Hence, we

define the following three operations for DiVote that can be

performed on two D-GAP vectors of arbitrary lengths: merge,

consolidate, and append. For brevity, let us consider

vectors of different lengths, DGAPmin and DGAPmax, de-

noting the shorter and the longer vector, respectively. Note

DGAPres = [1]  2 

DGAPmin = [0]  2  3
DGAPmax = [1] 2  3  5  2

DGAPres = [1]  5 

DGAPmin = [0]  2  3
DGAPmax = [1]  2  3  5  2

DGAPres = [1]  5 
DGAPmax = [1]  2  3  5 2

DGAPres = [1] 10 

DGAPres = [1]  10 
DGAPmax = [1]  2  3  5  2

DGAPres = [1] 10  2

Step 1: Merge

Step 2: Consolidate

Step 3: Append

Fig. 2. Merging, consolidating, and appending D-GAP vectors. Bold integers
denote positions under consideration, crossed integers are not considered, and
the resulting vector is highlighted in red.

that here vector length corresponds to the expanded bit vector
length and is defined as N(BVEC) = L(DGAP) =

∑n
i=1 di.

• The merge operation combines DGAPmin and

DGAPmax[1:L(DGAPmin)] vectors into a resulting

vector DGAPres. The merge operation is performed in

an iterative manner until it reaches the end of DGAPmin.

• The consolidate operation combines the last position

of DGAPres with the next position of DGAPmax after

the merge operation is performed. The consolidate
operation is only performed if the integers at these two

positions correspond to the same bit value.

• The append operation simply adds the remainder of

DGAPmax to DGAPres.

Observe that if the two input vectors are of equal lengths,

the only operation that will be performed is merge.

Figure 2 illustrates an example of all three operations that

can be performed with D-GAP vectors.

C. Functional principles of DiVote

With DiVote, each node locally keeps track of nodes it has

obtained knowledge of, either directly or via other peers, as

well as of their votes. This information is presented in the form

of two correlated D-GAP vectors. Whenever a node first casts

a vote, it adds itself to the shared-nodes vector, and it adds its

vote to the votes vector. Observe that due to privacy preser-

vation reasons, the position, in which information is stored in

each of the D-GAP vectors, is determined by a cryptographic

hash function such as MD5, which is calculated over a unique

identifier, e.g., the node’s MAC address. For instance, if for a

node, which casts a vote for 1, the cryptographic hash function

returns a position of 25, both its shared-nodes vector and its

votes vector would be initialized with {[0] 24 1}. If the same

node were to cast a vote for 0, the votes vector would instead

be initialized with {[0] 25}. If a node is compromised, it could

potentially associate the vote to the respective node during

such initialization. However, in this work we assume all nodes

to be trustworthy.

Note that hash functions can compute the same hash value

for different identifiers, i.e., collisions can occur. This would
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{
"message" : {

"node-id" : "0x00:0a:95:9d:68:16",
"divote" : [ {

"poll" : {
"poll-id" : "5",
"topic" : "sample poll",
"shared" : [0 24 1],
"votes" : [0 25],
"updated" : "2016-02-17T18:30:02Z"

}
} ]

}
}

Listing 1. An example of a DiVote message in the JSON format.

lead to positions that some nodes would share, i.e., some

nodes would replace their information when shared alternately,

which could falsify their local estimate. However, the collision

probability of MD5, which computes 128-bits hash values,

is as low as 2.7 · 10−20 when, e.g., calculating hash values

from 232 values (assuming the birthday paradox [16]) and is

therefore neglected.

Each node periodically broadcasts a beacon containing its

shared-nodes vector and its votes vector to peers in its vicinity.

An example of a DiVote beacon message is presented in

Listing 1. Whenever a node receives information from another

peer, it immediately updates both its shared-nodes vector and

its votes vector following the DiVote protocol outlined in

Algorithm 1. We note that the procedure in Algorithm 1

is performed simultaneously with respect to both vectors.

However, here we only show how new votes are incorporated

into the votes vector for the sake of brevity. Whenever a

node receives a beacon from another peer in proximity, it

first extracts the received information and checks in a local

database whether the received vector from peer i, DGAP
(i)
rec,

has changed (line 4). This check is currently done by looking

up the node-id in the local database first. If the node-id
is found, there has been prior communication with this peer

and the advertised updated field value is compared to the

previously registered updated field value. If they do not

differ, the local vector DGAPloc stays unchanged. Otherwise,

DiVote consecutively executes the operations merge (lines

7-11), consolidate (lines 12-16) and append (line 17)

in order to update the local estimate (line 18). Thus, the

shared-nodes vector and the votes vector contain cumulative

information of all nodes that have been shared over time, and

their corresponding votes, even if these nodes have left the

system. Furthermore, DiVote allows nodes to disclose peers

that they have not encountered physically by propagating the

knowledge accumulated by other participants in the system.

This allows DiVote to achieve fast convergence and high

accuracy in a distributed manner in scenarios with high levels

of mobility, such as in urban environments. Finally, correlating

votes and nodes is impossible by third party entities such as

central collection points or compromised participants in the

poll.

Algorithm 1 The DiVote Protocol

1: DGAP
(i)
rcv ← received DGAP vector from node i

2: DGAPloc ← local DGAP vector
3: DGAPres ← resulting DGAP vector

4: if DGAP
(i)
rcv changed since last beacon from node i then

5: DGAPmin = min(DGAPloc,DGAP
(i)
rcv)

6: DGAPmax = max(DGAPloc,DGAP
(i)
rcv)

7: while ! DGAPmin.end() do
8: DGAPres = MERGE(DGAPmin,DGAPmax)
9: rpos← end position in DGAPres

10: mpos← current position in DGAPmax

11: end while
12: stateres = (rpos mod 2) xor DGAPres[0]
13: statemax = (mpos mod 2) xor DGAPmax[0]
14: if stateres == statemax then
15: DGAPres = CONSOLIDATE(DGAPres[rpos],

DGAPmax[mpos])
16: end if
17: DGAPres = APPEND(DGAPres,DGAPmax[mpos : end])
18: DGAPloc ← DGAPres

19: end if

IV. EVALUATION SCENARIO

In this section, we introduce the mobility scenario as well

as the simulation setup and investigated performance metrics.

A. Mobility scenario

In order to realistically recreate pedestrian mobility, we

use the Walkers traces [17] captured in Legion Studio [18],

a commercial simulator initially developed for designing and

dimensioning large-scale spaces via simulation of pedestrian

behaviors. Its multi-agent pedestrian model is based on ad-

vanced analytical and empirical models which have been

calibrated by measurement studies. Each simulation run results

in a trace file, containing a snapshot of the positions of all

nodes in the system every 0.6 s.

Fig. 3(a) and 3(b) present the scenarios considered in

our evaluation: an outdoor urban scenario, modeling the

Östermalm area of central Stockholm, and an indoor scenario,

recreating a two-level subway station. We note that it is not

possible to capture all states of human mobility with a single

setup, however the scenarios are representative of typical

daytime pedestrian mobility.

The Östermalm scenario consists of a grid of interconnected

streets. Fourteen passages connect the observed area to the

outside world. The active area, i.e., the total surface of the

streets, is 5872 m2. The nodes are constantly moving, hence

the scenario can be characterized as a high mobility scenario.

The Subway station has train platforms connected via es-

calators to the entry-level. Nodes arrive on foot from any of

five entries, or when a train arrives at the platform. The train

arrivals create burstiness in the node arrivals and departures.

Nodes congregate while waiting for a train at one of the

platforms, or while taking a break in the store or the coffee

shop at the entry level. The active area is 1921 m2.

If not stated otherwise, the input parameters of the

Östermalm and the Subway scenario result in approximately
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(a) (b)

Fig. 3. Urban scenarios: (a) a grid of streets representing a part of downtown
Stockholm, Östermalm, and (b) a two-level subway station.

the same mean node density of 0.1 nodes/m2. (More informa-

tion can be found in [19].)

B. Simulation setup

In our evaluation scenarios, we assume that all nodes carry

devices and all are participating in the distributed poll in the

area. Each node casts a binary vote v = {0, 1} upon entry

in the simulation, and votes are distributed according to a

distribution f(x) with a mean E(x).
For the evaluation, we use an implementation of an op-

portunistic content distribution system in the OMNeT++ sim-

ulator [20]. Each simulation run is executed in synchronous

rounds of 0.6 s which corresponds to the granularity of the mo-

bility traces we use. Nodes broadcast their shared-nodes vector

and their votes vector at the beginning of each round. To avoid

collisions on the wireless medium, the broadcast transmission

of each node in each round is distributed uniformly at random

U(0, 0.5) s. The transmission range is set to 10 m.

C. Performance metrics

We focus on evaluating the following performance metrics.

• Deviation Δ: The deviation is a measure of the accuracy

of the DiVote protocol, i.e., it shows how close the local

estimate of a node is to the anticipated global result. The

deviation is calculated as:

Δ =

∣∣∣∣
x̄− x

x

∣∣∣∣ (2)

where x̄ = E(DGAPloc) is the local estimate, and x
is the anticipated global result depending on the nodes

currently in the system.

• Compression ratio (CR): The compression ratio is a

measure of the efficiency and scalability of the DiVote

protocol in terms of resource management, i.e., how much

storage space does the protocol require for performing

distributed voting computations in a mobile environment.

The compression ratio is calculated as:

CR = 1− N(DGAP)

N(BVEC)
(3)

where N(DGAP) is calculated as per Eq. 1, and

N(BVEC) is the number of bits required if the data were

represented in the form of a bit vector.

• Information overhead (IO): The information overhead is

a measure of the processing load reduction for a node in

the system and therefore indicates scalability as well. It

shows how many of the received broadcasts do not need

to be processed. The information overhead is calculated

at the application layer as:

IO = 1− n(BRC)

N(BRC)
(4)

where N(BRC) is the total number of broadcast messages

received by a node throughout its lifetime in the system,

and n(BRC) ⊂ N(BRC) is the number of broadcast

messages that were used for updating the local estimate

of the node.

V. SIMULATION RESULTS

In this section, we investigate simulation results for:

• different arrival rates λ while fixing the scenario and the

distribution of nodes voting for one;

• two different scenarios while fixing the arrival rate λ and

the distribution of nodes voting for one;

• two different distributions of nodes voting for one while

fixing the arrival rate λ.

A. Effect of arrival rate

First, we present results for the Östermalm scenario for the

arrival rates λ = {0.0025, 0.005 0.01, 0.07, 0.15, 0.30} nodes/s.

We assume that votes are deterministically distributed, with a

mean E(x) = 0.75, i.e., 75 % of all nodes vote for one and 25 %

vote for zero. (We release this assumption in Section V-C.) In

this case, the first node entering the system votes for zero

whereas the following three nodes vote for one. After that,

this distribution continues for all further nodes. As we will

see in Section V-B, this represents the worst case of achievable

compression rate.

Figures 4(a)-(c) show the local estimates of all nodes over

time for sparsely populated scenarios, i.e., λ = {0.0025, 0.005,

0.01} nodes/s. We see that the convergence of the local

estimates towards the global result is strongly dependent on

the population density. For low values of λ, Figure 4(a), nodes

are not able to estimate correctly the expected global result.

As the arrival rate increases, Figure 4(b), a clearer trend can be

seen towards convergence, and at λ = 0.01 nodes/s nodes are

able to locally estimate the global result. Still, for any of the

low arrival rates, some nodes do not gain sufficient knowledge

about other nodes or even do not disclose anyone so that their

local estimates remain 0 or 1 (see Figures 4(a)-(c)). As the

arrival rate further increases, nodes converge earlier to the

global result, and outliers disappear. Thus, we omit results

for λ = {0.07, 0.15, 0.3} nodes/s for the sake of brevity.

Figures 5(a)-(c) illustrate the proportion of shared nodes

over time. In sparser scenarios, Figure 5(a), the proportion of

shared nodes is kept below 20 %. Furthermore, information on

shared nodes is continuously lost when nodes leave the system.

Therefore, we are not able to observe clear convergence of

the local estimates towards the global results, Figure 4(a).
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Fig. 4. Local estimates of all nodes for the Östermalm scenario: (a) λ =
0.0025 nodes/s, (b) λ = 0.005 nodes/s, and (c) λ = 0.01 nodes/s.

With increase of the arrival rate, λ = 0.005 nodes/s, up to

60 % of all nodes in the system are shared leading to a

clearer convergence towards the global result, Figure 5(b). At

around t = 7000 s when approximately 30 % of all nodes have

already been shared, the trend towards the mean E(x) = 0.75

becomes apparent. We note that approximately 60 % of nodes

are already shared around t = 4000 s by some of the nodes

in the system. A further investigation shows that indeed the

knowledge is kept only in two nodes which have shared around

130 nodes each. However, both of these nodes leave the system

in t ∈ (4600, 4700) s so their accumulated knowledge is lost

and the process is restarted. This is reflected in Figure 4(b) as

well as the trend towards the global result does not become

clear before t = 7000 s when the vast majority of nodes has

shared at least 30 % of all nodes. Finally, Figure 5(c) shows

an even clearer convergence trend; already at t = 1000 s when

approximately 30 % of all nodes have been shared most nodes

approach the mean E(x) = 0.75. Thus, we conclude that even

in dynamically changing environments there is a correlation

between the percentage of shared nodes and the convergence

to the global result.

The observation that disclosing approximately 30 % of

nodes is sufficient for achieving precise estimate of the global

result is further confirmed in Figures 6(a)-(c), which show the
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Fig. 5. Proportion of shared nodes for the Östermalm scenario: (a) λ =
0.0025 nodes/s, (b) λ = 0.005 nodes/s, and (c) λ = 0.01 nodes/s.

change in deviation Δ with respect to the proportion of shared

nodes for the denser Östermalm scenarios with λ = {0.07,

0.15, 0.3} nodes/s. As the arrival rate increases, the deviation

Δ significantly decreases once 30 % of the nodes have been

shared, from 15 % for λ = 0.07 nodes/s, Figure 6(a), to below

6 % for λ = 0.3 nodes/s, Figure 6(c).

We further evaluate the performance of the system in steady

state, i.e., once the average number of nodes in the area stays

unchanged despite the arrivals and departures in the system.

We then aggregate results from a 1000 nodes. We subsequently

exclude the sparse scenario with λ = 0.0025 nodes/s from

consideration as the trace does not comprise 1000 nodes after

the steady state has been reached, and local estimates do not

converge to the global result.

Table II shows the average and maximum deviation Δ
including 95 % confidence intervals as well as the information

overhead in the steady state depending on the arrival rate λ.

Note that minimum deviation values are omitted as they are

zero in all cases. These results clearly show that the denser

the scenario, the smaller the deviation Δ, i.e., the accuracy

increases. Note that for λ = 0.005 nodes/s and λ = 0.01 nodes/s

some nodes are still completely wrong regarding their local

estimate when they leave the system. As the arrival rate

increases, both the average and the maximum deviation are
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Fig. 6. Deviation Δ depending on the proportion of shared nodes for the
Östermalm scenario: (a) λ = 0.07 nodes/s, (b) λ = 0.15 nodes/s, and (c) λ =
0.3 nodes/s.

steadily decreasing. Finally, for the most densely populated

scenario, λ = 0.3 nodes/s, the maximum deviation never

exceeds 3 %. Moreover, the information overhead is between

93 % and 94 % for λ = {0.005, 0.01, 0.07} nodes/s, which

results from the fact that often the same nodes meet again

and do not exchange new information. On the one hand, this

underlines the low processing load on application layer and

thus DiVote’s scalability in sparse scenarios. On the other

hand, as shown above, the accuracy is not very high for the

sparse scenarios. In denser scenarios, the information overhead

amounts to lower values of 90 % and 66 % for λ = 0.15 nodes/s

and λ = 0.3 nodes/s, respectively. Due to the higher population

density, it is more probable that new nodes meet, which then

exchange new information and thus the information overhead

decreases.

Figure 7 shows the cumulative distribution functions (CDFs)

of the compression ratio when storing the D-GAP vectors with

shared nodes and with votes across different arrival rates λ.

The achievable compression ratio is higher in case of using

D-GAP for storing shared nodes, Figure 7(a), than that for

TABLE II
AVERAGE AND MAXIMUM DEVIATION Δ, AND

INFORMATION OVERHEAD (IO) FOR THE ÖSTERMALM SCENARIO

WITH DIFFERENT ARRIVAL RATES λ.

ARRIVAL RATE AVG. Δ MAX. Δ IO

λ [NODES/S] [%] [%] [%]

0.005 14.91±1.19 100 93.30±0.4

0.01 7.19±0.73 100 94.05±0.2

0.07 2.06±0.08 6.3 93.98±0.3

0.15 1.01±0.05 3.07 89.55±0.2

0.3 0.79±0.04 2.43 66.28±0.5

storing votes, Figure 7(b). For each shared node, a 1 is set

in the D-GAP, which results in long sequences of consecutive

1s and increases compression. On the other hand, depending

on the voting distribution and its mean value, sequences of

consecutive 1s may be shorter in the D-GAP vector for storing

votes resulting in a lower compression ratio. In Figure 7(a), the

curves for λ = 0.005 nodes/s and λ = 0.01 nodes/s show an

erratic trend as the scenarios are too sparsely populated to

show clear convergence. With the increase of the arrival rate,

however, the compression ratio also increases, and for λ =

0.3 nodes/s, the average compression ratio amounts to 92 %.

This results from the fact that most nodes in the system have

been shared, thus almost all bits in the D-GAP are set to 1. The

compression ratio of the D-GAP for storing votes approaches

25 % as the arrival rate increases, Figure 7(b). This behavior

is strongly dependent on the chosen voting distribution as well

as on its mean value E(x) = 0.75. As mentioned earlier, the

first node entering the system always votes for zero, while

the following three nodes vote for one, and subsequently the

distribution applies to all further nodes. Hence, the D-GAP for

storing votes convergences to sequences of three consecutive

1s, which are interrupted by a 0. Applying Equation 1, three

consecutive 1s and one 0 requires 3 bits for storage whereas a

plain bit vector would require 4 bits. Therefore, the achievable

compression ratio convergences to a value of 0.25 while more

and more nodes are shared, which represents the worst case

in terms of compression ratio. As we show in Section V-C,

when the voting distribution follows a different distribution,

the achievable compression ratio increases.

B. Effect of scenario

We now investigate the impact of different topologies by

comparing the performance of the Östermalm and the Subway

scenario. Table III shows the average and maximum deviation

Δ including their confidence intervals, as well as the informa-

tion overhead in steady state. Again, the minimum deviation

values are omitted as they are zero in all cases. These results

clearly show that both scenarios exhibit high accuracy, namely

achieving an average deviation of 1 % for the Östermalm

and the Subway scenario. The lower deviation in the Subway

scenario is due to the bursty arrivals in the system. This also

results in a lower information overhead of approximately 77 %

compared to 90 % in case of the Östermalm scenario as node
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Fig. 7. CDF of the compression ratio for storing (a) shared nodes and (b)
votes in the Östermalm scenario under different arrival rates λ.

TABLE III
COMPARISON: AVERAGE AND MAXIMUM DEVIATION Δ AND

INFORMATION OVERHEAD (IO) FOR THE ÖSTERMALM WITH λ = 0.15
NODES/S AND SUBWAY SCENARIOS.

SCENARIO AVG. Δ [%] MAX. Δ [%] IO [%]

Östermalm 1.01±0.05 3.07 89.55±0.2

Subway 0.79±0.04 3.27 76.80±0.8

departures are also bursty. As the sojourn time of nodes is

lower in the Subway than in the Östermalm scenario, nodes

exchange less messages but those exchanged are useful for

advancing the knowledge of other nodes.

Figure 8 shows the CDF of the compression ratio for storing

shared nodes and votes in both scenarios. The Subway scenario

exhibits higher compression ratio as nodes are quicker to

disclose all other nodes in the system due to the smaller and

more confined area, in which mobility occurs, Figure 8(a). Due

to the same fact, the compression ratio of the D-GAPs for

storing votes more closely approaches a value of 0.25 in the

Subway scenario as apparent from Figure 8(b).

C. Effect of voting distribution

Finally, we compare the performance of DiVote for different

voting distributions. We consider a deterministic as well as

a uniform voting distribution, which can be seen as a more

realistic representation of votes of pedestrians in an area. We

choose three different mean values of the distribution (E(x) =

0.25, 0.5, and 0.75), and we perform five simulation runs for

each mean value.

Table IV shows the average compression ratio with 95 %

confidence intervals for E(x) = 0.25, 0.5, and 0.75 in the
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Fig. 8. Comparison: CDF of the compression ratio for storing (a) shared
nodes and (b) votes in the Östermalm scenario with for λ = 0.15 nodes/s and
the Subway scenario.

TABLE IV
COMPARISON OF D-GAP COMPRESSION RATIOS (CRS) FOR THE

ÖSTERMALM SCENARIO WITH λ = 0.15 NODES/S. UNIFORM AND

DETERMINISTIC DISTRIBUTION ARE CONTRASTED WITH EACH OTHER.

UNIFORM DISTRIBUTION DETERMINISTIC DISTRIBUTION

E(x) AVG. CR OF D-GAPS AVG. CR OF D-GAPS

SHARED VOTES SHARED VOTES

NODES NODES

0.25

0.86±0.0003

0.38±0.019

0.86±0.004

0.32±0.002

0.5 0.23±0.005 0.08±0.002

0.75 0.34±0.012 0.26±0.001

Östermalm scenario. These results obtained for the uniform

distribution are contrasted with the deterministic distribution.

As the mobility trace is unchanged during simulation runs,

the compression ratio for the D-GAP vector for shared nodes

is independent of the proportion of nodes that vote for one.

However, uniformly distributing the votes leads to higher

compression ratios compared to the deterministic distribution

as longer sequences of 1s and 0s are possible.

The gain in terms of achievable compression ratio becomes

more apparent from Table V, which shows the average com-

pression ratio and their 95 % confidence intervals for the

Subway scenario. As expected, in case of the deterministic

distribution the compression ratio approaches a value of 0 %

for E(x) = 0.5 as the D-GAP expands to a bit vector of

alternating 0 and 1. However, when votes are uniformly

distributed, longer sequences of 1s and 0s become possible

resulting in a compression ratio of 19 % even for an average

global result of E(x) = 0.5.
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TABLE V
COMPARISON OF D-GAP COMPRESSION RATIOS (CRS) FOR THE SUBWAY

SCENARIO. UNIFORM AND DETERMINISTIC DISTRIBUTION ARE

CONTRASTED WITH EACH OTHER.

UNIFORM DISTRIBUTION DETERMINISTIC DISTRIBUTION

E(x) AVG. CR OF D-GAPS AVG. CR OF D-GAPS

SHARED VOTES SHARED VOTES

NODES NODES

0.25

0.98±0.00001

0.33±0.01

0.98±0.0005

0.25±0.0004

0.5 0.19±0.01 0.001±0.0005

0.75 0.33±0.01 0.25±0.0003

VI. CONCLUSION

In this paper, we presented DiVote, a distributed voting

protocol in the context of urban polling, which is suitable for

environments, in which nodes exhibit high mobility. DiVote

relies on device-to-device communication to exchange voting

information. The proposed DiVote protocol exhibits the fol-

lowing main features:

• Privacy: By using a cryptographic hash function, votes

cannot be related to the corresponding node identities.

• Convergence speed: The dynamism due to mobility im-

poses tight constraints on the convergence speed of the

algorithm. Consequently, DiVote immediately updates the

local estimate. Simulation results obtained when applying

DiVote to realistic pedestrian mobility traces show that

even in sparse scenarios local estimates quickly converge

to the global result after having shared 30 % of all nodes

in the system.

• Accuracy: At the same time, accuracy of local estimates

is ensured as DiVote avoids to erroneously count votes

multiple times, which is of decisive importance as the

same node may be encountered several times. In dense

scenarios, the local estimate does not deviate by more

than 3 % from the global result after the system reaches

the steady state.

• Scalability: Rather than storing shared nodes and their

votes in plain bit vectors, DiVote uses D-GAP com-

pression to be scalable in terms of required storage

capacity. For realistic voting distributions, at least 19 %

compression is achieved. Furthermore, the processing

overhead introduced at the application layer is very low as

only a fraction of the received messages (approximately

30 %) has to be processed even in the densely populated

scenarios.

Prospectively, we intend to theoretically analyze DiVote

and compare it with other existing schemes. We will further

investigate more voting distributions and compare the D-GAP

compression with other compression algorithms.
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[20] Ó. R. Helgason and K. V. Jónsson, “Opportunistic networking in
OMNeT++,” in Proc. SIMUTools, OMNeT++ workshop, 2008.

77777777777777


