
A Highly Integrable FPGA-Based
Runtime-Configurable Multilayer Perceptron

Jan Skodzik, Vlado Altmann, Benjamin Wagner, Peter Danielis, Dirk Timmermann
University of Rostock

Institute of Applied Microelectronics and Computer Engineering
18051 Rostock, Germany, Tel./Fax: +49 381 498-7284 / -1187251

Email: jan.skodzik@uni-rostock.de

Abstract—In this paper, a highly integrable Field Pro-
grammable Gate Array-based hardware design of multilayer
perceptron as a realization of an artificial neural network is pre-
sented. Such a hardware solution ensures a deterministic behavior
required for any hard real-time compositions. The integration
into existing systems is achieved by the application of UPD/IP.
Additionally, the presented design is highly flexible due to a
parameterizable multilayer perceptron approach. However, most
reconfigurations usually require a hard coded reimplementation,
resynthesis, and the download of a new bitfile to the target
platform, which also requires an additional host PC. Contrary
with the presented solution, it is possible to configure the mul-
tilayer perceptron’s parameters during runtime via a software
interface. This approach allows the multilayer perceptron to
be adapted to nearly any application. The developed design
combines the flexibility of a software solution to generate and
comfortably reconfigure the multilayer perceptron as well as the
high performance of a hardware solution. As proof of concept, a
running prototype has been realized, which shows the design to
be highly flexible and with good performance while the hardware
resource consumption is kept minimal.

Index Terms—Artificial Neural Networks; Multilayer percep-
trons; Reconfigurable logic; Runtime;

I. INTRODUCTION

An artificial neural network (ANN) is a mathematical
construct, which emulates natural adaptive learning. A software
solution of an ANN is useful on a van Neumann machine as
it offers a possibility to investigate new or modified neural net-
work models but falters in performance and does not guarantee
real-time behavior per se. By using an Field Programmable
Gate Array (FPGA)-based hardware realization, a fast parallel
computing of high amount of data within a predefined time is
enabled. In addition, a hardware implementation enables hard
real-time computations due to its predictable runtime behavior
[1]. The high performance and real-time behavior of a hardware
solution qualifies ANN to be applied in many application areas,
e.g., in the field of automation.

In this work, a multilayer perceptron (MLP) is introduced,
which fulfills the following requirements. The hardware solution
should be application independent, which makes it usable for
several problems during runtime. This can be achieved by
high flexibility. High flexibility can be guaranteed by a highly
paramterizable design. The neurons (also called perceptrons
in this case) transfer function can be freely chosen, which
makes it adaptable to different scenarios. Additionally, an easy

integration of the MLP into existing infrastructures is important.
Most solutions use a dedicated host PC, which configures and
interacts with the FPGA containing the MLP. The authors
of this paper renounce the use of connections like RS232
or PCI due to their limitations for integration. Therefore, the
presented solution bases on UDP/IP. Despite the high flexibility
the design must scale in terms of hardware resources due to the
realization of an MLP with a high number of neurons required
for many applications. One of the application could be the
monitoring of automation equipment through image processing
by an MLP in real-time. There is a need for a high number of
inputs neurons due to a high number of input pixels. Moreover,
the MLP must possibly adapt the weights and transfer function
to new light conditions (day and night). It is indispensable that
this adaptation must be done during runtime. These presented
requirements will be solved by the presented solution. The
training of the MLP is done directly in software using Matlab.
A concept is defined and realized to comfortably interact with
the MLP. Additionally, the resulting design is investigated in
terms of the size and performance as well as compared with
the trend of available hardware resources of different FPGAs
over time. Below, the following main contributions are briefly
described:

• Brief description of the basic concept is given and required
parameters of an ANN are investigated.

• Design of a parameterizable MLP implementation is
described.

• Concept for configuration and interaction with the MLP
is presented.

• The hardware utilization and performance of the developed
MLP are presented.

The remainder of this paper is organized as follows: Section
II contains a comparison of the proposed approach with
related work. Section III presents the basic concept of the
mechanism and system architecture and the corresponding
hardware realization. In Section IV, an approach is presented
for configuration and interaction with the presented hardware
solution. Section V presents the evaluation of the final place and
route results for different neural network sizes. The resource
utilization and performance of the design is discussed before
the paper concludes in Section VI.



II. RELATED WORK

In [2], a scalable system consisting of self-developed
Labomat 3 boards containing an FPGA is presented. The
system uses multiple board instances, which results in a higher
communication and hardware complexity. Contrary, the authors’
approach only uses one single common Xilinx Evaluation
Board with a single FPGA. Furthermore, [2] bases on 8-bit
computations at a frequency of 10 MHz. The authors were
able to realize 16 neurons using eight Labomat 3 boards. An
additional processor is used to process a software stack required
by the design on the FPGA, which introduces important
software overhead. A threshold function serves as transfer
function.

In [3], the author presents an ANN implemented on an FPGA,
which can be configured during runtime. The communication
bases on a serial RS232 connection, which lacks performance
and bandwidth. An ANN with 10 neurons at a frequency of 40
MHz is realized in this case. It is possible to change the weight
factors and the connections by means of a multiplexer. The
influence on size due to greater multiplexers is not described.
The presented implementation supports 16-bit operations. Most
parts of the genetic algorithm training are done in software
outside the FPGA. Only the sigmoid function servers as transfer
function.

The authors of [4] describe a system called NeuroFPGA,
which supports an MLP with several layers not limited to a
given number. However, the presented realization in this paper
supports a three-layer MLP, which is usually sufficient for
the most use cases. Introducing more layers has been shown
to be disproportional to the gain in functionality [1]. Several
parameters can be adjusted to make the system flexible but
only at design time. The NeuroFPGA is realized as PCI card,
which requires a host PC. The maximum performance is a
synthesis result for an Altera APEX II device, which achieves
360 million products per second for a big network using 48
multipliers of 16 bits each and a 35 MHz clock. The number
of equivalent neurons is not given by the authors. The sigmoid
function is supported only as transfer function.

Gomberts et. al. [5] developed an MLP realization on an
FPGA, which is parameterizable. The backpropagation training
has been realized in hardware. The performance is given with
530 million multiply-add operations with 12-bit value width
that are necessary in the forward pass per second in the offline
mode without training. The supported transfer function is
the sigmoid function realized in LUTs. Parameters like the
number of neurons in the layer cannot be changed during
runtime. The authors of this paper renounce to integrate the
training of the MLP, like in [3] and [5], into hardware in order
to save hardware resources and to increase the performance.
Furthermore, a Matlab-to-FPGA-interface using a C++ software
interface is presented, which allows Matlab to train the MLP
in software and transmit the weights to the MLP realized in
hardware. As software solution, Matlab is much more flexible
than a solution implemented in hardware. The training itself
is assumed as non-timing critical part. Due to state-of-the-art

I(1)

I(2)

I(3)

I(n)

H(1)

H(2)

H(3)

H(m)

O(1)

O(2)

O(3)

O(k)

Input 1

Input 2

Input 3

Input n

…
.

…
.

…
.

Output 1

Output 2

Output 3

Output k

Input Layer Hidden Layer Output Layer

Fig. 1. MLP with three layers

hardware, the presented design works with a three layer MLP
with a maximum number of 111 neurons at a frequency of
about 33 MHz. The authors of this paper renounce the use
of a processor and software on the FPGA, like in [2], and
instead directly implemented the design in VHDL and directly
support the computations with 32 bit signed integer values,
which results i a higher number range and precision. This is
also done for the processing of communication frames from
a PC over the network, which uses UDP packets to keep the
overhead at a minimum. The work in this paper achieves about
483 million multiply-add operations per second using 32 bit
signed integer values with a maximum sized 100-9-2 MLP.
Furthermore, the presented solution does not require a PCI
connection to a host PC like in [4] or serial RS232 like in [3].

It can be simply integrated via Ethernet and UDP into
existing networks. Additionally, the presented work enables
the user to choose between different transfer functions during
runtime to adapt to different circumstances or applications,
while others only support one transfer function. The transfer
function can be chosen layer independent. However, sometimes
an MLP with different transfer functions at different layers
offers much better accuracy in contrast to a network with one
fixed transfer function [6].

A main focus is on the dynamic configuration via UDP
packets in runtime without redesigning the MLP.

/
Ethernet
Interface

Frame Processing
Unit

Clock 
Generator

Multi Layer 
Perceptron

(MLP)

Synchronization 
FIFO

LCD 
Interface

8 32

32

3

125 MHz
Max. MLP 
Frequency

2

4

1 6

3

5

200 MHz Reference Clock

Xilinx Virtex-6 
LX240T FPGA

\

//

Fig. 2. FPGA system architecture



FPU

I(#IN) Output 
Register

I(1) Output
Register

Sum Register

CounterSystem 
clock

+1

Weigth Factor
RegisterN(#IN)

Weigth Factor
RegisterN(1)

Hidden 
Factor

H(1) Output
Register

MLP

TP1_1

Bias 1 Trans 1

Transfer function

T1P2_1

Shifter

Fig. 3. Calculation of the output of neuron N in the hidden layer

III. BASICS AND DESIGN CONCEPT

There are many concepts for designing MLPs, e.g., fully
parallelized, serialized, or even a mixed architecture. However,
MLPs are well known, established, and suited for a realization
in hardware because of their regular structure. A three layer
MLP is depicted in Figure 1. An MLP consists of several
artificial neurons. These neurons are represented by perceptrons
[7]. A three layers MLP is realized and each layer contains a
set of neurons. The first layer is the input layer and represents
the input values. The hidden layer is the second layer and
is fully meshed to the previous input layer. The output layer
generates the outputs and receives the values from the hidden
layer.

To train the MLP, weight factors of the connections have to
be set depending on a given use case. The determination of
the weight factors is called training. Each neuron of a layer is
connected to each neuron of the following layer.

The MLP is a ”feed-forward”, fully connected ANN. There-
fore, the input value of a neuron is the sum of the n neuron
outputs of the previous layer (see Formula 1).

NeuronInput =

n∑
i=1

Inputi ∗WeigthFactorsi (1)

There are different training algorithms available. For the
presented realization, the backpropagation learning algorithm
is used to generate weight factors [8]. The training algorithm
is not realized in hardware as it is a non-timing critical process
and can be implemented in software, which results in less
hardware resource consumption and a higher performance of
the hardware solution. To realize the mentioned aspects, a
system architecture design has been developed as depicted in
Figure 2.

A. System Overview

An Ethernet interface (1) ensures the integration of the
system into an Ethernet network (1 Gbit/s connection). All
UDP packets needed to configure or transmit input data are
received by the Ethernet interface. It is necessary to synchronize
data received from the Ethernet interface with the rest of the
logic because of two different clock domains. In this case,

the synchronization FIFO (2) enables a secure clock domain
crossing and forwards the data from the 1 GBit/s interface
with a data width of 32 bits to the frame processing unit (FPU)
(3). The FPU captures all incoming UDP packets and solely
processes frames with UDP port 55555. This port may be used
as it avoids any conflicts with other standardized protocols
[9]. The MLP (4) module contains a three layer MLP as a
realization of an ANN. Parameters to configure the MLP at
runtime, input values to the MLP from the host, and results
from the MLP to the host PC are handled by the FPU. A clock
generator (5) generates the two required clocks. One clock
is needed by the Ethernet interface for the communication
with PC that configures the MLP. The clock is fixed to 125
MHz for 1 GBit/s. The FPU, LCD Interface (6), and MLP
are limited to the maximum reachable frequency of the MLP
as this module contains the critical path and represents the
second clock domain. The LCD interface is connected to an
LCD display and provides the user with information about
the transmitted frames, e.g., the type of the last transmitted
packets.

B. Hardware Realization of the MLP in VHDL

The hardware realization of the calculation from the input
layer to the output of the hidden layer is depicted in Figure
3. The calculation of the output layer result is similar to
the calculation of the hidden layer result. The summation
in the hidden and output layer of each neuron is realized
serially. However, the summation consists of a multiplication
and addition with the previous calculated value (see Formula
1). Contrary, the summation must be done for all neurons of
a layer and is realized as a parallel process. Therefore, all
neurons of a layer are executing the summation at the same
time. The values in the black boxes in Figure 3 are parameters,
which can be set by the user. Several parameters are available
to configure the MLP according to a given application. These
parameters are listed in Table I. The ”#IN” parameter gives
the number of neurons, which are used in the input layer. The
”#HN” and ”#ON” parameter are the corresponding values
for the number of the neurons in the hidden and output layer.
The output values of the hidden and output layers can be very



large and could produce overflows of the 32 bit signed integer
values depending on the use case. Therefore, it is possible to
downscale the values with the ”Hidden factor” and ”Output
factor” parameter. This allows the user to scale the values in
the network without touching the weights.

PARAMETER DESCRIPTION

#IN Number of neurons in the input layer
#HN Number of neurons in the hidden layer
#ON Number of neurons in the output layer
Hidden factor Downscale of hidden layer output
Output factor Downscale of output layer output
Trans1 Declare hidden layer transfer function
Trans2 Declare output layer transfer function
TP1-1 First parameter for the hidden layer transfer function
TP2-1 Second parameter for the hidden layer transfer function
TP1-2 First parameter for the output layer transfer function
TP2-2 Second parameter for the output layer transfer function
Bias1 Setting the Bias value of input layer
Bias2 Setting the Bias value of hidden layer

TABLE I
MLP CONFIGURATION PARAMETERS

Additionally, the ”Trans1” and ”Trans2” indicators deter-
mines the transfer function of the hidden and output layer.
There are three transfer functions, which can be selected by
the user. The user can chose between a sigmoid, linear, or
Heaviside step transfer function. The transfer function and the
corresponding parameters can be set independently for each
layer. The parameters ”TP1-1”, ”TP2-1”, ”TP1-2”, and ”TP2-2”
are given to configure the transfer functions and adapt them to
the users constraints.

1) The sigmoid transfer function: Therefore, the sigmoid
function itself can be scaled in x and y dimension using the
transfer function parameters. The sigmoid function usually is
a logarithmic function and hard to realize in hardware without
complex arithmetic operations. However, a piecewise linear
approximation (PLA) is done to realize the sigmoid transfer
function of a neuron with high effectiveness in hardware. The
PLA is defined by the Formula 2. All multiplications and
divisions inside the sigmoid function are done to power of
two so that these operations can be replaced by simple shift
operations. Only the multiplication with the input value x have
to be realized with a multiplier.

T(x) =



16 ∗ 2TP1 if x ≥ 64 ∗ 2TP2

x
16 ∗ 2TP2

2TP1 + 12 ∗ 2TP1 if 0 < x < 64 ∗ 2TP2

8 ∗ 2TP1 if x = 0

x
16 ∗ 2TP2

2TP1 + 4 ∗ 2TP1 if − 64 ∗ 2TP2 < x < 0

0 if x ≤ −64 ∗ 2n

(2)
In Figure 4, n is set to 1 and no further scaling of the value
ranges is applied for the sigmoid function.

2) The linear transfer function: The second transfer function
is a linear function. In Figure 4 TP1 and TP2 are set to the
same value, which results in a slope of 1 for the linear function.

However, using TP1 and TP2 it is possible to change the slope
during runtime. TP1 and TP2 are simple integers values, which
indicates the number of shift operations. Therefore, the slope
equals a power of two. Formula 3 describes the function. This
is necessary because otherwise a real division would have to
be realized to determine the final slope, which would decrease
performance heavily.

T (x) = x ∗ 2TP2

2TP1
(3)

3) The Heaviside step transfer function: In Figure 4, the
Heaviside step transfer function is depicted where TP1 is set
to 1 and TP2 is set to 0. The TP1 parameter defines the output
value of the neuron if it fires. Additionally, the TP2 parameter
is used to set the threshold value for the neuron output to send
the value TP1. The function is defined by the Formula 4.

T(x) =

0 if x < TP2

TP1 if x ≥ TP2
(4)

The ”Hidden factor”, and ”Output factor” parameter are
values to the power of two, which allows the realization
as hardware friendly shift operations. Additionally, the MLP
comprises an extra bias neuron in the input and hidden layer.
The host is able to set the values directly by setting the ”Bias1”
and ”Bias2” parameter. If the Bias value for every node is
different, the user only has to modify the weight of the Bias
to neuron connection.

IV. CONFIGURATION AND INTERACTION WITH THE MLP

For convenient configuration and interaction, an approach
is presented, which meets the requirements for an efficient
configuration of the MLP. The weight factors are required to
configure the MLP and to define the architecture. An maximum
sized MLP is the basic MLP. If less neurons are needed the
weight factors of the connections to the unnecessary neuron
are set to zero. Consequently, the neuron will always output
a zero. Therefore, a previously loaded maximum sized MLP
is flexible and the architecture is simple to change. The main
flow of the configuration and communication is depicted in
Figure 5.

The hardware part of the MLP and additional modules
were described in the previous Section III. Matlab, a software
interface, and an own developed protocol are used. Two UDP
sockets are created handling the outgoing and incoming packets.
Port 55555 of the first UDP socket is used to send the packets
to the FPGA. The second sockets for receiving packets uses
port 55554. If there is a need for a higher PC performance
the pcap library can be used to speed up the processing of
the incoming packets. Additionally, as the training process is
given as a non timing critical process Matlab can perform an
online training incidentally. If it necessary to change the MLP
parameters Matlab can reconfigure the MLP during runtime.



-100 -50 0 50 100
-100

-50

0

50

100
Linear transfer function

Input x

O
ut

pu
t T

(x
)

2TP1

2TP2

-10 -5 0 5 10
-0.5

0

0.5

1

1.5
Heaviside step transfer function

Input x

O
ut

pu
t T

(x
)

TP1

TP
2

-100 -50 0 50 100
-5

0

5

10

15

20
Sigmoid transfer function

Input x

O
ut

pu
t T

(x
)

16

8

64-64

Fig. 4. Supported parameterizable transfer functions

Software Interface

Configuration

Weigth factors

Input

Result

Matlab

Xilinx ML605 Evaluation 
Board

Weigths.dat

PC

Port 55555
Port 55554

(Online) Training

Software Hardware

Fig. 5. Developed software hardware approach

A. Creation of the Weight Factors

The MLP needs the correct weight factors to operate properly.
These weights factors are generated during a training process
like the supervised backpropagation learning. Therefore, Matlab
is used to handle the training generating the needed weight
factors for the paths between the neurons. The Matlab internal
neural network toolbox can be used to generate a trained
neural network. Furthermore, using Matlab to train the neural
network saves additional hardware resources on the FPGA. The
generated weight factors are written into a ”Weights.dat” file. A
software interface has been developed using C++. Thus with the
software interface, it is possible to set several parameters and
to select the ”Weights.dat” file containing the weight factors,
which have to be transmitted to the FPGA. All steps during
configuration and interaction with the MLP are realized using
the software interface.

B. Configuration of the FPGA

The configuration of the FPGA is done directly via UDP
packets. A UDP socket on port 55555 sends the configuration
packets to the FPGA containing the MLP. This can be

performed by any PC in the network. There are different packet
types, which are listed in Table II.

PACKET TYPE ID DESCRIPTION

”IP Config” 1 Addressing information
”NN Config” 2 Neural network parameters
”Weigth” 3 Weights for the inter neuron connections
”Input” 4 Input values for the neural network
”Result” 5 Results from the neural network

TABLE II
DIFFERENT PACKET TYPES OF DEVELOPED PROTOCOL

The ”IP Config”, ”NN Config”, ”Weight”, and ”Input”
packets are transmitted from the host PC to the FPGA. The
packets are processed by the FPU and all relevant information
are forwarded to the MLP module.

”IP Config” packet: For an easy integration of the system
into an existing network based on Ethernet and IP it is necessary
to be able to configure the addresses. However, this includes
the Mac address, IP address and port address, which are sent
with the ”IP Config” packet.

”NN Config” packet: Inside the ”NN Config” all param-
eters are transmitted to configure the MLP. These parameters
are defined in Table I. A ”NN Config” can be send during
runtime.

”Weights” packet: The ”Weights” packets contain the
weight factors for the MLP. The weight factors are directly
extracted from the ”Weights.dat” file generated by the Matlab
neural network toolbox. The weights factors are stored in
registers for fast access by the the MLP logic.

C. Interaction with the MLP

The interaction between the MLP and the user is done
directly using UPD packets. The user can create the ”Input”
packets directly using the software interface. The software
interface also processes the incoming ”Result” packets.

”Input” and ”Result” packet: The ”Input” packets contain
32 bit signed values in the payload. These values will be directly
forwarded to the input layer neurons. The number depends on
the given #IN parameter. The ”Result” packet contains the the



results from the MLP, which will be sent back to the requesting
host for processing.

V. PERFORMANCE EVALUATION

As there are more and more resources available in each new
FPGA generation, it offers more storing and logic capacity. The
multipliers and adders consume most of the available hardware
resources [10]. However compared to other FPGAs today, it
is possible to generate greater scaled ANNs/MLPs containing
more multipliers. All divisions needed for a parameterizable
design are realized as shift operations by using only factors to
the power of two. If integer divisions are supported the design
needs to realize full division modules, which results in very
low performance. The maximum working frequency will be
decreased by a factor of 5. Additionally, the implementation
with a full division module needs 45,1% extra LUT hardware
resources on average. The number of used registers does not
change and only depends on the number of connections in the
MLP. Furthermore, the influence of the architecture has been
investigated.

Hardware utilization: The number of used LUTs for the
exemplary architectures 5-x-2, 25-x-2, and a 100-x-2 MLP
are depicted in Figure 6. The x-axis represents the number
of neurons in the hidden layer. All three MLPs need more
LUTs ressources if the number of neurons in the hidden layer
increase. This dependence is linear. The same behavior is when
varying the number of neurons in the input and output layer.

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

#S
lic
e
 L
U
Ts
 [
10
³]

#Neurons in Hidden Layer

Number of used LUTs

5‐x‐2

25‐x‐2

100‐x‐2

Fig. 6. LUTs hardware utilization

The number of used registers is depicted in Figure 7. For all
three architectures, it is also a linear behavior as the number
of registers only depends on the number of weight factors for
the connections.

DSP Slices were used to speed up the mathematical oper-
ations and directly depend on the number of neurons in the
hidden and output layer. The number of output neurons is fixed
to two for this paper. Therefore, the DSP slice consumption
linearly depends on the number of hidden layer neurons. The
DSP slice consumption is depicted in Figure 8.

All results are the result of the place and route of the
MLP module for a Xilinx ML605 Evaluation board containing
a XC6VLX240T-1FFG1156 FPGA. ISE 14.1 was used to

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50

#S
lic
e
 R
eg
is
te
rs
 [
10
³]

#Neurons in Hidden Layer

Number of used Registers

5‐x‐2

25‐x‐2

100‐x‐2

Fig. 7. Register hardware utilization

0

50

100

150

200

250

300

0 10 20 30 40 50

#D
SP

 S
lic
e
s

#Neurons in Hidden Layer

Number of used DSP Slices

5‐x‐2

25‐x‐2

100‐x‐2

Fig. 8. DSP utilization

generate the design. All other modules were constant in size
and additionally consume 1192 Registers and 1094 LUTs.
In summary, the whole design is linearly proportional to the
number of the neurons and the resulting weight factors and
adders. However, it is assumed that the FPGA size is raising
according to Moore’s law or even more [11]. Furthermore, in
Figure 9 the available LUTs and Flip Flops of the model with
the highest available resources of each generation is depicted.
The behavior is exponential. This positive trend allows to
realize greater scaled MLPs without putting further effort in
keeping the resources at a minimum.

0

500

1000

1500

2000

2500

3000

N
um

be
r x

 1
0³

Year

Available Hardware Resources  Xilinx FPGAs

LUTs

FFs

Fig. 9. Xilinx FPGA hardware resource trend [12]



However, that is why it is not necessary to regenerate the
MLP every time and reprogram the FPGA if there will be
enough hardware resources available in FPGAs.

Latency: The performance itself cannot be driven by the
maximum reached frequency for any MLP because the clock
generator has to be instantiated once again and a new bitfile
must be created to program the FPGA. Therefore, the maximum
guaranteed frequency fmaxMLP for all MLPs is 33 MHz,
which each design is able to reach after place and route. For
hard real-time environments, it could be necessary to affect
the response time of the MLP (latency). It is possible to have
an impact on the number of required clock cycles (CCs) by
changing the number of neurons in the layer. The resulting
latency is defined by Formula 5 and is directly depending on
the maximum reached MLP frequency and the number of CCs
needed to read in the input values and compute a result for
the output.

Latency = fmaxMLP ∗ CCs (5)

The calculation of the CCs is described in Formula 6.

CCs = 2 ∗#IN +#HN + CCsTransfer +#Bias (6)

The #IN counts twice. The input values in an input packet
need to be excluded and given to the MLP, which takes one
clock cycle per input value. Therefore, each input value needs
one clock cycle. Furthermore, the clock cycles for summation
in the hidden layer equal #IN because the summation of a
neuron (consisting of add and multiplication operations) is
done in serial but for all neurons in parallel in the hidden layer.
The needed CCs for the computation in the output layer is
equal #HN. As the input for an output layer neuron has to be
calculated in serial similar to the input calculation of an hidden
layer neuron. Additionally, the number of CCs consumed by
the sigmoid function has to be added. The transfer function is
used twice in the hidden and output layer and needs only one
CC. In this case, CCsTransfer is equal two and independent
from #IN, #HN and #ON. For each Bias, one extra CC during
the summation in the hidden and output layer is needed. These
additional CC are described by #Bias.

The latency of the different systems depending on the number
of used hidden layer neurons is depicted in Figure 10. Due to
Formula 5 the behavior is linear depending on the number of
activated neurons.

Another important aspect is the time needed to reconfigure
the MLP. The values have been determined for the three
maximum sized MLPs achieved and realized by a working
bitfile for a Xilinx ML605 Evaluation Board. The time
needed to configure the MLP during runtime for a 100-9-
2 configuration is only 31.04 us (see Table III). The needed
time is rising due to a higher number weights, which have to
be transmitted.

All requirements defined in the introduction are met using
the presented realization. Furthermore, despite a high level
of functionality and flexibility, a low latency and time for
configuration are achieved. The complete system is easy to
integrate into existing network structures as the configuration is

0

1

2

3

4

5

6

7

0 10 20 30 40 50

La
te
n
cy
 [
u
s]

#Neurons in Hidden Layer

Latency from Input to Output

5‐x‐2

25‐x‐2

100‐x‐2

Fig. 10. Latency of different MLP structures

MLP TIME [US]
5-44-2 11.52
25-31-2 28.45
100-9-2 31.04

TABLE III
TIME NEEDED TO CONFIGURE MAXIMUM SIZED MLP DURING RUNTIME

done by UDP. In summary, this work combines the flexibility
of a software approach with low hardware costs.

VI. CONCLUSION

A working prototype of an MLP is presented. It is highly
configurable by a developed protocol. Using Matlab and a
developed software interface, a user can easily change the
architecture and parameters of the MLP during runtime. Due
to the Ethernet connectivity and IP accessibility, it is easy
integrable into existing systems. An approach is presented
showing that the development of FPGA resources follows an
exponential trend. Contrary, the hardware utilization of the MLP
is linear proportional to the number of neurons. Therefore, it
is a suggested trade-off between high usability and resources
constraints.

REFERENCES

[1] A. R. Omondi and J. C. Rajapakse, FPGA Implementations of Neural
Networks. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2006.

[2] H. Restrepo, R. Hoffmann, A. Perez-Uribe, C. Teuscher, and E. Sanchez,
“A networked fpga-based hardware implementation of a neural network
application,” in Field-Programmable Custom Computing Machines, 2000
IEEE Symposium on, 2000, pp. 337 –338.

[3] D. D. Earl, “Development of an fpga-based hardware evaluation system
for use with ga-designed artificial neural networks,” Ph.D. dissertation,
May 2004.

[4] D. Ferrer, R. Gonzalez, R. Fleitas, J. Acle, and R. Canetti, “Neurofpga-
implementing artificial neural networks on programmable logic devices,”
in Design, Automation and Test in Europe Conference and Exhibition,
2004. Proceedings, vol. 3, feb. 2004, pp. 218 – 223 Vol.3.

[5] A. Gomperts, A. Ukil, and F. Zurfluh, “Development and implementation
of parameterized fpga-based general purpose neural networks for online
applications,” Industrial Informatics, IEEE Transactions on, vol. 7, no. 1,
pp. 78 –89, feb. 2011.

[6] B. Wagner, G.Ruscher, D. Timmermann, and T.Kirste, “Device-free
user localization utilizing artificial neural networks and passive rfid,” in
Proceedings of the International Conference on Ubiquitous Positioning,
Indoor Navigation and Location-Based Service, 2012.



[7] F. Rosenblatt, “The Perceptron: A probabilistic model for information
storage and organization in the brain,” Psychological Review, vol. 65,
pp. 386–408, 1958.

[8] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-
sentations by back-propagating errors,” Nature, vol. 323, pp. 533–536,
October 1986.

[9] I. S. Association, “Ethertype field,” 2012. [Online]. Available:
http://standards.ieee.org/develop/regauth/ethertype/eth.txt

[10] J. Liu and D. Liang, “A survey of fpga-based hardware implementation
of anns,” in Neural Networks and Brain, 2005. ICNN B ’05. International
Conference on, vol. 2, oct. 2005, pp. 915 –918.

[11] L. Latif, “Fpga manufacturer claims to beat
moore’s law,” the Inquirer, 2010. [Online].
Available: http://www.theinquirer.net/inquirer/news/1811460/fpga-
manufacturer-claims-beat-moores-law

[12] Xilinx, “Fpgas,” 2012. [Online]. Available:
http://www.xilinx.com/products/silicon-devices/fpga/index.htm


