
Time Synchronization in the DHT-based P2P
Network Kad for Real-Time Automation Scenarios

Jan Skodzik, Peter Danielis, Vlado Altmann, Dirk Timmermann
University of Rostock

Institute of Applied Microelectronics and Computer Engineering
18051 Rostock, Germany, Tel./Fax: +49 381 498-7284 / -1187251

Email: jan.skodzik@uni-rostock.de

Abstract—In this paper, an approach to synchronize the P2P
network Kad to be applied in automation scenarios is presented.
The approach bases on a deterministic algorithm to synchronize
the network, which is required for hard real-time applications.
Today’s Industrial Ethernet solutions base on centralized struc-
tures, which are deficient in resilience and scalability regarding
network administration and size. The presented decentralized
approach benefits from nodes helping to synchronize the network.
However, the higher the number of helping nodes the higher
is the time deviation on the nodes of the network, which
contrary results in a higher time error. Therefore, a trade-
off between synchronization performance and time error has
to be determined to meet predefined constraints depending on
the application scenario. Moreover, the individual clock drift of
every device is considered to define necessary re-synchronization
intervals of the network. Additionally, the optimum number of
nodes to synchronize the Kad based network has been identified
and the resulting synchronization performance and generated
traffic are determined. Furthermore, an approach is presented
to handle the dynamic churn of nodes.

Keywords-Peer-to-Peer; Kad; Synchronization; Automation;

I. INTRODUCTION

In the field of automation, there is a high need for hard
real-time systems to guarantee the proper function of, e.g.,
production sites. There are several realizations, which use
common Ethernet technology with proprietary hardware and
protocols to ensure hard real-time communication. Industrial
Ethernet solutions like Profinet, EtherCat, Modbus-TCP, or
Powerlink have central instances to manage the communication
between the network nodes [1]–[4]. They use a master/slave
or client/server model with central components representing
a single point of failure (SPOF). The failing of the central
instance leads to the total failing of system functionality and
the loss of data. Furthermore, the physical integration of new
nodes into the infrastructure and integration into the managing
software require high efforts. The central instance has to
monitor the whole communication and thus is a bottleneck in
the network. Another disadvantage is the network topology
of Industrial Ethernet solution. The network topology is often
limited to ring or line structures. Sometimes it is mentioned that
the physical topology does not require a ring or line structure
but the virtual topology does. Additionally, in traditional
facilities the structure is organized hierarchically for better
maintenance, which prevents direct communication between
devices at the lower hierarchical level. Contrary, P2P networks

solve the problem of limited scalability, low robustness, and
lacking user friendly installation. Each peer provides server
and client functionality, which results in a network with high
resilience. Kad (an implementation of Kademlia) has been
chosen as network to realize a self-organizing distributed hash
table (DHT)-based P2P network. A network consisting of
several subnets should act as one P2P network realizing a
total horizontal and vertical integration of a facility automation
network. A main requirement for networks in the field of
automation is a common time base for controlled information
exchange. This paper presents an approach to realize the
synchronization of the Kad network by applying small changes
to the Kad protocol. By allowing a defined grade of parallelism
in the communication, the time needed for synchronization is
decreased while the time error increases. Therefore, a trade-
off is investigated in this regard. Additionally, the drift of
each device forces the system to re-synchronize the network.
Therefore, the consumed time for synchronization has to be
kept minimal while considering the time error.

The remainder of this paper is organized as follows: Section
II contains a comparison of the proposed approach with related
work. Section III presents the necessary steps to realize a Kad-
based network synchronization. An algorithm called KaDisSy
is presented, which carries out the synchronization. Section
IV mathematically analyzes the performance of the presented
solution. In Section V, two aspects are discussed to decrease
the time error by peer grouping and to increase robustness by
a backup approach. The paper concludes in Section VI.

II. RELATED WORK

The Network Time Protocol (NTP) and the Precision Time
Protocol (PTP) are two established protocols to synchronize
devices in a network. They achieve an accuracy of several
milliseconds in case of NTP [5] and about 100 microseconds
for a single link in case of PTP [6]. Furthermore, PTP can
achieve better performance than NTP as it uses special hardware
to generate accurate time stamps, which increases the time
resolution and decreases the time error.

Contrary, this paper presents a software-based solution,
without any special hardware requirements. Furthermore, NTP
and PTP base on a hierarchical approach, which contrasts with
the idea of P2P-based networks such as Kad [7], [8].

An alternative synchronization approach called PariSync for
P2P networks is presented in [9]. It bases on Java and achieves
a synchronization error of a few hundred milliseconds over the
Internet. PariSync is suggested to be used in large networks
with high churn. The information exchange and media access
is not controlled. The resulting error through parallel cross talk
and switch buffering is not investigated. Also, it takes many
seconds to establish a stable network.

In [10], a P2P system is presented to improve the routing
paths in terms of traffic cost reduction inside the network.
The main focus is on a large network with high churn. The
Network Time Protocol (NTP) is used to synchronize the
nodes. However, a time resolution and average time error are
not mentioned. Additionally, the traffic itself is not managed,
which leads to further time errors.

In [11], a system is presented, which uses a gossip-based
approach. The focus is on assessing the impact of corrupted
processes on the effectiveness of clock synchronization. There
is no formal proof of the correctness of clock synchronization
convergence. [12] presents a system using aggregation to
calculate average, product, and extreme values in P2P networks
with an epidemic approach. This requires real-time intervals
called cycles to generate global values by the systems. However,
these cycles depend on an appropriate synchronization of the
nodes as well. The negative effect of parallel communication
due to time errors is not considered and the drift and message
delays are only discussed informally. Several parameters have
to be determined to achieve a high probability of information
exchange. Using a gossip-based or epidemic approach like
in [11] and [12] is always a trade-off between scalability
and reliability [13]. Therefore, we renounce a gossip-based
approach as it is probabilistic and not suited for hard real-time
scenarios requiring deterministic behavior of the network.

The goal is to achieve a similar time resolution and time
error like NTP and software-based PTP protocol. We present
an effective trade-off between exclusive media access and time
error increase by speeding up the synchronization process
enabled by parallel communication of nodes. The presented
approach does not require any central instance and offers a
high performance synchronization of several thousand devices
with a low time error.

III. BASICS AND DESIGN CONCEPT

A deterministic approach to synchronize the Kad network
is presented consisting of six stages. These stages represent a
working system based on a Kad network for an automation
scenario and are depicted in Figure 1. Following, the steps are
elaborated to determine the worst case for the performance of
the presented approach. Kad has been chosen because it does
not have any SPOF as it belongs to the fully decentralized
structured P2P systems and offers the best lookup performance
among the DHT-based solutions with O(log2b(N)) [14]. The
network is designated to run in an automation environment.
Additionally, the realization of the presented approach will run
on a dedicated network. Thus, no generated competing data
traffic by other components is assumed.

B. Search Tolerance Determination

C. Initial Synchronization

D. Data Exchange

E. Maintenance

F. Re-synchronization

Tim
e t

A. Initial Kad Operations

Fig. 1. Synchronization stages

A. Initial Kad Operations

During the first stage, the Kad network performs initial
operations. This includes the bootstrapping of new nodes and
the maintenance of the network thereby filling the routing
tables with contacts. Additionally, to avoid further message
overhead in the following stages the MAC addresses of the
nodes are also stored to avoid Address Resolution Protocol
(ARP) packets in IPv4 or Neighbor Discovery Protocol (NDP)
packets in IPv6 networks. This is necessary as an operating
system’s ARP cache is limited in space and the entries will
be stored for a certain period of time. If there is no available
entry an ARP broadcast in the network is necessary, which
could result in heavy performance losses and increased time
error.

B. Search Tolerance Determination

To ensure that all lookup processes are successful, the
dynamic search tolerance (DST) was developed [15]. The DST
algorithm adjusts the search tolerance at runtime so that at
least one node is responsible for every hash value. Moreover,
this increases the performance as it leads to less time outs
terminating the lookup process during the Kad operations. The
DST algorithm is started by any node in the network receiving
a defined trigger. The node receiving the trigger command is
called the first triggered (FT) node.

C. Initial Synchronization

After the FT node has performed the DST process, the initial
synchronization process is executed. The FT node sends a
broadcast through the network and has to wait for at least
the time a packet travels the critical path in the network. The
waiting time must be chosen in such a way that every node
receives the broadcast message. Now, the FT node exclusively
accesses the Ethernet medium.

Kad applies the iterative lookup strategy and originally
the active node would be able to issue α lookup requests
in parallel [16]. However, to ensure exclusive Ethernet access,
only one lookup request in the network at one time is allowed.
Thus, α is set to 1. During the synchronization process, the
maintenance is paused and the routing table is only modified
by the lookup process. This does not pose a problem as
in the original implementation, maintenance operations are
executed every several ten seconds. The synchronization is done
by the Kademlia Discovery and Synchronization (KaDisSy)
algorithm, which is a version of the Kademlia Discovery
algorithm extended by a synchronization functionality [17]. It

Start Search
k=0; s=0

Try to contact node
with MD5(„node_“i)

i=iown mod 2J+2s+(k*2J)
Success?

k=0
s++

k++ k==T

Synchronization
(RTT determination) Help(node_i, J)

No

Yes

Yes

No
s==J

Yes

No

Group synchronization
(see Figure 3)

Trigger

s+1==J
YesNo

Group synchronization
(see Figure 3)

2

3

45

1

6

Fig. 2. KaDisSy algorithm: Acquiring HT nodes

is assumed that the devices in the Kad network follow naming
conventions. That is, every node’s hash value is calculated
from a concatenation of a fixed string and a counter value
i. This offers the possibility to operate independently of the
hash value distribution. The algorithm consists of two steps as
follows:

Acquiring helping nodes: The first step is the acquiring of
helping triggered (HT) nodes and is depicted in Figure 2. With
every step the number of HT nodes doubles as every HT node
itself requests new HT nodes. At the start (1), the counters
are set to their initial values. s counts the number of steps to
acquire HT nodes. It is possible to set J to zero. Then, the FT
node is the only node responsible for the synchronization. In
this case, the algorithm immediately continues with the group
synchronization (2), which is described later. However, J is
usually set to a higher value to acquire HT nodes. Therefore,
the total number of nodes responsible for the synchronization
is 2J . If s is smaller than J the FT or HT node tries to
contact the next node to request it as HT node (3). The hash
value as a base of the lookup process is calculated from a user
pre-defined concatenation of a string, e.g., ”node ” and an
integer value i. To create the hash value, the Message-Digest
5 algorithm is used. i is calculated from the value iown, which
is the i of the requesting node, J , s, and the counter k (see
Formula 1).

i = iown mod 2J + 2s + (k ∗ 2J) (1)

If the responsible node for the value i is not found by the
lookup process as it is not existent in the Kad network the offset
counter k is increased. If k is smaller than the threshold value
T a new lookup (3) is performed. Otherwise, the node checks
if s+ 1 equals J , which indicates that this is the last iteration
for acquiring new HT nodes. If it is the last iteration the
algorithm starts with the group synchronization (4). Otherwise,
k is reset to zero and s is incremented by 1 to request a new
HT node for the next group.

Contrary, if the previous lookup with the value i was
successful k is reset and s is incremented. The node is requested
to be a HT node and gets to know the parameter J (5). Now,
the synchronization process (6) is started by sending a ping
from the requesting node to the new HT node to determine
the round trip time (RTT). Due to channel symmetry in an
automation Kad network, the delay between two nodes is

assumed to be equal in both directions. The determined delay
RTT/2 will be added to the actual time of the FT or HT
node and sent via UDP packets to the node, which has to be
synchronized. The new HT node needs to determine its initial
counter value s for the next iteration. This value does not need
to be given by the requesting node as is can be determined by
Formula 2.

s = blog2(iown mod 2J) + 1c (2)

The algorithm starts again to search for further HT nodes as
long as s is smaller than J or until k is equal T and it is
the last iteration of acquiring new HT nodes. After that, the
algorithm proceeds with group synchronization (4).

Group Synchronization: The second synchronization step
consists in the synchronization of the own group (see Figure
3). The FT node and each HT node synchronize their nodes,
which are potentially in its group. Similar to the acquiring

Start Group
Synchronization

q=0; m=0
End of

synchronization

Try to contact node
with MD5(„node_“i)

i=iown + 2J*m
Success?

Synchronization
(RTT determination)

q=0, m++
m++

q++ q==Z

No

Yes

No

Yes

1

2

3

Fig. 3. KaDisSy algorithm: Group synchronization

process, the FT and each HT node contact the nodes in their
group depending on their iown value plus an offset depending
on m (1). Additionally, if the lookup is not successful the
counters q and m are increased as long as q is smaller than the
threshold value Z. In this case, the synchronization process
is finished (3) as it is assumed that there are no more nodes
in the group. If the lookup is successful q is reset to zero
and the synchronization between the FT or HT node and
the requested node is performed (2), which is similar to the
synchronization during the HT node acquiring step.

D. Data Exchange

During data exchange between the nodes, no new nodes are
allowed to enter the Kad automation network as this would

result in a higher time error. Additionally, the data exchange
amounts to the largest share of the time periods as it represents
the main functionality of the Kad network. The communication
including the data exchange between the nodes has to be
handled by a separate protocol, which is not part of this work.

E. Maintenance

The maintenance and the entering of new nodes into the
Kad network were forbidden during the previous stages to
avoid increasing time errors. However, to keep the routing
tables updated and to allow the entering of new nodes the
maintenance stage is required. Nodes are allowed to join the
network by requesting their bootstrap node after receiving a
jamming signal, which is a broadcast issued by the FT node
through the Kad network. The mentioned requirements can be
realized by running the original Kad network implementation.

F. Re-synchronization

Due to their clock drift, the nodes need to re-synchronize
periodically. The re-synchronization period TReSyn is defined
by Formula 3 and represents the time between two synchro-
nizations. The maximum allowed time error is given with
TMaxError. TSynError is the error during the synchronization
process between two nodes. The value depends on the grade of
parallel communication as there can be buffered packets in the
network, which adulterate the synchronization time. DClk is
the drift of the clocks of the devices. TReSyn directly depends
on TSynComp as the first node already drifted away from the
correct clock value while the last node is synchronized.

TReSyn <
TMaxError − TSynError

2 ∗DClk
− TSynComp (3)

A detailed analysis of the performance can be found in
Section IV. The re-synchronization is technically similar to the
initial synchronization. After finishing the re-synchronization,
we proceed with the data exchange again and repeat the
following stages.

IV. PERFORMANCE ANALYSIS

As the KaDisSy algorithm is supposed to be used in a hard
real-time environment, it is necessary to determine its worst
case behavior.

Synchronization performance: First, the time TSyn needed
to synchronize two nodes is defined by Formula 4. N is the
number of nodes in the Kad network. b describes how many
bits can be skipped by each lookup step and is set to 1 for
worst case analysis. TSynComp in Formula 5 is the time to
complete the synchronization process for all nodes and directly
depends on N and the number of iterations J for acquiring
HT nodes.

TSyn = dlog2b(N)e ∗RTT + 1.5RTT (4)

TSynComp = TSyn ∗ (J +
N

2J
− 1) (5)

The time consumption TSynComp depending on the number
of nodes N and J as an indicator for the number of HT nodes
is depicted in Figure 4.

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12

Sy
nc
hr
on

iz
at
io
n
tim

e
T S

yn
Co

m
p
[s
]

Threshold value J to acquire HT nodes

100

500

1000

5000

10000

Number of
Nodes N:

Fig. 4. Time to sychnronize the Kad network

Consideration of queuing delay: If there are no HT
nodes helping during the synchronization process the time
for synchronization linearly depends on the number of nodes
in the network and does not scale well. Otherwise, if TSynComp

must be kept low due to application-specific requirements, it
is possible to increase the number of helping HT nodes. If
the number of helping nodes increases, the general timing
error increases as well due to parallel packet exchange in the
network. In a switched Ethernet network environment, the
queuing delay of packets has to be considered as it increases
the synchronization error. The Kad packets are the largest
packets and therefore decisive for the worst case analysis.
TPkt therefore represents the time to transmit a packet through
a switch. The worst case for the synchronization time error
TSynError in a switched Ethernet network is described by
Formula 6. TSynError linearly depends on the number of HT
nodes. The synchronization deviation TSynDeviation is given
with 30 µs, which is the measured worst case synchronization
deviation between two dedicated PCs and has been determined
by practical investigations.

TSynError = TSynDeviation + (#HT ∗ TPkt) (6)

The time TReSyn is defined by Formula 3 and should
be as large as possible to provide sufficient time for data
exchange. Several parameters have to be declared to determine
proper values. The maximum allowed time error is given by
TMaxError. It is set to 1 ms for all further considerations. It
is assumed that the network consists of a cascaded switched
network. A Kad response packet with a size of 80 byte, which
is the biggest packet possible, containing a fixed number of
contacts took 610 ns to traverse the switch as a consistent
network using 1 Gbit/s connections is assumed. Every queued
packet has to wait until the previously queued packet is
processed. Therefore, TPkt is set to 610 ns for the worst case
analysis.

Finally, it is necessary to know the time period for the
synchronization. All important times are listed in Table I
for reasons of clarity. Additionally, the clock is not an ideal
electronic part in real world conditions. Each clock has a

SYMBOL DESCRIPTION

TSyn Time to synchronize two nodes
TSynComp Time to synchronize all nodes
TSynError Synchronization error between two nodes
TPkt Time to traverse 1 Gbit/s Switch
TMaxError Maximum allowed time error in the network
TReSyn Time interval between two synchronization steps

TABLE I
IMPORTANT TIMES FOR PERFORMANCE EVALUATION

unique drift. As the target platform for a future prototype, the
Zedboard is intended. The internal oscillator provides a stable
clock with a drift DClk of ± 50 ppm [18]. In Figure 5, the
time period TReSyn depending on the number of nodes N and
HT nodes is apparent. It is useful to add HT nodes to gain
a better performance and also to support a higher number of
nodes in the Kad automation network. With 10,000 nodes, it
is apparent that more HT nodes are needed to synchronize
the network in an adequate time.

If TReSyn is zero the synchronization has to be executed
permanently. Additionally, it is apparent if too many HT
nodes are created, due to a large J the possible worst case
error becomes too dominant and the re-synchronization has to
be executed more often. As apparent, in larger Kad automation
networks, one FT node is not able to synchronize the network as
TReSyn must be greater than TSynComp. Therefore, HT nodes
are necessary. In the best case, their number must be set to such
a value that TReSyn becomes much greater than TSynComp so
that the synchronization process is not the dominating process.
This optimum value for J is JOpt defined by Formula 7 and

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10 12

Re
‐s
yn
ch
ro
ni
za
tio

n
pe

rio
d
T R

eS
yn
[s
]

Threshold value J to acquire HT nodes

100

500

1000

5000

10000

Number of
Nodes N:

Fig. 5. Minimal Synchronization Period

represents the maximum value for TReSyn, which results in less
need for re-synchronization and more time for data exchange.
JOpt depends on the number of nodes N in the network, TSyn

denoting the time needed to synchronize two nodes, and TPkt.
Furthermore, it is important to know the traffic generated

by the presented approach. To determine the traffic volumes,
the packet types must be known, which are exchanged. First,
this includes the Kad response packet with a size of 80 byte
as mentioned above. Additionally, Kademlia requests (35 byte
in size), two packets for pinging (each 20 byte in size), and
one packet containing the 4 byte time value (24 byte in size,

see step (6) in Figure 2) are involved in the synchronization
process.

JOpt = log2

DClk ∗ TSyn

(√
1 + (2ln(2))2∗N∗TPkt

2DClk∗TSyn
− 1
)

ln(2) ∗ TPkt

(7)

In Table II, characteristic values are given for rounded JOpt

values for different network sizes. As apparent, the performance

NODES 100 500 1000 5000 10000
JOpt 3 4 5 6 7
TSynComp [ms] 24.65 71.93 81.08 241.06 260.79
TReSyn [s] 9.63 9.53 9.42 9.07 8.66
Traffic [Kbyte] 84 535 1,184 7,610 16,346

TABLE II
PERFORMANCE EVALUATION USING JOpt

is competitive to existing central solutions like NTP with
an accuracy of several milliseconds whereby a maximum
time error TMaxError of 1 ms is assumed. Furthermore, our
approach is not gossip-based like the solutions in [11] and [12]
and therefore it is suitable to be applied in a hard real-time
scenario. The results have been proven by simulations and
confirm the values for TSynComp and TReSyn, which have
been previously calculated.

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10

Sy
n
ch
ro
n
iz
at
io
n
 t
im

e
 T

Sy
n
C
o
m
p
[s
]

Threshold value J to acquire HT nodes

5 %

15 %

25 %

0 %

Failed Node:

Fig. 6. Synchronization performance considering failed nodes

Performance impact due to failed nodes: Additionally, it
is necessary to know how the algorithm acts if we consider the
churn of nodes. Therefore, the performance has been traced
with different failure rates of the nodes ranging from 1 % to
25 % percent whereby 25 % is a very pessimistic assumption.
The size of the network is set to 10,000 nodes. If a HT node
is not able to synchronize with a failed node a timeout is
generated after 6200 µs, which is twice as long as the time
to synchronize two nodes in a network with 10,000 nodes.
The parameters T and Z from the KaDisSy algorithm are
set to the value 10. All available nodes were synchronized
properly. Exemplary simulation results for failure rates of 5%,
15%, and 25% compared to a network without failed nodes
are depicted in Figure 6. Additionally, the deviation of the
synchronization performance TSynComp compared to a network
without failed nodes is given in Figure 7. As apparent, the

failure rate has a significant influence on the performance and
should be considered if the network characteristics are known
in advanced. If a failure rate of 25 % and 10,000 nodes are
assumed TSynComp increases by 25 % (using a single node to
synchronize, i.e., J = 0) to 100 % (using J = JOpt) compared
to the network without failed nodes.

0

50

100

150

200

250

0 2 4 6 8 10

D
e
vi
at
io
n
 o
f
T S

yn
C
o
m
p

Threshold value J to acquire HT nodes

1 %

5 %

15 %

25 %

Failed Node:

Fig. 7. Deviation of TSynComp compared to a network without failed nodes

V. FURTHER IMPROVEMENTS

Following, two approaches are presented to improve the
presented solution by decreasing the time error and increasing
reliability.

The grouping of nets: If the P2P network consists of several
subnets it is possible to determine a corresponding HT node in
each subnet to realize the synchronization inside it. Furthermore,
this could increase the accuracy of the synchronization due
to less time errors as the packets to forward the times values
are exchanged within the subnet. To address the nodes in each
single subnet, a consistent naming convention for each subnet
has to be given. However, subnets should work independently.
Otherwise, small subnets have to wait long for the completion
of the synchronization of large subnets.

The backup system: Another focus is on ensuring high
reliability for a proper working network especially by using
backup concepts in the automation area. In traditional systems,
a wide variety of parameters, algorithms, or user defined
constraints have to be exchanged to determine a backup node,
which leads to additional communication overhead. Contrary,
in the presented approach the problem of a failing initial FT
or HT node is solved without heavy overhead. If the FT node,
which can be any node in the Kad network, fails the closest
node in terms of the XOR distance to zero in the hash table
becomes responsible for the initial synchronization stage. A
node can calculate the worst case time, in which it should be
contacted. If this time is exceeded the node becomes active
and starts the (re-)synchronization.

VI. CONCLUSION AND FUTURE WORK

An approach to synchronize the DHT-based P2P network
Kad is presented to enable its operation in real-time automation
scenarios. A worst case analysis has been carried out to
show the performance, which is close to existing software
solutions like NTP or PTP, but avoids SPOFs in the form of

central instances. Additionally, the optimum number of helping
nodes is defined as a trade-off between fast synchronization
and less need for re-synchronization due to time errors and
drifts of the clocks. The idea of grouping inside the network
could lead to better results due to bounded subnets and less
time error variations. Also, the handling of failed nodes
and new entering nodes into the network (called churn)
has been considered and an approach to handle the node
churn is presented. Prospectively, a real-time Kad prototype
will be developed to demonstrate the performance of the
synchronization algorithm on existing hardware and enable
further automation applications.

REFERENCES

[1] PROFIBUS Nutzerorganisation e.V. (2012) Profinet. [Online]. Available:
http://www.profibus.com/technology/profinet/

[2] EtherCat Technology Group. (2012) Ethernet for control automation
technology. [Online]. Available: http://www.ethercat.org/

[3] M. Organization, “Modbus specifications,” 2013. [Online]. Available:
http://www.modbus.org/

[4] EPSG. (2012) Ethernet powerlink. [Online]. Available:
http://www.ethernet-powerlink.org

[5] U. Windl, D. Dalton, Hewlett-Packard, M. Martinec, J. S. Institute,
and D. R. Worley. (2006) The ntp faq and howto. [Online]. Available:
http://www.ntp.org/ntpfaq/NTP-s-algo.htm

[6] D. Seely, “AN-1728 IEEE 1588 Precision Time Protocol Time
Synchronization Performance,” Texas Instruments, Tech. Rep., 2007.
[Online]. Available: http://www.ti.com/lit/an/snla098/snla098.pdf

[7] D. Mills, “Network Time Protocol (NTP),” RFC 1305, Internet
Engineering Task Force, March 1992. [Online]. Available:
http://www.ietf.org/rfc/rfc1305.txt

[8] K. Lee and J. Eidson, “IEEE-1588 Standard for a Precision Clock
Synchronization Protocol for Networked Measurement and Control
Systems,” in In 34 th Annual Precise Time and Time Interval (PTTI)
Meeting, 2002, pp. 98–105.

[9] P. Bertasi, M. Bonazza, N. Moretti, and E. Peserico, “PariSync: Clock
synchronization in P2P networks,” in Precision Clock Synchronization
for Measurement, Control and Communication, 2009. ISPCS 2009.
International Symposium on, oct. 2009, pp. 1 –6.

[10] Y. Liu, L. Xiao, and L. Ni, “Building a scalable bipartite P2P overlay
network,” in Parallel and Distributed Processing Symposium, 2004.
Proceedings. 18th International, april 2004, p. 46.

[11] R. Baldoni, M. Platania, L. Querzoni, and S. Scipioni, “A Peer-to-Peer
Filter-Based Algorithm for Internal Clock Synchronization in Presence
of Corrupted Processes,” in Dependable Computing, 2008. PRDC ’08.
14th IEEE Pacific Rim International Symposium on, dec. 2008, pp. 64
–72.

[12] A. Montresor, M. Jelasity, and O. Babaoglu, “Robust aggregation
protocols for large-scale overlay networks,” in Dependable Systems and
Networks, 2004 International Conference on, june-1 july 2004, pp. 19 –
28.

[13] P. Eugster, R. Guerraoui, A.-M. Kermarrec, and L. Massoulie, “Epidemic
information dissemination in distributed systems,” Computer, vol. 37,
no. 5, pp. 60 – 67, may 2004.

[14] K. Steinmetz, Ralf; Wehrle, Peer-to-Peer Systems and Applications.
Springer, 2005.

[15] P. Danielis, J. Skodzik, V. Altmann, S. Kruse, and D. Timmermann,
“Dynamic Search Tolerance for Deterministic Lookup in the DHT-based
P2P network Kad at Runtime,” in 19th International European Conference
on Parallel and Distributed Computing (Euro-Par 2013), 2013 (subm.).

[16] D. Stutzbach and R. Rejaie, “Improving Lookup Performance Over a
Widely-Deployed DHT,” in INFOCOM 2006. 25th IEEE International
Conference on Computer Communications. Proceedings, april 2006, pp.
1 –12.

[17] J. Skodzik, P. Danielis, V. Altmann, J. Rohrbeck, D. Timmermann,
T. Bahls, and D. Duchow, “DuDE: A distributed computing system using
a decentralized P2P environment,” in Local Computer Networks (LCN),
2011 IEEE 36th Conference on, oct. 2011, pp. 1048 –1055.

[18] “Zedboard documentations,” 2013. [Online]. Available:
http://www.zedboard.org/documentation

