
HaRTKad: A Hard Real-Time Kademlia Approach
Jan Skodzik, Peter Danielis, Vlado Altmann, Dirk Timmermann

University of Rostock
Institute of Applied Microelectronics and Computer Engineering

18051 Rostock, Germany, Tel./Fax: +49 381 498-7284 / -1187251
Email: jan.skodzik@uni-rostock.de

Abstract—The Internet of Things is becoming more and
more relevant in industrial environments. As the industry itself
has different requirements like (hard) real-time behavior for
many scenarios, different solutions are needed to fulfill future
challenges. Common Industrial Ethernet solution often leak
scalability, flexibility, and robustness. Most realizations also
require special hardware to guarantee a hard real-time behavior.
Therefore, an approach is presented to realize a hard real-
time network for automation scenarios using Peer-to-Peer (P2P)
technology. Kad as implementation variant of the structured
decentralized P2P protocol Kademlia has been chosen as base
for the realization. As Kad is not suitable for hard real-time
applications per se, changes of the protocol are necessary. Thus,
Kad is extended by a TDMA-based mechanism. Additionally, to
evaluate the performance an prototype is presented, which is
realized on an embedded platform with a real-time operating
system. Thereby, with the presented approach and a realized
prototype it is possible to investigate the performance of a Kad
network with hard real-time capabilities.

I. INTRODUCTION

In the field of automation, fieldbuses are widely established.
They allow a deterministic data exchange between devices
and follow the requirements for hard real-time applications.
However, fieldbuses are limited in address space, scalability,
resilience, and interoperability. Therefore, the industry tried
to use common Ethernet technology, which has technical and
economical advantages in contrast to fieldbus realizations. This
led to the development of Industrial Ethernet solutions, which
are able to guarantee hard real-time constraints like fiedbuses
do. However, there is no common solution available as there are
even more existing Industrial Ethernet solutions on the market
than fieldbuses [1]. Industrial Ethernet solutions allow for a
total vertical and horizontal integration of a automation system
from the field level up to company level [2]. The number of
participants is usually much greater that in fieldbuses as it
is only limited to MAC or IPv4/v6 addresses. Additionally,
the network is not limited to any topology in contrast to
fieldbuses, which often require line or ring structures. Another
economical advantage is the common Ethernet technology,
which is already established and makes the components cheaper
in terms of development and production costs than proprietary
fieldbus solutions. However, Industrial Solutions also have
disadvantages. Usually they possess a central instance, which
represents a single point of failure (SPoF) and bottleneck
due to the realization of the system following the master-
slave or server-client approach. Other realizations require
dedicated and expensive hardware to realize the hard real-

time behavior. Additionally, many solutions leak flexibility and
need a dedicated instance for administrative tasks. These issues
will becomes more relevant in the future. As mentioned in
[3], the future for the industry will be more intelligent devices,
which can act more dynamically. Facilities as one main area
of application will consist of more devices still requiring real-
time or even hard real-time behavior. So we think, the existing
solutions will not fulfill the future challenges in terms of
scalability, flexibility, and robustness.

Peer-to-Peer (P2P) networks instead offer an innovative
alternative to the typical Client-Server or Master-Slave concepts
used in Industrial Ethernet solutions. P2P runs in the application
layer and thus there is no need for special hardware or
modifications on the lower layers. As already proposed in [3],
the devices like sensors/actors and other facility components
become more intelligent and offer more resources.

Therefore, an P2P-based approach using Kad is presented
to realize a decentralized network of devices, which allows
for hard real-time applications. The main focus is on the high
robustness of the network and the scalable administration of
the network. The Kad protocol has been modified to enable
an arbitrary media access, which is necessary to meet timing
constraints given by real-time applications. Additionally, the
results of a working hard real-time Kademlia (HaRTKad) node
is presented, which is required to realize a complete consistent
system. The main contributions are:

• Presentation of the modified Kad protocol.
• Performance analysis of a HaRTKad client.
• Analysis of the HaRTKad protocol performance.
The remainder of this paper is organized as follows: In

Section II, the related work is presented. In the following
Section III, the basics of Kad are shortly described and the
main approach to realize the HaRTKad system is explained.
Section IV describes one HaRTKad node and the realization
as a prototype and its performance evaluation. In Section V,
an optimization step is presented, which significantly increases
the number of HaRTKad nodes acting in parallel and thus
increases the information exchange and channel utilization
without violating the hard real-time constraints. Finally, the
paper concludes in Section VI.

II. RELATED WORK

Many Industrial Ethernet solutions like Ethercat, Ethernet
Powerlink, Profinet IO/IRT, SERCOS III, and CC-Link IE
Field base on the master-slave or client-server approach and

2

therefore show the disadvantages of central instances. The
central instance represents a SPoF and also a bottleneck.
E.g., Ethercat uses a master to synchronize the participants
and to control the information exchange. Furthermore, some
realizations, like Ethercat, TCnet, TTEthernet, and Profinet
IO/IRT require special hardware, which is expensive and usually
proprietary, which results in further constraints for a planned
network. Ethercat for example needs special hardware for
the slaves to achieve hard real-time performance. However,
the use of special hardware for the Ethercat slaves results in
expensive and proprietary hardware. Profinet IO/IRT needs
special switches for forwarding packages in the network, as a
they need to follow a predefined path [4].

In [5], a real-time industrial Ethernet protocol is developed
adopting a master-slave pattern. The master is developed under
Linux using Real Time Application Interface and represents a
SPoF. Moreover, the slaves base on universal FPGA and ARM
chips so special hardware is necessary.

[6] proposes a real-time Ethernet solution, which does not
possess a central instance. The concept bases on two additional
proprietary layers on top of the Ethernet layer to manage the
media access. The result is an TDMA-approach using time slots.
There is no analyses about a high number of attendees and its
behavior in large scale networks. Furthermore, as TCP/UDP
and IP are not supported the total vertical and horizontal is
not possible without further effort.

We also propose a TDMA-based approach but directly
integrate it in the Kad protocol. Thereby, we use the unchanged
stack of Ethernet and UDP/IP. There are no changes needed
except for the application layer. Kad will be changed to act as
an application and also as an optional middle-ware for further
applications on top of it. No central instance is required to
configure, control, or synchronize the Kad network, which
results in a well scalable, flexible, and robust network for
automation scenarios, which require hard real-time constraints.

III. BASICS AND DESIGN CONCEPT

The distributed hash table (DHT)-network Kad (an imple-
mentation variation of the Kademlia protocol) has been used
to realize a fully decentralized structured network. Every node
has an own unique ID, which is called hash value. This hash
value is usually generated by a hash function, e.g., the Message
Digest 4 or 5 algorithm [7]. Every node is responsible for a
set of data or information. The responsibility is given by the
search tolerance ST . Kad generates a hash value for data or
information and determines the responsible node by determine
the XOR distance D between the data/information hash value
and the node hash value. If the distance is less than the ST
this node is responsible for the data/information. Formula 1
shows this correlation that a node is responsible if D is smaller
than ST .

D = HashData ⊕HashNode < ST (1)

So the hash value directly influences, which data or infor-
mation a node has to store [8].

In Industrial Ethernet solutions, the problem of fulfilling hard
real-time requirements is solved by ensuring a deterministic
information exchange. This is realized by using an arbitrary
media access. The control of media access is done via central
instances. In a TDMA-based approach, the central instance
would assign time slots to the participants.

Kad instead has no central instance, which could control
the media access. Therefore, a node needs to know by itself
if it can access the media. A node’s hash value HashNode

is unique and serves as information to determine time slots,
during which a node is allowed to access the media. Like the
relationship between data/information and the hash value, we
suggest to establish a correlation between access time and the
hash value as both are unique.

To determine the network size in a previously unknown
Kad network and to adjust the search tolerance ST so that
for hash value at least one node in the network is responsible,
the originally used static ST value is insufficient. Thus, the
search tolerance must be dynamically adjusted at runtime if
new nodes join or leave the Kad network or fail. By means of
an already developed algorithm (called Kademlia Discovery
(KaDis) algorithm [9]), the discovery of all nodes is possible
with a high probability without requiring a node to have a priori
knowledge of the network. Hence, any node can calculate
the search tolerance depending on the nodes present in the
network (i.e., their hash values) and the width of the address
space after having discovered all nodes by means of the KaDis
algorithm. In addition to the KaDis algorithm, which is executed
periodically, the calculating node’s routing table is regularly
checked for failing nodes and if changes are observed, the
search tolerance is recalculated. After the search tolerance
calculation, the calculated value is sent to all nodes.

Contrary, this algorithm could be easily modified to guarantee
that a maximum of one node is responsible for a any hash
value. This new algorithm will be called inverse dynamic search
tolerance (IDST). Figure 1 represents a DHT ring where the
search tolerance STIDST has been determined with the IDST in
such a way that maximum one node is responsible for any hash
value. The new value for STISDT will be stored consistently
by the IDST algorithm on every node in the network.

A main requirement for a TDMA-based time slotted network
is the common time base throughout all participating nodes.
Therefore, all nodes of the Kad network need to be synchro-
nized. An approach to synchronize a fully decentralized P2P
network based on Kad without a central instance has been
presented in [10]. The synchronization of a big network can
be achieved very fast by using the concept of helping nodes.
Additionally, the synchronization is realized as deterministic
approach to make it suitable for hard real-time applications in
automation scenarios.

After the IDST algorithm has been executed and the nodes
are synchronized, every node knows when it is allowed
to communicate (access the shared Ethernet communication
medium). It is necessary to correlate the hash space of the Kad
network with the time space to create the relationship between
the hash values of the HaRTKad nodes and the time slots.

3

STIDST
4-2 2

Fig. 1. Result of the IDST algorithm. The whole 4 bit address space is
represented by a ring. Three nodes are exemplarily placed on the ring.

Therefore, an approach is presented to realizes the arbitrary
media access of the nodes, which is handled in a decentralized
way. Every node itself knows when it is allowed to access the
media without a central instance as every node has sufficient
information about the time slot it belongs to. The number
of slots defined in Formula 2, which are generated, directly
depends on the bit width of the hash values b and the STIDST .
Additionally, every network participant must run the HaRTKad
application as everybody must consider its own time slot to
get access to the media. Otherwise, if a network participant
is not part of the HaRTKad network it could compromise the
network communication and the real-time behavior cannot be
guaranteed.

NSlots =
2b

STIDST
(2)

The period TDel represents the delivery time of a node,
which can be seen as one turn around the hash ring. TDel is
given by Formula 3. tEx is the time needed to find an node
and to exchange data.

TDel = tEx ∗NSlots (3)

The actual time tRing based on the hash ring is simply
expressed by Formula 4, where tNow is the absolute time.

tRing = tNow mod TDel (4)

Now, it is important for a node to know, which slot SlotNode

it is assigned to. Therefore, Formula 5 can be used.

SlotNode =
HashNode

STIDST
(5)

As each node knows the value for STIDST and tNow, it
can decide independently if it is allowed to sent. The decision
criterion is represented by Formula 6.

(tRing > SlotNode ∗ tEx)∧ (tRing << SlotNode ∗ tEx+ tEx)
(6)

Using the presented formulas, we are able to realize a TDMA-
based communication approach by correlating the time space
with the hash space. As we are using the IDST algorithm, there
is only one parameter left, which has to be determined. This
parameter is tEx. tEx is a technical parameter, which is hard
to determine theoretically as it depends on many parameters,
especially on the used hardware. Thus, we have developed a
prototype, which is presented in Section IV.

Another reason for not using the IP address of the nodes
directly to assign a time slot is to support non-IP protocols on
top of the Ethernet protocol as well. Therefore, we realize the
assignment of the time slot in the application layer, so that we
are able to support even proprietary protocol besides IP. Also,
the IP address are not as equally distributed as the hash values
of nodes generated by the MD4 or MD5 algorithm.

Hardware specification

lwIP

FreeRTOS

HaRTKad Application

Further Applications

Ethernet

IP

UDP
So

ft
w

ar
e

St
ac

k

C
o

m
m

u
n

icatio
n

 Layers

Fig. 2. Software stack of a Kad node

IV. HARD REAL-TIME KAD NODE

As the presented approach is supposed to be used in
automation scenarios, it is necessary not only to guarantee
a deterministic packet exchange, i.e., communication among
the nodes. It is also necessary to guarantee a hard real-time
behavior of Kad nodes in terms of packet processing. Therefore,
it is necessary to implement the Kad node in software using a
real-time operating system. Hence, the target platform should
support real-time operating systems. As target platform, the
Zedboard with a 667 MHz ARM processor has been chosen
[11]. We have chosen an embedded devices as we are targeting
a platform for industrial automation. Using the developed
HaRTKad prototype, it is possible to determine processing
times of Kad operations and transmission times of exchanged
UDP packets. The software stack and communication layer of
the realized prototype are depicted in Figure 2.

Software stack: First, the hardware specification of the
Zedboard has to be defined in software. However, only standard
hardware has been chosen for the Zedboard consisting of
the ARM CPU and RAM for software. It is possible to add
own dedicated hardware components, which could improve
the performance. In the first approach, we renounce the use
of dedicated hardware to be able to realize the system with
available standard hardware. FreeRTOS has been chosen as
operating system to enable hard real-time behavior of the
Kad nodes [12]. Additionally, lwIP is part of FreeRTOS as

4

PC
Zedboard 1 Zedboard 2

1. User_REQ

6. User_RES

2. Kad_REQ

3. Kad_RES

4. Action_REQ

5. Action_RES

Fig. 3. Prototype setup for evaluation

a lightweight TCP/IP stack to enable the communication via
the Ethernet medium [13]. The next layer is the HaRTKad
application, which enables the real-time communication and
the creation of the time slots for the nodes. Here, the
presented approach is realized. Additionally, it is possible
to use HaRTKad as middle-ware to run further applications on
top of it.

Communication layer: The communication layer consists
of standard Ethernet technology as the base medium. Also,
the IP protocol is supported, which is necessary to enable
addressing throughout the whole infrastructure. UDP as the
next layers is used as standard TCP is not suitable for real-
time applications. On top, we have the application layer, which
consists of the HaRTKad application and an optional additional
layer for another application where HaRTKad serves as the
middle-ware.

The developed nodes support multi-threaded applications,
which are needed by the Kad implementation. All Kad node
threads are given in Table I with a short description. The
threads are sorted by their priority starting with the highest
one.

THREAD PRIOR. DESCRIPTION

Main 5 Starts other thread before going idle
External control 4 Receiving external commands
Kad communication 3 Processing of Kad packets
Search 3 Destroys search objects
Network 2 Network interface packet processing
Maintenance 1 Maintenance threads
Idle OS Origin of new threads

TABLE I
THREADS OF THE KAD CLIENT

The main thread is important to start the other threads and
therefore got the highest priority. After having started the other
threads, the main thread will stay idle. The external control
thread got the second highest priority as it should react fast
to external triggers like a human released fire alarm. The
Kad communication thread has the next lower priority and
is responsible for the processing of Kad packets. After the
Kad communication thread, the three search threads handle the
search in the Kad network. The network thread processes the
packets from the network interface and forwards the packet
data to the HaRTKad application. Three maintenance threads
are responsible for keeping the network up to date. Finally,

there is the idle thread, which is the source for new threads
and it possesses a priority depending on the OS.

A. Performance Evaluation

The composite of the modified Kademlia protocol and
the real-time Kad node allows to realize hard real-time
applications based on P2P technology. It is necessary to build
up a prototype scenario of HaRTKad nodes to evaluate their
performance. Therefore, a prototype setting consisting of four
main components has been realized to measure the performance
values. One main computer, two Zedboards, and one 8-Port
1 GBit/s switch from Netgear [14] represent the prototype
setup. The two Zedboards represent the Kad network and
are logically connected via the Kad protocol. The setting is
depicted in Figure 3. Two operations are supported in the setup:
(1) read and (2) write operations between the two Zedboards,
which are running the HaRTKad application.

(1) Read operation: If the user requests a read operation a
number of integers will be transmitted. The number is given by
the user and stored in the user request packet. Additionally, the
hash ID of the nodes, which have to deliver the requested
integer values, is given. The first Zedboard receives and
processes this packet. As the first Zedboard is not responsible
for the read request, it starts the search in the Kad network
for a node, which his responsible for the given hash ID in the
read request packet. Therefore, the first Zedboard contacts the
second board via a Kad request packet to check if it is still
available. The second Zedboard answers with a Kad response
packet. When the first Zedboard receives the Kad response, it
can contact the second Zedboard again as it is also responsible
for the given hash ID in the read request packet by the user.
This is done via the action request packets, which is the read
action request in this case. The second Zedboard answers via
the action response packet, which is the read action response
packet. The read action response packet includes all integer
values requested by the user and is filled with randomly created
integer values. After the first Zedboard receives the read action
response packet, it forwards the integer values to the user via
the user response packet.

(2) Write operation: If a write operation is performed a
given number of integer values is stored in the user request
packet. Like during the previous described read operation, the
corresponding node for the write operation will be searched in
the Kad network. In this case, it is the second Zedboard as well.
This receives an action request packet, which is a write action

5

request packet from the first Zedboard. This packet includes
the integer values, which have to be stored on the responsible
second Zedboard. The second Zedboard will send back a write
action response packet as confirmation, which is forwarded
by the first Zedboard to the user in form of the user response
packet.

The times have been measured for all operations including
the Kad operations and the processing of the packets. The first
time measurement starts at the moment when a user request in
form of a user request packet is received at the first Zedboard.
The second time stamp is taken when the user request packet
is sent back to the user PC. This has been measured for read
and write processes. The result is depicted in Figure 4. As
apparent, the results are below one microsecond. Additionally,
it can be seen that with an linearly increasing number of integer
values the time also increases linearly. These results can be
considered for further inspection.

0.65

0.7

0.75

0.8

0.85

0.9

0.95

0 50 100 150 200 250

Pr
oc
es
s t
im

e
[m

s]

Number of transmitted integer values

read

write

Fig. 4. Performance evaluation of a HaRTKad node

V. OPTIMIZATION OF THE CHANNEL UTILIZATION

If using a synchronous TDMA-based approach time, slots
could be unused. Therefore, one approach is presented to
increase the channel utilization (CU).

Exploiting the processing time of a node: If the best case
of the processing time of a node is known this time should be
considered to achieve a higher CU. If we consider HaRTKad
running on a Zedboard as target platform, it is possible to
determine the CU during information exchange by Formula 7.

CU =
Datapackets

tEx ∗ 1GBits/s
(7)

It directly depends on the the data size, which has been
exchanged. For the traced packets, we have six packets as
previously described in the prototype scenario. The packets are
summarized in Table II with their sizes, so that it is possible to
compute the CU by computing the amount of data exchanged
Datapackets. For further results, only the packets inside the
Kad network are considered, the packets from and to the user
PC are omitted. Additionally, to make the results comparable
to one scenario, we assume that only one integer value (4
Bytes) is transmitted during the a read or write process.

PACKET SUBTYPE SIZE [BYTE]
User REQ 64
User RES 64
Kad REQ 89
Kad RES 96

Action REQ read 88
write 88

Action RES read 72
write 72

TABLE II
SIZE OF PACKETS

Ring

Peer
ID: 0000

Kad Req
to 0011 Kad ResIdle Process

Kad Res
Action Req

ID: 0011

Kad Req
to 0010 Idle Kad Res

Peer
ID: 0001

Peer
ID: 0010 idle Process

Kad Req
Kad Res
to 0001 idle

Idle Process
Kad Res

Idle

Peer
ID: 0011

Process
Kad Req

Kad Res
to 0000 Idle Kad ResIdle

Fig. 5. Interleaving of media access to increase the CU

Most of the time, the nodes are processing packets and do
not access the media. Thus, it is possible to allow parallel
access to the media to increase the CU. This interleaving is
exemplary depicted in Figure 5. The peer with the hash ID
”0000” contacts the peer with the hash ID ”0011”. Due to the
time for processing the packets, the peer with the hash ID
”0001” is able to contact the peer with the hash ID ”0010”.

With the determined parameters, it is possible to indicate the
number of nodes, which could theoretically access the media in
one time slot while considering a theoretical channel utilization
of 100 %.

In a nutshell, to indicate the performance of the presented
network the work of Mark Felser in [15] is considered. Three
classes are defined for human control, process control, and
motion control. Furthermore, these three classes have different
constraints in terms of timings. For a better comparability, it is
assumed that an information exchange of 4 bytes between the
nodes happen. The results from our prototype shows that the
the finding of a node and the exchange of 4 bytes took about
700 µs, which already includes one search step of 150 µs.
Every further search step took additional 150 µs, which is
denoted as the time TStep. Therefore, 550 µs are needed to
send and process the action request and response packet and
is denoted as TAction. The number of search steps in the
Kad network scales logarithmically with the total number of
HaRTKad nodes as previously mentioned. It is also considered
that we need more time to find other nodes in the Kad network,
which is expressed by Formula 8. This is because if the
optimum supports more node to achieve a higher CU, we
need more time to search for nodes. If we chose the optimum
number of nodes to achieve the highest CU, the increased time

6

needed to find a node is already considered.

Nodes =

⌊
TDel

TAction + (log2(Nodes) ∗ TStep)

⌋
(8)

The solution of Formula 8 is given by Formula 9, where W
is the Lambert W -function.

NodesMax =

 TDel ∗ log(2)

TStep ∗W (2
TAction/TStep∗TDel∗log(2)

TStep
)

 (9)

In Table III, the number of possible nodes is presented using
the presented approach, only realized in the application layer
and without any central instance.

If no optimization is realized we are only able to let a small
number of nodes operate as prototypes. The amount of data,
which includes the Kad packets and the action packets, is given
to compute the CU. Additionally, it can be seen that the actual
Ethernet media CU is very low. If we assume a theoretical
CU of 100% it is possible to increase the number of nodes
significantly.

ATTRIBUTE HUMAN PROCESS MOTION

Delivery constraint for TDel [ms] 100 10 1
No optimization

NodesMax 68 9 1
tEx [us] 1600 1150 700
Data amount per TDel [KByte] 84.34 6.28 0.34
CU [%] 0.69 0.60 0.38

With optimization
NodesMax 5110 652 90
tEx [us] 2650 2200 1750
Data amount per TDel [KByte] 12799.95 1279.80 127.88
CU [%] 99.99 99.98 99.90

TABLE III
SUMMARY OF THE HARTKAD SYSTEM PERFORMANCE

If we chose a human control scenario the CU is only 0.69 %
if no optimization is applied. Due to the low CU, it is possible
to increase the parallel communication. In a human control
scenario, the number of nodes can be increased by the factor 75
from 68 to 5110. It is not possible to just increase the number
by increasing the CU from 0.69 % to 100 %, which results in
a factor of 144 because with the increasing number of nodes
the number of search steps also increases, which results in a
higher data amount per node to find another node in the Kad
network.

To realize the optimization step it is only necessary to modify
the IDST algorithm, which is described in Section III. The
ISDT algorithm computes the STISDT so that only one node
is allowed to be active during a time slot. The number of slots
NSlots is kept and the number of nodes NodesMax for the
optimization is considered. The new approximated value for
the nodes per slot NodesSlot Opt for the optimization is given
in Formula 10, which is close to the theoretical maximum as
the hash values are well uniformly distributed on the hash ring.

NodesPer Slot =
NodesMaxOpt

NodesMaxNo Opt

(10)

The new STISDTOpt is generated by the IDST algorithm
by using the parameter NodesPer Slot.

VI. CONCLUSION AND FUTURE WORK

In this paper, an approach is presented to realize a fully
decentralized Kad network meeting hard real-time constraints
for connecting devices in automation scenarios. Additionally,
the prototype for a hard real-time Kad node called HaRTKad
node is presented.The combination of the presented modified
Kad protocol and a working prototype allows for the realization
of hard real-time applications with high resilience, flexibility,
and without any SPoF. Furthermore, administrative scalability
and usability in adding and removing further instances are
simplified as no central managing instance is necessary. Every
node is able to process given data in a deterministic way thereby
ensuring hard real-time behavior. Prospectively, the presented
approach will be used to evaluate an application in an practical
scenario with a high number of HaRTKad nodes.

REFERENCES

[1] M. Felser, “Real Time Ethernet: Standardization and implementations,”
in Industrial Electronics (ISIE), 2010 IEEE International Symposium on,
2010, pp. 3766–3771.

[2] T. Sauter, “Integration aspects in automation - a technology survey,” in
10th IEEE Conference on Emerging Technologies and Factory Automation,
2005. ETFA 2005., vol. 2, 2005, pp. 255–263.

[3] P. C. Evans and M. Annunziata, “Industrial Internet: Pushing the
Boundaries of Minds and Machines,” General Electric, Tech. Rep.,
November 2012.

[4] F. Klasen, V. Oestreich, and M. Volz, Industrial Communication with
Fieldbus and Ethernet. VDE Verlag GmbH, 2011.

[5] T. Hu, P. Li, C. Zhang, and R. Liu, “Design and application
of a real-time industrial Ethernet protocol under Linux using
RTAI,” International Journal of Computer Integrated Manufacturing,
vol. 26, no. 5, pp. 429–439, 2013. [Online]. Available:
http://www.tandfonline.com/doi/abs/10.1080/0951192X.2012.731609

[6] K. Schmidt and E. Schmidt, “Distributed Real-Time Protocols for
Industrial Control Systems: Framework and Examples,” Parallel and
Distributed Systems, IEEE Transactions on, vol. 23, no. 10, pp. 1856–
1866, 2012.

[7] R. Brunner and E. Biersack, “A performance evaluation of the Kad-
protocol,” Institut Eurecom, France, 2006.

[8] R. Steinmetz and K. Wehrle, Eds., Peer-to-Peer Systems and Applications,
ser. Lecture Notes in Computer Science, vol. 3485. Springer, 2005.

[9] J. Skodzik, P. Danielis, V. Altmann, J. Rohrbeck, D. Timmermann,
T. Bahls, and D. Duchow, “DuDE: A Distributed Computing System using
a Decentralized P2P Environment,” in 36th IEEE LCN, 4th International
Workshop on Architectures, Services and Applications for the Next
Generation Internet, pp. 1060–1067, 2011.

[10] J. Skodzik, P. Danielis, V. Altmann, and D. Timmermann, “Time
Synchronization in the DHT-based P2P Network Kad for Real-Time
Automation Scenarios,” in The Second IEEE WoWMoM Workshop on
the Internet of Things: Smart Objects and Services, IoT-SoS 2013, 2013.

[11] Avnet. [Online]. Available: http://www.zedboard.org/
[12] Real Time Engineers Ltd. [Online]. Available: http://www.freertos.org/
[13] Free Software Foundation, Inc. [Online]. Available:

http://savannah.nongnu.org/projects/lwip/
[14] Netgear. [Online]. Available: http://www.netgear.com/service-

provider/products/switches/unmanaged-desktop-switches/GS108.aspx
[15] M. Felser, “Real-Time Ethernet - Industry Prospective,” Proceedings of

the IEEE, vol. 93, no. 6, pp. 1118–1129, 2005.

