

 Tutorial

University of Rostock

Institute of Applied Microelectronics
and Computer Engineering

Dipl.-Ing. Philipp Gorski

SETUP: VLSI DESIGN
ENVIRONMENT

 NoC Research Group @ IMD

[2]

Preface

This document contains a tutorial for the setup and installation processes of a complete

VLSI Design / EDA environment based on opensource hardware/software design and
simulation tools. This environment generally addresses students at the Institute of Applied
Microelectronics and Computer Engineering (IMD), other electronic design students and
hobby designers who need a fully bundled tool suite for their electronic design projects or
study works. The included tools support all major levels of modern electronic circuit design
and most of them have already proven their productivity in real world projects. In details,
the tool suite covers the following domains on hard- and software side:

 Analog/Mixed Signal Design
 Circuit & PCB Design
 Circuit & Digital Logic Simulations
 Digital IC Design
 Embedded Systems Design
 Verilog, VHDL & SystemC

Moreover, this setup tutorial for the design environment targets a portable and flexible

EDA solution without affecting an existing tool suite or configurations. For that purpose the
installation on a virtual machine host represents the best way to go.

About the NoC Research Group @ IMD

The NoC Research Group bundles all research investigations in the domain of on-chips

networks at the IMD in Rostock. Collaborations and discussions are welcome and you will
find us under the following links:

Institute of Applied Microelectronics and Computer Engineering:

 http://www.imd.uni-rostock.de

NoC Research Group @ IMD:

 http://www.networks-on-chip.com

There you will get all information about us, the NoC Research team, contacts and
descriptions about our current research projects / topics.

http://www.imd.uni-rostock.de/
http://www.networks-on-chip.com/

 NoC Research Group @ IMD

[3]

Table of contents

1 Introduction .. 4

2 Preliminaries ... 6

3 Setup for the Virtual Machine with VirtualBox .. 6

4 Installation of Fedora 12 .. 10

5 Installation of VLSI and EDA tools .. 11

6 Installation of SystemC ... 12

7 Links and additional Informations .. 18

 NoC Research Group @ IMD

[4]

1 Introduction

This tutorial provides the setup of a complete VLSI Design / EDA environment as an OS-
independent virtual machine (VM) on a host pc using the opensource virtualization
software VirtualBox. Going that way offers the following advantages for the engineers or
students:

 There will be one standard development system without the need to

configure or install software on the host pc and independent of the utilized
operating system on it (Linux, Unix, Windows with Cygwin/MinGW).
Furthermore, no host specific changes or adaptation have to be regarded. It is
just one simple way to go for all persons that wants to use it and offers cross-
platform capabilities.

 The setup as virtual appliance offers a maximum portability and fits best for

the usage in greater development teams (or student classes). Moreover,
multiple of those systems in different versions can run in parallel without
buggy interactions. When newer tool versions will be available you simply
need to create a new virtual appliance to be up to date without the loss of the
old development environment.

The EDA environment offers a great variety of tools that covers the complete workflow of
electrical hard-/software engineers and is a buildup of the following main components:

 Fedora 12 (Constantine): Fedora is a Linux-based operating system that

showcases the latest in free and open source software. This component
represents the operating system of the EDA environment.

 Fedora Electronic Lab (FEL): Fedora's Electronic Laboratory is an opensource

hardware design and simulation platform and is dedicated to support the
innovation and development brought by opensource Electronic Design
Automation (EDA) community.

 SystemC Resources: SystemC is a single, unified design and verification

language that expresses architectural and other system-level attributes in the
form of open-source C++ classes. It enables design and verification at the
system level, independent of any detailed hardware and software
implementation, as well as enabling co-verification with RTL design.

The usage of FEL in combination with the installation of SystemC on top of Fedora 12

offers tools and simulators for all levels of the hard-/software design process. In detail,
this solution provides the following capabilities:

 alliance - VLSI EDA System
 dinotrace - Waveform viewer for electronics
 dfu-programmer - A Device Firmware Update based USB programmer for

Atmel chips
 electric - Sophisticated Java based VLSI CAD System
 emacs-dinotrace - Elisp source files for dinotrace under GNU Emacs
 emacs-verilog-mode - Verilog mode for Emacs
 emacs-vregs-mode - Elisp source files for systemc-vregs under Emacs
 eqntott - Generates truth tables from Boolean equations

http://www.virtualbox.org/
http://fedoraproject.org/
http://spins.fedoraproject.org/fel/#home
http://www.systemc.org/home/

 NoC Research Group @ IMD

[5]

 espresso-ab - A boolean minimization tool
 freehdl - GPLed free VHDL
 geda-docs - Documentation for gEDA
 geda-examples - Circuit examples for gEDA
 geda-gattrib - Attribute editor for gEDA
 geda-gnetlist - Netlister for the gEDA project
 geda-gschem - Electronics schematics editor
 geda-gsymcheck - Symbol checker for electronics schematics editor
 geda-symbols - Electronic symbols for gEDA
 geda-utils - Several utilities for the gEDA project
 gerbv - Gerber file viewer from the gEDA toolkit
 gnucap - The Gnu Circuit Analysis Package
 gplcver - An interpreted Verilog HDL simulator
 gtkwave - Waveform Viewer
 irsim - Switch-level simulator used even for VLSI
 iverilog - Icarus Verilog is a verilog compiler and simulator
 linsmith - A Smith charting program
 magic - A very capable VLSI layout tool
 mcu8051ide - IDE for MCS-51 based microcontrollers
 netgen - LVS netlist comparison tool for VLSI
 ngspice - A mixed level/signal circuit simulator
 octave-forge - Contributed functions for octave
 pcb - An interactive printed circuit board editor
 perl-Hardware-Verilog-Parser - Grammar for parsing Verilog code using perl
 perl-Hardware-Vhdl-Parser - Grammar for parsing VHDL code using perl
 perl-ModelSim-List - Analyse the ’list’ output of the ModelSim simulator
 perl-Perlilog - Verilog environment and IP core handling in Perl
 perl-SystemC-Vregs - Utility routines used by vregs
 perl-Verilog - Verilog parsing routines
 perl-Verilog-CodeGen - Verilog code generator
 perl-Verilog-Readmem - Parse Verilog $readmemh or $readmemb files
 qemu - QEMU is a FAST! processor emulator
 qucs - Circuit simulator
 tkcvs - TkCVS and TkDiff
 toped - VLSI IC Layout Editor
 trac-peerreview-plugin - Framework for realtime code review within Trac
 tkgate - An event driven digital circuit simulator
 vhd2vl - VHDL to Verilog translator
 vym - View your mind
 xcircuit - Electronic circuit schematic drawing program
 systemC – Electronic System Level design and verification with C/C++
 Eclipse IDE – Advanced and modular Integrated Development Environment
 eclipse-veditor-plugin – Helps digital IC designers/FPGA designers develop

Verilog/VHDL code on Eclipse. Provides a realtime error and warnings
notification of typos, missing signals, unnecessary signals etc.

 eclipse-eclox-plugin – If the vhdl code entails doxygen style comments, a pdf
can be autogenerated and used either during internal meetings or sent to the
client

 eclipse-texlipse-plugin – Since the pdf is generated from latex, the texlipse
plugin will provide some additional page layout formatting and easy pdf
creation. The pdf creation is now only Ctrl-S, rather than a manual click like
one would do on kile. That said, kile was removed from the FEL livedvd

 NoC Research Group @ IMD

[6]

 eclipse-cdt-plugin – Provides Embedded C and C++ development tools
 eclipse-dltk-tcl-plugin – Tcl scripts can be maintained along side with the HDL

code
 eclipse-epic-plugin – Perl scripts can be maintained along side with the HDL

code
 eclipse-subclipse-plugin – Adds Subversion integration to the Eclipse IDE.
 eclipse-egit-plugin – Adds distributed version controlled GIT integration to

the Eclipse IDE

These included tools can vary between different releases of FEL and it may be more or

less of them in upcoming releases. For detailed information visit the website of the FEL-
project and read the release notes.

The setup of the EDA environment is not restricted to the listed tools above, and
there might be other interesting and useful solutions that can be additionally installed
without any problems. It is recommended to use the supported installation of .rpm
packages for new software. Moreover, the eclipse community offers a great variety of
plugins to adapt the IDE to your needs.

2 Preliminaries

Before the installation process can begin a few requirements have to be met. To create
and run the virtual machine you have to download the VirtualBox software from
http://www.virtualbox.org/ and install it on the host pc, where the virtual machine shall
run on. There you will also find the complete documentation and the binaries for different
host platforms (Windows, Linux, Unix, OS X etc.).

To run VirtualBox and a virtual machine your host machine will need:

 A powerful x86 hardware from Intel or AMD. More than one core and built in

virtualization support are recommended.
 At least 512 MB of free available RAM for the virtual machine. More than

1024 MB of free available RAM is recommended (optimal >= 2048 MB for the
virtual machine).

 Several GB free hard disk space. 10 GB are recommended for this setup.

Instead of using VirtualBox as virtualization software you can also setup the virtual
machine with other software like QEMU, KVM, VMWare, VirtualPC, Xen or OpenVZ.

For the installation of the Fedora OS two different solutions exist.

 First, there is the possibility to download the current version of Fedora

prepacked with the complete software offering of the Electronic Laboratory
form the FEL site as LiveDVD.

 Second, download the blank Fedora .iso from the site of the Fedora projects.

This tutorial uses the second option and explains the stepwise installation procedure of
the other components.

3 Setup for the Virtual Machine with VirtualBox

This virtual machine setup was created using VirtualBox version 3.1.6 release 59338.

http://spins.fedoraproject.org/fel/#home
http://spins.fedoraproject.org/fel/#home
http://www.virtualbox.org/
http://spins.fedoraproject.org/fel/#downloads
http://fedoraproject.org/de/get-fedora

 NoC Research Group @ IMD

[7]

After the successful installation of
VirtualBox a new virtual machine
has to be created. First you have to
start VirtualBox and then create a
new VM.

Type in the name of your VM and
select the correct OS-type for it.

Then you have to define the size of
the available RAM for your VM.
More is better. You can change the
size of the RAM everytime in
VirtualBox when your VM is down.

The next step contains the creation
of a hard disk for your VM.

 NoC Research Group @ IMD

[8]

Select the creation of a new hard
disk and go on with the installation
process.

Let VirtualBox create a dynamically
expanding hard disk for your VM.
This has the benefit that the hard
disk does not have its maximum size
from beginning. Each time you store
data on it the hard disk will be
expanded until the defined upper
border is reached.

Select a maximum size of 10 GB at
least for the installation of the
proposed EDA environment. This
should be enough space for the
installation and additional data or
tools.

When the hard disk is created
successfully you have to define the
settings of your VM. Here you can
set different parameter regarding
the performance and the hardware
configuration of the VM.

 NoC Research Group @ IMD

[9]

If your Processor has multiple cores
and built in virtualization support
you should activate the IO APIC
option of VirtualBox.

You can assign more than one core
of the CPU explicit to your VM. This
feature will enable more
performance for your VM.

If hardware virtualization is
supported by your CPU then it
should be activated.

The last step contains the
assignment of the downloaded
Fedora image as CD/DVD device to
your VM. On startup of the VM this
image will be mounted and the
installation procedure of Fedora
begins. Hence, you have to point the
DVD/CD device of your VM to the
Fedora image.

 NoC Research Group @ IMD

[10]

4 Installation of Fedora 12

After the completed setup for the VM you have to start this virtual machine and initiate the
installation of Fedora 12 from the mounted ISO-image. This installation process is self-
explaining and well guided so it is not part of this tutorial.

When the installation of Fedora is done and the VM is already restarted (don’t forget to
free the CD/DVD-drive from the Fedora ISO-image) a few software packages have to be
installed for the correct setup of the EDA environment and the installation of the VBox-
GuestAdditions. So open a terminal and login as root.

[user@ELab ~]$ su --login
Password:
[root@ELab ~]#

First, you have to install packages for the linux-kernel and kernel-header files, because the
GuestAdditions of VirtualBox will recompile the kernel with their own integrated modules.
The installation of the GuestAdditions will benefit in better performance and handling of
your VM. So it is recommended to make it. Now install the missing packages with:

[root@ELab ~]# yum –y install kernel-devel kernel-headers dkms

Furthermore, you need to install the needed packages for software development under
Fedora like compiler, libraries and make tools. Fedora does not come with it by default and
you must type the following command into your terminal:

[root@ELab ~]# yum –y groupinstall ‘Development Tools’

This command installs a bundle of tools to setup a complete development environment
including the GNU compiler toolchain, standard libraries, autotools and many more.

Before installing the VBox-GuestAdditions you have to mount the ISO-image that contains
the needed files. This can be done in two different ways (don’t forget to free the CD/DVD-
drive of the Fedora image before!):

 Type CTRL-RIGHT + D and the GuestAdditions image will be mounted to the

CD/DVD-drive
 Go to the window menu of the VM and click Devices->Install Guest Additions …

and the GuestAdditions image will be mounted to the CD/DVD-drive

Now the ISO-image with the guest additions will be mounted and you can proceed. Go to
the media and get a list of the contents on the GuestAdditions-image. Before you are able
to install the guest additions you have to set the correct path for the kernel libs
(KERN_DIR=…). Afterwards, start the correct install script with ./Script.run !

 NoC Research Group @ IMD

[11]

Change the directory to the ISO-image

[root@ELab ~]# cd /media/VBOX_ADDITIONS_3.1.6_59338

List the content of the ISO-image

[root@ELab VBOXADDITIONS_3.1.6_59338]# ls

32Bit VBoxLinuxAdditions-amd64.run VBoxWindowsAdditions.exe
64Bit VBoxLinuxAdditions-x86.run VBoxWindowsAdditions-x86.exe
AUTORUN.INF VBoxSolarisAdditions.pkg autorun.sh VBoxWindowsAdditions-
amd64.exe

Set the correct path to the kernel files of Fedora

[root@ELab VBOXADDITIONS_3.1.6_59338]# export
KERN_DIR=/usr/src/kernels/2.6.32.11-99.fc12.i686

Run the installation script of the guest additions

[root@ELab VBOXADDITIONS_3.1.6_59338]# ./VBoxLinuxAdditions-x86.run

After the installation process of the guest additions has finished you will need to restart the
virtual machine. Now the VM is ready for the installation of the VLSI tools and the SystemC
resources.

5 Installation of VLSI and EDA tools

To install the “Electronic Laboratory” package you must simply type:

[root@ELab ~]# yum –y groupinstall ‘Electronic Lab’

This installation process may take a while before it has finished and afterwards your
applications menu should look like this screenshot below:

 NoC Research Group @ IMD

[12]

6 Installation of SystemC

Before the SystemC installation can begin you have to download the source files from the
website of the Open SystemC Initiative (OSCI). Therefore, you have to sign up for a free
member account. There you can get all packages of the current OSCI standards like:

 Core SystemC language libraries + test pakages
 SystemC AMS extensions for analog/mixed signal simulations
 TLM: The Transaction-Level Modeling library
 SCV: The SystemC Verification library

Please download the SystemC (here systemc-2.2.0) and the TLM (here TLM-2.0.1)
packages to proceed with this tutorial. The next step is to unpack the .tgz files to a
temporary folder (like download/path/to/systemc e.g. /home/user/downloads/systemc-
2.2.0) and to edit a few sources for the successful installation of SystemC. For this tutorial
the following tools and libraries were used (included in the groupinstall ‘Development
Tools’):

 g++ version 4.4.3 20100127
 gcc version 4.4.3 20100127
 GNU automake version 4.4.3 20100127
 GNU Make version 3.81

First, after unpacking the SystemC resources you have to navigate to the containing folder
and must edit a few lines in /home/user/downloads/systemc-
2.2.0/src/sysc/utils/sc_utils_ids.cpp. Open this file with an editor and add the following
lines:

Go to the position of:

line 61: #include "sysc/utils/sc_report.h"

Now include the lines below:

line 62: #include <cstdlib>
line 63: #include <string.h>
line 64: using namespace std;

These changes will prevent you to get a compilation error for gcc versions higher than 4.x.x
and was proven for this setup.

Now open a terminal, login as root and navigate to the folder containing the unpacked
SystemC resources. There you have to create the temporary objdir directory for the
SystemC installation process, set the CXX and CC variables for the compiler search of the
configuration script, create the folder structure in the SystemC destination path and start
the configuration script. Afterwards, you can start the make process and test the
generated installation of SystemC. Please see the code listing below.

http://www.systemc.org/downloads/standards/

 NoC Research Group @ IMD

[13]

Change directory to the unpacked SystemC resources and create the objdir. Afterwards, set
the CXX and the CC path for your compiler.

[root@ELab ~]# cd /home/user/downloads/systemc-2.2.0
[root@ELab systemc-2.2.0]# mkdir objdir
[root@ELab systemc-2.2.0]# export CXX=g++
[root@ELab systemc-2.2.0]# export CC=gcc

The folder creation lines in the configuration script seem to be a little bit buggy so it is better
to create them by yourself before. SystemC gets an own path to enable the installation of
different versions in parallel.

[root@ELab systemc-2.2.0]# mkdir /usr/local/systemc-2.2.0
[root@ELab systemc-2.2.0]# mkdir /usr/local/systemc-2.2.0/include
[root@ELab systemc-2.2.0]# mkdir /usr/local/systemc-2.2.0/lib-linux
[root@ELab systemc-2.2.0]# mkdir /usr/local/systemc-2.2.0/doc
[root@ELab systemc-2.2.0]# mkdir /usr/local/systemc-2.2.0/examples

Change the current destination to the created objdir and run the configuration script. You
have to call the configuration script with the argument of the path where SystemC shall be
installed.

[root@ELab systemc-2.2.0]# cd objdir
[root@ELab objdir]# ../configure --prefix=/usr/local/systemc-2.2.0

After the configuration script has finished its work you have to call the make process.

[root@ELab objdir]# make
[root@ELab objdir]# make install

This may take a while and you can check the installed files/libraries with the following
command:

[root@ELab objdir]# make check

You must change the rights for the SystemC resources.

[root@ELab objdir]# chmod –R a+x /usr/local/systemc-2.2.0

Now SystemC is installed on your system and you need to clean up the generated objdir
with:

[root@ELab objdir]# rm –rf *

Done !!!

 NoC Research Group @ IMD

[14]

The folder structure of your SystemC installation in /usr/local/systemc-2.2.0 should look
the same like demonstrated in the screenshot below.

The installation process of the TLM libraries is quite easy, because you just need to copy
the unpacked folder with the TLM resources to a destination of your choice. It is
recommended to follow the same way like mentioned in the SystemC installation process.

Simply copy the unpacked TLM folder to /usr/local and change the rights.

[root@ELab ~]# mv /home/user/downloads/TLM-2.0.1 /usr/local
[root@ELab ~]# cd /usr/local/
[root@ELab local]# ls

bin include OSCI_SystemC_AMS_extensions_1v0_Standard src
etc lib sbin systemc-2.2.0
games libexec share TLM-2.0.1

[root@ELab local]# chmod -R a+x /TLM-2.0.1

Done !!!

Finally, all installation processes for the SystemC sources are done and to use these
sources in your projects you have to add the path information to the Eclipse IDE. The
SystemC Verification library is not treated by this setup tutorial, because there were
heavy problems during the installation and it failed every time we tried.

 NoC Research Group @ IMD

[15]

Now you have to start the Eclipse IDE from the applications panel like shown below.

After it has opened create a new project (File -> New -> Project…) inside the Eclipse IDE.

 NoC Research Group @ IMD

[16]

Select the project type as new “C++ Project” and proceed by clicking the next button.

Create a simple exemplary project by selecting the “Hello World C++ Project” and name it
TestSystemC. Afterwards, finish this setup and the project will be generated by Eclipse.

 NoC Research Group @ IMD

[17]

Now you have to open the properties dialog for this project (menu: Project -> Properties).

Finally, edit the Directories and Libraries options for the C++ compiler and C++ linker by adding the
path information of the SystemC and SystemC-TLM installations.

 NoC Research Group @ IMD

[18]

Now the Eclipse IDE and the created project will be ready for coding with SystemC. You
can write, compile and debug some examples to test it. Have fun !

7 Links and additional Informations

A good alternative to this EDA environment might be SCLive CD if your focus relies on
coding with VHDL, Verilog and SystemC without the need for a complete EDA workflow.
The current SCLive release version 3.0 you can download from
http://sclive.wordpress.com/ and there you will find a tutorial for its integration with
QEMU.

The website http://www.eda.org/ provides a good overview and an extensive database
for the major standards of the EDA industry. Furthermore, you will find links and
information about free EDA tools.

The greatest database about opensource hardware and software tools in the EDA domain
you can find on the website of the OpenCollector.org community.

If you are interested in opensource hardware the community of OpenCores.org offers an
extensive database of IP Cores developed with SystemC, VHDL and Verilog.

http://sclive.wordpress.com/
http://www.eda.org/
http://opencollector.org/summary.php
http://opencores.org/

