Class 270 2001 Embedded Systems Conference
San Francisco, CA, April 2001

Twenty-Five Most Common Mistakes with Real-Time Software Development

David B. Stewart

Embedded Research Solutions, LLC
9687F Gerwig Lane
Columbia, MD 21046

Email: dstewart@embedded-zone.com
Web: http://www.embedded-zone.com

Abstract some of the mistakes listed and the corresponding proposed
. . _ i solutions may be controversial. In such cases, simply high-

The ”FOSt common mlstake_s and pitfalls as_somated with Ole'Iighting that there is a disagreement as to what is the best

veloping embedded real-time software will be presented.way to alleviate these problems encourages designers to

Tflll;eborir?inﬁlpiusgsiwanﬁ Zidden (_jan?ers t?f thesz miSt_akefcompare their methods to other approaches, and to recon-
will be highlighted. Methods ranging from better education ;o it their methods are provably better.

to using new technology and recent research results will be o) o)
discussed. The mistakes vary from problems with the high- Correcting jusbneof these mistakes within a project can
level project management methodologies, to poor decisions€ad to weeks or months of savings in manpower (especially
on low-level technical issues relating to the design and im- during the maintenance phase of a software life cycle) or
plementation. The most common mistakes have been identcan result in a significant increase in quality and robustness
fied from experience in reviewing the software designs andof the application. If multiple mistakes are common and
implementations of many embedded programmers, rangingthey are all fixed, potential company savings or additional
from seasoned experts in industry to rookies just learning profits can be in the thousands or millions of dollars. Thus
the material in college. | encourage you to review your current methods and poli-
cies, compare them to each of the reported mistakes and the
proposed alternatives, and decide for yourself if potential
Novices and experts alike, whether in a university or cor- savings exist for your company or project. Even if there are
poration, repeat the same mistakes over and over agairno direct savings, consider the potential for improved qual-
when developing real-time software. | have observed thisity and robustness at no extra cost by modifying some of
while reviewing the software designs and implementations your current practices.
of many embedded programmers, ranging from seasonec

ggﬁ:rtj in industry to rookies just learning the material in are higher on the list (where #25 is lowest and #1 is highest
ge. _ on list) are either more common and/or have the most
Most real-tlme_softwa_re developers are not even awarejmpact on quality, development time, and software mainte-
that some of their favorite methods are problematic. Other nance. Naturally, the order represents my opinion. It's not
times the methods are satisfactory, but not the best. Quitésg jmportant that one mistake is listed higher on the list than

often, experts are self-taught; hence they tend to have thegnother. What is important is that both are listed, thus both
same bad habits as when they first began, usually becausyay pe significant in your specific environment.

they have never witnessed better ways of programming

their embedded systems. These experts then train novices#25 "My problem is different”

who subsequently acquire the same bad habits. The purpos Many designers and programmers refuse to listen to the
of this article is to improve awareness of common prob- experiences of others, claiming that their applications are
lems, and to provide a start towards avoiding and eliminat- different, and of course, much more complicated. Designers
ing mistakes to create software that is both more reliable should be more open-minded about the similarities in their
and easier to maintain. work. Even what seems like the most different applications

This list first began as the 10 most common pitfalls, but are probably nearly identical when you consider the nuts
there were just so many common mistakes and problemsand bolts of the real-time infrastructure. For example, com-
that the list grew. For each problem, | present the miscon- munications engineers will claim their applications have no
ception or source of the problem. Then | offer possible solu- similarities to systems designed by control engineers
tions or alternatives that can help minimize or eliminate the because of the high volume of data and the need for special
mistakes. If you are not familiar with the details or terminol- processors such as digital signal processors (DSPs). In
ogy of the alternate solutions, then a quick library or Web response, ask "What is different in the LCD display soft-
search should yield additional literature on the topic. While ware in a cellular phone vs. one in a traffic light controller?
there is usually agreement about most items being mistakesAre they really different?"

Introduction

Here now are the most common mistakes; problems that

Class 270 2001 Embedded Systems Conference
San Francisco, CA, April 2001

Comparing control and communication systems side-by- cessor during initialization. Execute an empty loop contin-
side, both are characterized by modules that have inputs andiously and count how often it occurs between two timer
outputs, with a function that maps the input to the output. A interrupts. Since frequency of the timer interrupt is known,
256 x 256 image processed by a DSP algorithm might nota value for the number of microseconds per iteration can be
be that different from graphical code for an LCD dot matrix computed. This value is then used to dynamically determine
display of size 320 x 200. Furthermore, both use hardwarehow many iterations of the loop to perform for a specified
with limited memory and processing power relative to the delay time. In our custom RTOS with this implementation,
size of the application; both require development of soft- the delay function was accurate within 10% of the desired

ware on a platform distinct from the target, and many of the time for any processor with which we tested it, without ever
issues in developing software for a DSP also apply to devel-haying to change the code.

oping software for a microcontroller.

The timing and volume of data are different. But if the sys-
tem is designed correctly, these are just variables in equa-
tions. Methods to analyze resources such as memory and Software tools for embedded systems are often purchased
processing time are the same—both may require similarPased on the flashiness of the marketing, because a lot of
real-time scheduling, and both may also have high-speedother people are using them, or because of a feature that
interrupt handlers that can cause priority inversion. sounds appealing but really does not make a difference.

If control systems and communication systems are simi- FlashinessJust because one tool has a prettier graphical
lar, perhaps so are two different control applications or two user interface than another does not make it better. It's
different communication systems. Every application is important to consider the technical capabilities of each, rel-
unique, but more often than not the procedure to specify, ative to the needs of the application being built.
design, and build the software is the same. Embedded soft- Nymber of usersBuying software from a vendor just

ware designers should learn as much as possible from thgecayse it's the biggest does not mean it's the best. Along
experiences of others and not shrug off experience justith pitches that more people are using the software are
because it was acquired in a different application area. probably hidden true stories that more people are paying for
#24 Delays implemented as empty loops more than they really need, or that more people have unused

Real-time software often uses delays to ensure that datarersions of the tools sitting on the shelf after discovering the
sent or received over an 1/O port has time to propagate.tools were not suited to their needs.
These delays are frequently implemented by putting a few Promises of compatibilityManagers are especially influ-
no-ops or empty loops (assuminglatile is used if the enced by a product because of promises of compatibility. So
compiler performs optimizations). If this code is used on a what if software is 100% POSIX-compliant? What is its rel-
different processor, or even the same processor running at @yance? Is there a plan to change the operating system?
different rate (for example, a 25MHz vs. 33MHz CPU), the gyppose there is a change to another POSIX-compliant
code may stop working on the faster processor. This is espepperating system-what is there to gain? Absolutely nothing,
cially something to avoid, since it results in the kind of tim- | ,njess "extensions" are used. But if such extensions are
ing problem that is extremely difficult to track down and 5eq, compatibility is lost, hence the benefits are no longer
solve, because the symptoms of the problem might be spOynere. Standards such as POSIX have not been proven to
radic. even be good for real-time systems, let alone the best.

Instead, use a mechanism based on a timer. Some RTOSherefore, don't assume that the product is better because
provide these functions, but if not, one can still easily be of that promise. Portability and reusability can only be
built. Following are two possibilities to build a custom achieved if all the designers follow proven software engi-
delay(int usec)function. neering strategies for developing component-based soft-

Most count-down timers allow the software to read a reg- ware. [2,3]
ister to obtain the current count-down value. A systemvari- \yhen selecting tools, consider the needs of the applica-
able can be saved to store the rate of the timer, in units such;y, first; then investigate the dozens (or hundreds) of
as microseconds per tick. Suppose the valugisr tick, g ions available from aechnical perspective, as they

and afdeflgy of 1@s'|ireguwed: thedq§lay funcuog busy- yejate specifically to the application requirements. The best
Wa|t_s or |;|/e t;hme;_tlc Si' ;pposetq” tlh erent Spelfthprgces'tools for a particular design or application are not necessar-
sor is used—the timer ticks are still the same. e timer 4. the most popular.

frequency changes, then the system variable would change,
and the number of ticks to busy-wait would also change, but#22 Large if-then-else and case statements
the delay time would remain the same. It's not uncommon to see largeelsestatements ocase

If the timer doesn’t support reading intermediate count- statements in embedded code. These are problematic from
down values, an alternative is to profile the speed of the pro-three perspectives:

#23 Tools choice driven by marketing hype, not by
evaluation of technical needs

Class 270 2001 Embedded Systems Conference
San Francisco, CA, April 2001

*Such statements are extremely difficult to debug, becauserequire the user to provide input (say, through a keypad or
code ends up having so many different paths. If switch) and observe the output response. The problem with
statements are nested it becomes even more complicatedhis method is that programmers tend only to test what they

*The difference between best-case and worst-caseare changing. Since there are often interactions between
execution time becomes significant. This leads to either unrelated code due to the sharing of resources, every time a
under-utilizing the CPU, or the possibility of timing change is made, the entire system should undergo testing.

errors when the longest path is taken. To accomplish this, avoid interactive test programs. Cre-
*The difficulty of structured code coverage testing grows gte a single test program that goes through as much self-
eXponentia”y with the number of bl’anChes, SO branCheStesting as possib|e, so that any time even the smallest
should be minimized. change is made, a complete test can easily and quickly be
Computational methods can often provide an equivalentperformed.
answer. Performing Boolean algebra, implementing afinite ynfortunately, this is more easily said than done. Some
state machine as a jump table, or using lookup tables argesting, especially of I/0 devices, can only be done interac-
alternatives that can reduce a 100-line if-else statement tQjyely. Nevertheless, the principle of automated testing

less than 10 lines of code. should be at the forefront of any attempt to create test soft-
Here is a trivial example of converting an if statement to ware, and not a side-thought with test code written only on
Boolean algebra: an as-needed basis.
it (x :x:=01) #19 Software engineers not participating in
else ' hardware design
x=1 For new products where the hardware has not yet been
Instead, a Boolean algebra computation would be the fol- defined, the software engineer should work closely with the
lowing: hardware designer to select a system architecture that can
x = Ix: // x = NOT x: can also use x = 1—x minimize the overall cost. For example, the hardware

designer may feel that a 32-bit processor is needed for a par-

ticular application. The software designer, however, may

_ _ _ _ realize that close to 40% of the processor utilization would

#21 Documentation was written after implementation be spent busy-waiting or polling for just one of the 1/O
Everyone knows that the system documentation for mostdevices. Suppose the processor costs $10. That means $4 in

applications is dismal. Many organizations make an effort parts is dedicated to polling the /O device.

to make sure that everything is documented, but documen-

tation isn't always done at the right time. The problem is y, ¢ jhcjudes one 16-bit processor (cost $4) and one 8-bit
that documentation is often done after the code is written. processor (cost $1). The 8-bit processor handles the 1/O
Documentation must be done before and during coding, device, while the 16-bit processor handles the rest of the
never afterward. Before implementation begins, start with workload. A|though the System has increased to using two
the detailed specification and design documents. Theseprocessors, which might result in a small increase in design
become the basis for what will ultimately be the user and time, the hardware component cost is cut in ha|f, and can
system documents, respectively. Implement the codejead to a more cost effective design. The hardware and soft-
exactly as in these documents; anytime the document isyare designers should together decide on the best way to
ambiguous, revise the document first. Not only does this jnterface the processors, so as to minimize both hardware
ensure that the document remains up to date, but it ensuregnd software costs.
that the programmer implements what the document speci- Often, the needed performance of hardware for new prod-

fies. ucts is estimated based on an existing product. The software

Updating documentation during the implementation also gesigner should provide accurate answers as to the utiliza-

bugs in their code as they're writing about it. For example, If the processor and memory utilization are less than 90%

the progr:’;}mmer may write, Upon'succl?ss, th|§ function on average and less than 100% peak, then the system has
returns 1." The programmer then thinks, "if there is no suc- : "
: W : . probably been over-designed. Writing programs for a pro-
cess, what is returned?" He looks at his code and might real- . 4
. i cessor with more than enough resources is a luxury for a
ize that the lack of success scenario has not properly been . :
implemented software devel_oper. In some cases, however, this luxury is
- _ so costly that it can make the difference between a profit
#20 Interactive and incomplete test programs and bankruptcy! Contributing towards minimizing the price
Many embedded designers create a series of test proand power consumption of an embedded system is a soft-
grams, each program testing a separate feature. Test prowvare engineer’s duty. If the CPU is only 45% utilized, you

grams need to be executed one at a time, and in some casesn use a processor that operates at half the speed instead,

Despite the simplicity, some programmers still toggle a
Boolean value with the if statement above.

Instead, it might be possible to use a two-processor design

Class 270 2001 Embedded Systems Conference
San Francisco, CA, April 2001

thus saving on power consumption (yielding higher market ronment and the host environment. To compare
share if the device is battery-powered) and possibly reduc-development environments, imagine you want to make a
ing the cost of the processor. very simple change, like modifying one line of code from
If the product is mass-produced, saving $1 on the proces-y++ to y+=2. The entire cycle to edit/compile/download/
sor could save a million dollars over the production span of execute/test on the target environment might take five min-
the item. If the product is battery-powered, it will allow the utes or more. This same cycle on a host workstation might
battery to last much longer, thus increasing the marketingonly take one minute. You can then be five times more pro-

appeal of the product. As an extreme example of power con-ductive implementing code in the early stages.
sumption of computers, consider a laptop. Most have less

than three hours of power when using a heavy battery. A Trll? kefy to bundl?ghth(;se 5|mulat|.ons IS to usc?r:]hedmu!tl-
watch, however, has a lightweight, cheap battery that cant@sking features of the host operating system. The devices

last three years. Although software isn't usually associated!hat you are simulating execute as one or more separate
with power consumption, it does have a major role. heavyweight processes (not threads). Each of these pro-
gesses creates either a shared memory segment or a message
also lead to laziness in thinking about the design. StartdU€ue (We use the System V IPC mechanisms). Use shared
embedded development with slower processors with lessT'€mory to emulate a memory-mapped device, and message
memory, and move up to the next level of processor only on passing to emulate a stream-oriented device, such as an
an as-needed basis. Software that uses hardware more effembedded network.

ciently is more likely to evolve from this approach than The embedded code executes in its own heavyweight pro-
from later trying to cut corners to bring down the cost of the ¢ess, with this process emulating the target processor. If you
system. are using multitasking in the target environment (e.g. by
#18 No emulators of target application using an RTOS), use the lightweight threading features of a

Building an emulator of an embedded application can sig- POSIX-compliant operating system for each thread. If the
nificantly improve development time. Implementing soft- RTOS is also POSIX-compliant, you can use the same
ware for target platforms can be quite time-consuming. interface. Otherwise, built a simple middleware layer (e.g.
Compiling, downloading, then executing code on a target using macros) that unifies the thread interface.
platform takes longer than doing the same on the host plat- gjnce it is often not possible to emulate the 1/0 devices
fqrm. Debugg'lng ISmore d|ff|cul’t, because the ability to use exactly, we have found that we can write two device driv-
simple techniques like printi(y's throughout the code is ers, one for the simulator, the other for the real 1/0 device.

often not possible. While some modern systems improve o . . .
) - . When switching from simulation to the target environment,
debugging capabilities through use of techniques such as

BDM (background debug mode) and give the ability to put only t.heldevige drivers need to change. The re;t of the_ code
breakpoints in the embedded software, using these techfémainsidentical If your RTOS does not provide device
niques is significantly more time-consuming than using drivers, or you have found the POSIX-styépen/read/
tools directly on the host workstation, such as the GDB write/closeinterface for device drivers inadequate, consider
debugger to step through code and Purify to search fordeveloping each device driver as a separate thread, as we
memory leaks. describe in [1].

While in the later stages of implementation it will be nec- Using a simulator has the further advantage that it can be
essary to execute and debug all code on the target platformreplicated easily. Suppose three programmers need to share
this is often not necessary in the early stages. In particular,the target hardware. There can be lots of human synchroni-
before timing and synchronization is an issue, each modulezation needed for each one to get a turn using the hardware.
should be tested individually for its functionality. The inte- \yith the simulator, however, two of them can use their own
gration of the modules should also be tested; regardless OEopy of the simulator, and the third person the real hard-
the real-time needs of the software, there should notbe any, e The resource conflicts are minimized, and all three of

code or data integrity problems. the programmers are more productive.

Itis usually very worthwhile to build at least a simple sim- The simulator can also be used by the customer to obtain

ulator of the application’s devices, so that most of the code .
can be developed, tested, and debugged in the host environQ_UStomer feedback even before the hardware is ready, espe-

ment. In our experience, it might take a week to build this cially with regards to the user interface if the application has
simulator, but it can easily save months of development@n €mbedded display. The customer can try out the menu
time. For example, we have a simulator of an LCD text dis- System, key inputs, and provide feedback about what might
play running under UNIX. The interface to this simulator is b€ missing, what is displayed but confusing, or suggestions
similar to the interface of the real hardware, so that the dis- for shortcuts that can greatly improve usability of the prod-
play code we write is nearly identical in both the target envi- uct.

Fast processors and more memory than necessary tend t

Class 270 2001 Embedded Systems Conference
San Francisco, CA, April 2001

#17 Error detection and handling are an afterthought because decisions such as whether to perform all operations
and implemented through trial and error in floating point or as scaled integers cannot be made. If a
Error detection and handling are rarely incorporated in design is implemented assuming one of those, it will be very
any meaningful fashion in the software design. Rather, thedifficult later to change.
software design focuses primarily on normal operation, and Here are answers to the above questions for a 6MHz Z180
any exception and handling are added after the fact by the(in microseconds): 7, 12, 28, 137, and 308. Note that it takes
programmer. The programmer either puts in error detection250% more time to do float plus byte than float plus float,
everywhere, many times where it's unnecessary but itsdue to the long conversion time from byte to float. Such
presence affects performance and timing; or does not put inanomalies are often the source of code that overloads the
any error handling code except on an as-needed basis agrocessor.
workarounds for pro_bler_ns ,that arise durlng testlrjg. Either |, another example, a special purpose floating-point
way, the error handling isn't designed and its maintenance 5 .celerator did floating-point addition/multiplication 10

is a nightmare. . . times faster than a 33MHz 68882, ksih() andcos()took
Instead, error detection, or related issues such as fault tolthe same amount of time. This is because the 68882 has the
erance, should be incorporated into the design of the sys+rigonometric functions built into its hardware, while the

tem, just as any other state. Thus, if an application is built fioating point accelerator did those particular functions in
as a finite state machine, an exception can be viewed as aRgftware.

input that causes action and a transition to a new state. .0 «o4e is implemented for a real-time system, being
Unfortunately, the best way to implement a complete ‘

) . . -~ aware of the timing implications of every single line of code
de_35|gn th_at Incorporates _aII error detection and handling Sis important. Understand the capabilities and limitations of
still a major research topic. the target processor(s), and redesign an application that
#16 Generalizations based on a single architecture makes excessive use of slow instructions. For example, for
Embedded software designers may have the need tdhe Z180, doing everything in float is better than having
develop software that is intended to run on a variety of pro- only some variables float and lots of mixed-type arithmetic.

cessors and platforms. In such a case, it's not uncommon for On the other hand, this information should not be used to
the programmer to begin writing software for one of the perform fine-grain optimizations. These are optimizations
platforms, but generalize anything and everything in prepa-such as replacing 3*x with x+x+x. This not only affects
ration for porting the code at a later time. readability, but in some cases will actually slow down code,
Unfortunately, doing so usually causes more harm thanbecause one multiplication is faster than two additions.

good. The design will tend to over-generalize items that are A programmer who optimizes every line of code from the
very similar on very different architectures, while not gen- peginning may implement the first version of the code in an
eralizing some items that are different, but that the designerynreadable manner. This could severely increase the testing
did not foresee as different. and debugging time, at possibly unnecessary cost since it is
A better strategy is to design and develop the code simul-not even known yet if the code needs to be optimized.
taneously on multiple architectures, generalizing only those ag a general rule, do not perform fine-grained optimiza-
parts that are different in the different architectures. Inten- tions during implementation. Only optimize segments of
tionally choose three or four processors that are very differ- coge later during the debugging phases if it proves neces-
ent (for example, from different manufacturers and using sary to get better performance. If optimization is unneces-
different architectures). sary, then keep the more readable code. If the CPU is
#15 Optimizing at the wrong time overloaded, it is nice to know that a variety of places remain
Coarse_grain optimizations are usua”y g|0ba| in nature, in the code where Simple, Straightforward Optimizations can
and involve major design decisions that need to be consid-Pe performed quickly.
ered before implementation begins. Fine-grain optimiza- #14 Reusing code not designed for reuse
tions are localized, and can be performed during the later ¢ de that is not designed for reuse will not be in the form
stages of implementation. of an abstract data type or object. The code may have inter-
Both coarse-grain and fine-grain optimizations require a dependencies with other code, such that if all of it is taken,
knowledge of the hardware peculiarities. Thus, an analysisthere is more code than needed. If only part is taken, it must
of the hardware should be performed even before imple-pe thoroughly dissected, which increases the risk of
mentation begins. unknowingly cutting out something that is needed, or unex-
For example, how long does it take to add two eight-bit pectedly changing the functionality. If code isn’t designed
numbers? What about two 16-bit or 32-bit numbers? What for reuse, it's better to analyze what the existing code does,
about two floats? What if an eight-bit number is added to a then redesign and re-implement the code as well-structured
float? Without an answer to these questions, a softwarereusable software components. From there on, the code can
designer is not prepared to design the real-time software,be reused. Rewriting this module will take less time than the

Class 270 2001 Embedded Systems Conference
San Francisco, CA, April 2001

development and debugging time needed to reuse the origsame rate, and if implementing with shared memory gener-
inal code. ates less operating system overhead.

A common misconception is that because software is Converting control systems from message-based commu-
defined in separate modules, it is naturally reusable. This ishication to state-based communication is generally straight-
a separate mistake on its own, and related to creating softforward. For example, an intelligent train control system
ware with too many dependencies. See more details in mis-has independent control of every brake to maximize train
take #3. handling. To minimize stopping distance when coming to a
full stop, all the brakes on the train must be applied together.
The 1/0O logic for each brake is handled by a separate pro-
cess; the control module must inform each brake module to

When software is developed as functional blocks, the first turn on the brakes. When using a message-based system,
thought is to implement inputs and outputs as messagesthe controlling unit sends a message, “apply brake," to
Although this type of inter-process communication (IPC) every brake process. Due to the dependencies among pro-
works well in non-real-time environments—such as for dis- cesses, it creates a real-time system that is difficult to ana-
tributed networking—it's problematic in a real-time sys- |yze and has the potential for unbounded blocking or

#13 Using message passing as primary inter-process
communication

tem. deadlocks, thus it is not suitable for real-time systems. In
Several major problems arise when using message pasgﬁOﬂtl’aSt, in a state-based communication mechanism, each
ing in a real-time system: brake module executes periodically and monitors the brake

Message passing requires synchronization, a primaryvariable to update the state of its own brake 1/0. For exam-
source of unpredictability to real-time scheduling. P'€, instead of the "apply brake" message, revise the state of
Functional blocks end up executing synchronously, and the brake variable so that it says, "the brake should be on.”

thus analysis of the system’s timing is difficult, if not Since processes are periodic, a schedulability analysis is
impossible. easier. Processes only need to bind to a single element in the
sIn systems with bi-directional communication between state table, thus eliminating direct dependencies between
processes or any kind of feedback loop, deadlock is gProcesses. Communication through shared memory also
possibility ' incurs less overhead when compared to a message-passing

system.

Message passing incurs significantly more overhead as . .
compared to shared memory. While messages may be When transferring a stream of data between objects, a pro-

required for communication across networks and serial ducer/consurt'r;]ert—:[[)r/]pe buffer should bte (;rgatte?hlnt _shared
lines, it's often inefficient when random-access to the memo(;ya S0 tha hemax'g_‘“m almpun f(t) ala "’; 'T‘l p(;o-
data is possible, as is the case for IPC on a singleCesse uring each periodic cycle 1s sofware-controlied.

processor. #12 No memory analysis

buffers and guarding access by using semaphores is not 4ed. Yet most programmers have no idea what the memory

good solution, as the semaphore mechanism has the sami@plications are for any of their designs. When they're
problems as message passing. asked how much memory a certain program or data struc-

ture uses, they are commonly wrong by an order of magni-

Research literature shows thousands of papers tha ude

describe IPC mechanisms for almost every scenario imag- . o . .
inable. While it might take some time to find just the right In microcontrollers :.ind DSPs, a S|gn|f|qant d|fferepce n
solution for the problem at hand, finding a solution that p('a;sl)rmagce mayleRxAsl\t/l bstweelr; ac((j:essmg RO'\Q' mtfernal
addressed the above problems could greatly improve the*AM, an exte_:rna M. A combined memory and perfor-
robustness and reliability of the real-time system. mance analysis can aid in making the best use of the most
i efficient memory by placing the most-used segments of
For example, in our component-based control systems, Wecode and data into the fastest memory. A processor with

use state-based communication to provide highercache adds yet another dimension to the performance.
assurability [2,3]. In this scheme, the most recent data is A memory analysis is quite simple with most of today’s
always available to a process when the process needs it,

Steenstrup and Arbib developed the port-automation theorydevelopment environments. Most environments provide a

; .map file during compilation and linking stages with mem-
to formally prove that a stable and reliable control system orv usage data. A combined memorv/oerformance analvsis
can be created by only reading the most recent data [4]. Y 9 ’ yip ySIS,

T) . . however, is much more difficult, but is certainly worthwhile
Costly blocking is eliminated by creating local copies of .) .
if performance is an issue.
shared data, to ensure that every process has mutually .
exclusive access to the information it needs. Using states?#11 Improper use of Global Variables

instead of messages also provides robustness if the possibil- Global variables are often frowned upon by software engi-
ity of lost messages exists, if code does not all execute at theneers because they violate encapsulation criteria of object-

Class 270 2001 Embedded Systems Conference
San Francisco, CA, April 2001

based design and make it more difficult to maintain the soft- they preempt a regularly scheduled event, undesired behav-
ware. While those reasons also apply to real-time softwareior may occur. An ideal real-time system has no interrupts.

Qevelopment, _avoiding the use pf global variables in real- Many programmers will put 80% to 90% of the applica-
time systems is even more crucial. tions’s code into interrupt handlers. Complete processing of
In most RTOS, processes are implemented as threads ol/O requests and the body of periodic loops are the most
lightweight processes. Processes share the same addressmmon items placed in the handlers. Programmers claim
space to minimize the overhead for performing system callsthat an interrupt handler has less operating system over-
and context switching. The side effect, however, is that a head, so the system runs better. While it's true that a handler
global variable is automatically shared among all processeshas less overhead than a context switch, the system doesn't
Thus, two processes that use the same module with a globahecessarily run better for several reasons:
variable defined in it will share the same value. Such con- sHandlers always have high priority and can thus cause
flicts will break the functionality; thus, the issue goes priority inversion;
beyond just software maintenance. Handlers reduce the schedulable bound of the real-time

Many real-time programmers use this to their advantage, ~Scheduling algorithm, thus counteracting any savings in
as a way of obtaining shared memory. In such a case, how- Overhead as compared to a context switch;
ever, care must be taken and any access to shared memoryHandlers execute within a different context and force the
must be guarded as a critical section to prevent undesirable use of shared global variables to exchange data with the
problems due to race conditions. Unfortunately, most rest of the application;
mechanisms to avoid race conditions, such as semaphoresgsHandlers are difficult to debug and analyze because few
are not real-time friendly, and they can create undesired debuggers allow the setting of breakpoints or performing
blocking and priority inversion. The alternatives, such as user I/O within the handler.

the priority ceiling protocol, use significant overhead. Instead, minimize the use of interrupts when possible. For
Global variables should never be used as a substitute forexample, program interrupts so their only function is to sig-
passing arguments. While this may seem like a good way tonal an aperiodic server. Or convert handlers from periodi-
reduce the overhead of passing arguments to functions, itcally interrupting devices to periodic processes. If you must
prevents any form of scalability or reuse of software mod- use interrupts, use only real-time analysis methods that take
ules for multiple functions, because the functions or mod- into account the interrupt handling overhead. Never assume
ules that use the global variables cannot be replicated.that overhead from interrupts and their handlers is negligi-
Instead, use an abstract data type (ADT) to encapsulate alble.
the Qata that you w_ould like to make global. I_Dass a pointeryg poor software design diagrams
to this ADT as the first argument to any function. The sub-
routine call overhead from passing a single argument is
minimal, yet this technique enables code to be replicated,
since each instance of a module can have its own ADT. For
larger applications for which overhead is less of a concern,
objects can replace ADTs to eliminate the need for most
global variables.

Most software systems are designed such that the entire
system is defined by a single diagram (or, even worse,
none!). Yet a physical item like a chair or table would have
several more diagrams—for instance, top view, side view,
bottom view, detailed view, functional view, and so on-
despite the fact that a chair can be much simpler than a soft-
ware project.

There are times when it is acceptable or necessary to use _— . . .
: : ; When designing software, getting the entire design on
global variables. For example, if every instance of a module

needs to share a data item, then a global variable might e aPer 1S essential, The most commonly acc_epted methods
: . X .~ . " are through the creation of software design diagrams. Many
in order. In this case, however, appropriate synchronization

or mutual exclusion is needed to conserve the integrit Ofdifferent kinds of diagrams exist. Each is designed to
the shared data grity present a different view of the system.
Exchanaing d .t it int t hand| ften f th Of course, there are good diagrams and there are poor dia-
xchanging data with interrupt handlers often forces the grams. A good diagram properly reflects the ideas of the
need for global variables, since the interrupt handler exe-

)) .~ designer on paper. A poor diagram is confusing, ambigu-
cutesina phfferent context than the rest of the code. As with ous, and leaves too many unanswered questions. To create
global variables used for shared memory, extra care need

) i ﬁood software, the diagrams representing the software
to be taken to avoid race conditions. designs must be good

#10 Indiscriminate use of interrupts Common techniques for presenting designs through good
Interrupts are perhaps the biggest cause of priority inver-diagrams include the following:

sion in real-time systems, causing the system to not meet all An architectural design diagranmshows the top-down

of its timing requirements. The reason for this delay is that decomposition of a large project. It is usually a data flow

interrupts preempt everything else and aren’t scheduled. If diagram that shows relationships between objects,

Class 270 2001 Embedded Systems Conference
San Francisco, CA, April 2001

modules, or subsystems based on the data exchangedram there is a legend, and that all diagrams of the same
between them type use the same legend. Consistency is the key.

*Each element in an architectural design should be Following are guidelines for creating consistent data flow,
represented by detailed design diagranThis diagram process flow, and data structure diagrams. Similar guide-

provides enough detail for a programmer to implement |ines should be established for any other kind of diagram
the details without ambiguity. In a multi-level required by an application.

decomposition, the detailed design at one level may

become the architectural design for the next lower level. Data flow diagrams.These diagrams show the relation-

Therefore, the same diagramming techniques areship gnd dependencies between modules baseq on the data
applicabléto both kinds of diagrams that is communlc_:ated between them. The_s_,e diagrams are
most often used in the modular decomposition phases. The
The software designers must be sure to distinguish data flow diagram is the most common diagram at the archi-
whether they're usingrocess-orientecbr data-oriented tectural level; but most data flow diagrams are poorly done,

designs. A process-oriented design, as typically used inysyally a result of inconsistencies in the diagram.

many control and communication systems, should include . . .
: To create good diagrams, create a convention and stick
data flow diagrams (such as for control system representa- :
tion), process flow diagrams (also called flow charts), and with it. Always include a legend that explains the conven-
ion), p aag ; N tion. Minimize the number of lines (and therefore, data
finite state machines representations. A data-oriented.
. : - _items) that flow between processes or modules. Note that
design, as used in knowledge-based and database applica-, S .
. . . e each block in this diagram will become a module or process,
tions, should consist of relationship diagrams, data structure . ; .
diagrams. class hierarchies. and tables and each line will be some form of coupling between mod-
9 ' ' ' ule or communication between processes. The fewer lines,

An object-orienteddesign is a combination of process- the petter. Some typical conventions for data flow diagrams
oriented and data-oriented design, and should contain diajncjude the following:
grams that represent all of the different views. *Rectangles are data repositories such as buffers, message
As an example of the need for diagrams, consider the data queues, or shared memory
structures shown in Figure 1a. If you have an application «Rounded-corner rectangles are modules that execute as
with lots of structures defined, but no diagrams to show the their own process
relationship between them, you would need to spend hours .pjrected lines represent data that flows from the output of

(or days) going through the code or relying on comments e process or module to the input of another process or
(which may or may not be there) to figure out the relation- ,oqule

ships. Process flow diagramsThese diagrams generally show

'On the other hand, the data structure diagram shown inge getajls within a module or process. They are most often
Figure 1b clearly shows the relationship. For example, it ;seq during the detailed design. As with data flow dia-
now becomes obvious that structatef_tis a doubly linked grams, create a convention, stick with it, and make a legend

circular list with a header node; there angyzinstances of hat explains the conventions. Some typical conventions for
the structurexyz_t defined as an array; and structatec_t process flow diagrams include:

points to both the header nodea#f_tand to the first ele- -Rectangles are procedures or computations

ment inxyz_t] .) *Diamonds are decision points
Even when someone has provided design diagrams, they,ci cles are begin, end, or transfer points

often have not provided a legend. Such a diagram usually
mixes data flow and process flow blocks, and is marred by
inconsistencies and ambiguities. Even many of the dia-
grams in software engineering textbooks have this problem! *Parallelograms represent 1/O

A quick rule of thumb to determine whether a diagram has *Bars represent synchronization points
flaws is to look at the legend and make sure that every box, Data structure diagrams and class hierarchid3ata
line, dot, arrow, thickness, fill color, or other marking onthe Structure diagrams and class hierarchies show the relation-
diagram matches the function specified in the legend. ThisShip between multiple data structures or objects. Such dia-
simple rule serves as a syntax checker, allowing developergdrams should contain enough detail to directly create a
and reviewers to quickly identify problems with the design. Struct (if using C) or class (if using C++) definition in a
Furthermore, it forces every different type of block and line module’s.hfile.
and arrow to be drawn differently, so that different objects Some typical conventions for these diagrams include:
are visually distinguishable. *A single rectangle is a single field within a structure or
Diagrams can be drawn according to a standard such as class
UML or based on a custom set of conventions developed by *Groups of adjacent rectangles are all in the same structure
the company. What is important is that for every design dia- or class

Directed lines represent the sequence to execute code
*Ovals represent interprocess communication

Class 270 2001 Embedded Systems Conference
San Francisco, CA, April 2001

*Non-adjacent rectangles are in different structures orevery few days or weeks are a race condition, memory cor-
classes ruption, deadlock, or priority inversion. Each of these prob-
*Arrows leaving a rectangle indicate pointers; the other lems is extremely difficult to track down, because they
side of the arrow shows the structure or object being occur randomly and leave very little evidence as to the true
pointed to cause.
+Solid lines show relationships between classes. A legend The solution is two-fold. For new applications, take pre-
should indicate the type of relationship(s) shown in the cautions during the design and implementation of the appli-
graph. Each different type should be represented by a linecation to minimize the possibility of any of these
of a different width, color, or type happening. A formal code review might identify the prob-
For example, Figure 1b is a data structure diagram. lems whereas testing will not (see Mistake #6). For address-
ing race conditions, this means minimizing the number of
global variables or shared memory segments, minimizing
Some programmers use the same workarounds over angreemption, and minimizing the number of interrupt han-
over again because the system has a glitch. A programmer’silers. For memory corruptions, use a tool such as Purify to
typical response is that it always executes well if the identify all possible problems. Since such a tool might not
workaround is used. be available in the target environment, use it in the emulator
Unfortunate|y' the same errors that force a workaround environment to at least eliminate most prOblemS. To avoid
are likely to resurrect themselves later in a different form. deadlocks, consider using IPC mechanisms that provide
Anytime there is any "glitch," it means something is wrong! deadlock-free solutions, such as the state-based communi-
Make sure appropriate steps are taken to understand théation we described in #13 or the priority ceiling protocol.
problem. A workaround may be valuable to ensure that a TO minimize the chance of priority inversion, don’t use
product is shipped on time, but immediately after the dead- interrupts, and use proper real-time scheduling methods.
line, take a bit of extra time to identify the problem, to Despite all the precautions, the problems might still arise,
ensure it does not show up again—such as during the nexiand they require debugging. To pinpoint the problems, sev-
big demo. eral technigues can be used.

The most common problems associated with glitches that To track down a randomly-occurring problem that might
cause the program to crash or perform incorrectly just oncebe a result of a race condition, put a “sleep()” command

#8 “It’s just a glitch.”

typedef struct _def _t { abe t def t
struct _def_t *next; = - =
— — , —’
struct _def_t *prev; int : next
char namel[8]; pointer field within structure rev
short loval: structure abc_t p
short hival; name
def t; o
ydel_ E[zoomed-in view loval
typedef struct _xyz_t{ AN of a structure hival
inti; Legend : H
float f; H H
short s[2]; = 0 J
: abc_t ' =
unsigned char b[8]; - |_. - —)p
Ixyz_t; *def head name; o 0 o name,gef
- «— <+
*Xyz
typedef struct _abc_t {
def t *def; ndef)
Xyz_t *xyz; xyz[0] i
short ndef; o : :
}abc_t;
xyz[2] ", s[0] | s
\
A V72N bo] {b{1]|b[2] | b{3]
“\
xyz[nxyz—1] "\, [bt41|bis1| biel | bi7)
(a) (b)

Figure 1: Example of a data structure diagram. Suppose that only the data structures in (a) are provided. The lack of
the diagram in (b) would make it extremely difficult to understand the true structure of the design. Providing the diagram
in (b) significantly improves the ability to visualize the design.

Class 270 2001 Embedded Systems Conference
San Francisco, CA, April 2001

before and after every access to a shared data item. This wilrfemains unchanged might have a tremendous effect, like
obviously slow down the code tremendously, so be sure youusing up too much processor time or memory, or creating an
are executing code but with minimal power to the rest of the anomaly in the timing of the system if it executes at a high
application (e.qg. turn off power to motors). If a race condi- priority.

tion does exist, it is much more likely to occur, since you ag 5 general rule of thumb, always come up with at least
will be forcing the context switches to occur during the crit- 4o designs for anything. Quite often, the best design is in
ical sections. fact a compromise of other designs. If a developer can only
A common memory problem is stack overrun. To check come up with a single good design, other experts should be
for this, initialize all of the memory allocated for the stack consulted to obtain alternate designs.
with a non-zero and non-OxFF value. For example, put 0X55 ¢ no code reviews
everywhere. Run the code. Next time the glitch occurs,
check to see if there are still 0x55 in the memory. If not,
then a stack overrun did occur. You can even monitor the
stack regularly in this way to find the best size for the appli-
cation.

Many programmers, both novices and experts, guard their
code with the same secrecy that inventors guard patentable
ideas. This practice, unfortunately, is extremely damaging
to the robustness of any application. Usually, programmers

_ . . know they have messy code; hence they fear others seeing
For any type of random glitch, debugging might need to be g4 commenting on it. As a result, they hide it the same way

done over an extended period of time. When the glitch 5t children hide messy rooms from their parents.

occurs, make a note of the scenario in as much detail as pos- T ; bust ; l cod . | lied
sible. Add some debugging code that might help zero in on O guarantee robusiness, formai Code reviews (also calle
software inspections) must be performed. Code reviews

the problem. But since the problem only recurs occasion-)
ally, after the debugging code is in, go back to whatever elsefShOUId be done regularly for every piece of code that goes

you are working on. If that glitch occurs again, look at the Into _the system. A formal _rev_iew involves several people
debug output for clues, and repeat by adding more debug—lOOK.Ing over code. and tracing it by hand on paper. Software
ging information. If the embedded system has extra mem- ENgIN€erng Studies have_ shown that more bugs can be
ory, debug output can simply be copied into memory, and found in a day of code reviews than a week of debugging.
looked at only if necessary. If there is very litle memory but ~ The programmer should also get into the habit of doing
a spare digital I/O port is available, the debugging output Self-reviews. Many programmers write code, run it, and see
can be copied to that I/0 port, and captured by a logic ana-What happens—and if it does not work, they start debugging

lyzer. If the glitch occurs, look at the logic analyzer output it, without ever tracing it on paper. Spending one day hand-
for clues. tracing the code can save days or weeks of agonizing

There is no doubt that finding the cause of random glitches debugging.
is one of the hardest debuggmg tasks for an embedded sys- Code reviews have the additional positive side effect of
tem programmer. Keep this in mind from the beginning, so increasing the number of people who understand the code,
as to reduce the number of such errors that enter the systenfhus preventing total reliance on a single employee.
and ultimately reducing the debugging time to find the us5 nobody else here can help me

cause of the errors. As most any teacher will confirm, you learn more about a

#7 The first right answer is the only answer topic by teaching it.

Inexperienced programmers are especially susceptible to Real-time programmers often feel helpless when they
assuming that the first right answer they obtain is the only encounter obstacles (which happens all the time) such as an
answer. Developing software for embedded systems isl/O device not working as described in the documentation.
often frustrating. It could take days to figure out how to set Often, few others in the organization have the level of
those registers to get the hardware to do what they want. Atknowledge required for this kind of programming, leaving
some point, though, it works. Once this happens, many pro-these programmers to solve the problem without assistance.
grammers will remove all the debug code and put that codeUnfortunately, this misconception that nobody else can help
into the module for good. Never shall that code change often leads to the downfall of projects or quality of the
again. Because it took so long to debug, nobody wants toapplication, as adequate solutions might never be found. If
break it. no one else has more expertise, the programmer should

Unfortunately, that first success is often not the best teach the material to someone with less expertise, so that
answer for the task at hand. That step is definitely impor- both the teacher and the student can arrive at a better under-

tant, because improving a working system is much easierStanding of the problem.

than getting the system to work in the first place. But Many organizations have new recruits who are willing to
improving the answer once the first answer has beenlearn new things to gain experience. The expert should
achieved is rarely done, especially for parts of the code thatexplain to such eager people how the program works and
seem to work fine. Indirectly, however, a poor design that what the problem is. The new person likely will not be able

Class 270 2001 Embedded Systems Conference
San Francisco, CA, April 2001

to fully understand the problem. However, their questions on the top-most module, then not a single module is reus-
may expose an issue or problem that was overlooked by theable.

expert and may lead to a solution. Figure 2b and Figure 2c both include circular dependen-
This approach also has an important side effect. It doublescies. If a circular dependency is inevitable, Figure 2b is
as atraining technique so that when advanced programmingnuch preferred over Figure 2c, since in Figure 2b reusing
knowledge is required, there are more programmers quali-some of the modules is still possible. The restriction in
fied to contribute. Figure 2b is that modulegqr and xyz can only be reused
#4 One Big Loop together. In Figure 2c, however, reusing any subset of mod-
ules isn’t possible, as too many dependencies exist between
modules. Furthermore, a major circular dependency exists,
where modulexyzwhich should not be dependent on any-
thing because it is at the bottom of the graph-is dependent
onabc It only takes one such major cycle to make the entire
application non-reusable Unfortunately, most existing

. . pplications are more similar to Figure 2c than to Figure 2a
Real-time systems should be implemented as concurren r Figure 2b, hence the difficulty in reusing software from
applications. For lower-end processors, use a flexible multi- existing appllications

rate executive. For higher-end applications, use an RTOS N
with limited or full preemption and appropriate tools to 10 best use dependency graphs to analyze the reusability
guard against critical sections. In either case, the small@nd maintainability of software, write code that makes it
overhead that is added by the executive or RTOS is easilye@Sy to generate the graph. That iseaflerndeclarations
reclaimed by executing each part of the code only at the ratefor €xported variables in functions in a modubex should

it needs, rather than executing all code at the fastest rate. € defined in filexxx.h In moduleyyy, simply looking at

Developing software as a collection of small loops instead Wlh‘,'"t gles arde#mc_ludeﬁ ?rlll_ows dete;_mmaﬂontc;f Itlhat rgod- d
of one big loop has the further advantage of providing good ule’s depenadencies. IS convention IS not followed, an

modular decomposition into tasks, with data exchangesa.n exte_rn declaration !s embedded Ipyy.c instead of
between the modules being explicit. With proper design, it #includang the appropriate file, then the dependency graph

may be possible to reuse some of the modules in other appli-W'" be erroneous and an attempt to reuse code that appears

cations. In the one big loop scenario, however, it is doubtful to be md_ependent of the_ other module wil _be d_'fﬂCU|t'_
that any part of the software can be reused. Identifying the A leading cause of circular dependencies is a single

design of software modules for reuse is described next. ~ #includel file with all of the system’s constants, variable
definitions, type definitions, and/or function prototypes is a

The d dencies b dules i d sof sure sign of non-reusable code. During a code review, it
e dependencies between modules In a good softWarggy s only five seconds to spot code that cannot be reused,

geagndcan bgldrawn as a tree, fas sdhown |(r; Figure 2a. A¢ 5ch a file exists. The key to spotting these problems
ependency diagram consists 0f nooes and arrows, suc Imost immediately is the existence ofianludefile, often
that each node represents a module (such as one source co Siled globals.h but other common names apeoject.h

file), and the arrows show dependencies between that nOdeﬁiefines.h and prototypes.h These files include all of the
ot dependent on any her Software mocile. To maximize S, VaTiablestdelines function protoypes, and any
. , other header information that is needed by the application.

software reusability, arrows s_hpuld_ always point down- Programmers will claim that it makes their lives much eas-
wards, and not upwards or b|d|reqthnally. For example, ier because in every module all they need to do is include a
Ir'nodullg abc depends on moduldef if .'t hgs a#|_nclude single.hfile in every one of theircfiles. Unfortunately, the
def.i n the code, or alexterndec.laranon in the filabc.c cost of this laziness is a significant increase in development
to a variable or function defined in modulef.c and maintenance time, as well as many circular dependen-

_The dependency graph is a valuable software engineeringjes that make it impossible to use any subset of the appli-
aid. Given such a diagram, it's easy to identify what parts of cation in another application.
the software can be reused, create a strategy for incremental

testing Of modules, and deyelop a method to limit error module is defined by two files, theand theh. Information
propagan_on through the entire system. in the .hfile is only what is exported by the module. Infor-
Each circular dependency (a cycle in the graph) reducesyiion in the.c file is everything that isn't exported. More

the ability to reuse the software module. Testing can only yetails on enforcing strict modular conventions are given
occur for the combined set of dependent modules, andpay;.

errors will be difficult to isolate to a single module. If the))
graph has too many cycles, or a major cycle exists where &2 No naming and style conventions
module at the bottom-most level of the graph is dependent For non-real-time system development, this mistake is #1.

When real-time software is designed as a single loop,
there is no flexibility to modify the execution time of indi-
vidual parts of the code. Few real-time systems need to
operate everything at the same rate. If the CPU is over-
loaded, one of the methods to reduce utilization is to selec-
tively slow down only the less critical parts of the code.

#3 Too many inter-module and circular dependencies

The right way is to use strict modular conventions. Every

Class 270 2001 Embedded Systems Conference
San Francisco, CA, April 2001

Creating software without naming and style conventions lines as established by the company to get their programs
is equivalent to building homes without any building codes. approved by the quality assurance department.
Without conventions, each programmer in an organization The most fundamental questions with respect to software
does his or her own thing. The problems arise whenevermaintainability are the following:
someone else has to look at the code (and if an organization.|f a customer reports a software error, how quickly can it
properly does code reviews as in mistake #6, this will be pe found?
sooner, not later). For example, suppose the same module is|f a customer requests a new feature, how quickly can it
written by two different programmers. The code of one pro- pe added?
grammer takes one hour to understand and verify, while the «Once the error is identified, how many lines of code must
same code by the other programmer takes one day. Using be changed to fix it?
Fhe first version instead of the second is an 800% increase Obviously, answers to the above questions depend on the
in productivity! specific application and nature of the problems. However,

Naming and style conventions are the primary factors thatgiven two pieces of code that have the same functionality
affect readability of code. If strict naming conventions are and need the same fix, which program’s conventions will
followed, a reader will know what the symbol is, where itis help do the job more quickly? These criteria help to evalu-
defined, and whether it is a variable, constant, macro, func-ate software maintainability, and should be used when com-
tion, type, or some other declaration just by looking at it. paring not only designs, but also styles and conventions.
Such conventions must be written, just as a legend must Table 1 shows an excerpt of the naming conventions that
appear on a design diagram, so that any reader of the codare enforced in the Software Engineering for Real-Time
knows the conventions. Systems (SERTS) Laboratory at the University of Mary-

An organization should insist that all programmers use land. Researchers who have learned these conventions
the naming conventions in all parts of their projects. Part of Quickly appreciate the more readable code they produce,
a code review should include checking for adherence to the€SPecially after they are forced to read code written by
conventions. If necessary, a company can hold back meritSomeone else who does not follow any written convention.
raises from programmers who do not follow the conven- Whether an organization favors these conventions or its
tions; it may seem like a silly reason to refuse to grant a own doesn’t matter; what is important is that the naming
raise, until you take into consideration that a programmer conventions can be backed by a good reason why each spe-
not following the conventions may cost the company Ccific convention was selected, they are written and distrib-
$50,000 the following year due to all of the extra labor uted to all developers, and they are strictly adhered to by all
expended by other employees to understand and modify théorogrammers.
code. If employees prefer to use their own conventions, Functions should always be given names such that each
that's their tough luck. Just as architects must follow strict exported function has a converse, as shown in Table 2. Two
guidelines to get their designs approved by the building important benefits are gained by defining functions in pairs.
inspector, a software engineer should follow strict guide- It forces the designer to ensure completeness and allows the

Xyz
(a) Dependency graph with no (b) Dependency graph with cycle (c) Dependency graph with a
cycles. This’is desirable. between ghi and jk/ a major circular dependency

Figure 2: Examples of dependency graphs, without and with cycles. An objective in developing good software is to
decompose code into modules to minimize or eliminate circular dependencies. In each diagram, the modules with thick borders
should modules that are directly or indirectly dependent on module jk/, and would be needed to test or reuse jki, and could be
affected by any problem in jki.

Class 270 2001 Embedded Systems Conference
San Francisco, CA, April 2001

designer to create the two portions simultaneously, using Note that the last word for any function name should be
each part to test the other. It also ensures that pairings arehe verb that represents the action performed by the func-
consistent; for example, that the conversesefdis not tion. The middle words are typically nouns that represent
read, and that the converse afreateis not finish (see the object(s) within the module on which the verbs act.

Table 2). If a designer is creating the code for reading and

writing at the same time, both pieces of code can be testedOf the xyz module. Furthermore, if the module xyz grows

by writing from one process and reading from the other. and the designer decides to further decompose it, it's easy

To create software so that further decomposition can beto move the entireyzFilesubset to a separate module-say,
done quickly if it's required, put names in an order that yyzfile A global search and replace &f/zFileto xyzfile
decomposes the module or ADT into sub-parts, each ofyould result in all the necessary changes, and within a few
which is described by a known, and a single verb in the minytes, the decomposition would be complete. If this nam-
name as the last word in the compounded function name.jng convention is not used, then trying to perform the same
Do not order the words in the way that they would naturally 55k of renaming all the symbols when theFilesubset of

be read. For example, if modulgzhas a secondary struc- .y ,is placed in another file would be very tedious.
turexyzFile_t then functions that operate on that structure

should be named the following:
xyzFileCreate
xyzFileDestroy

This convention makes it obvious thatzFileis a sub-set

While having a short cryptic module name is acceptable
because the name serves as a prefix to everything, you
should only use obvious abbreviations for function names.

xyzFileRead If an obvious abbreviation isn't available, use the full name.
xyzFileWrite If an abbreviation is used, use it everywhere for the project.
and not For example, always usegzlnitas the initialization code
xyzCreateFile for modulexyz rather tharxyzinitialize Or use eithesnd
xyzDestroyFile andrcv, or sendandreceive but don’t mix the two. Exam-
xyzReadFile ples of other common abbreviations includé for inter-
xyzWriteFile rupt, fwd for forward, rev for reverse, sync for

Table 1: SERTS Naming conventions to improve software maintainability for C-language programs

Symbol Description Symbol Description

xyz.h File that contains header info for module ‘xyz’. Any- |xyc.c File that contains code for module ‘xyz’
thing defined in this file MUST have an xyz or XYZ
prefix, and must be something that is exported by

the module.
Xxyz_t Primary data type for module xyz. Defined in xyz.h |_abcde t Internally-defined type. Must be defined at top of
XxyzAbcde_t Secondary type “Abcde” for module xyz. Defined in Xyz.C.

xyz.h.
XyzAbcde() Function “Abcde” that applies to items of type xyz_t. | Abcde() Internal function. Must be defined as static. Pro-

totype at top of xyz.c. Function declared at bot-
tom of xyz.c, after all the exported functions have
been declared.

XYZ_ABCDE |Constant for module XYZ. Must be defined in xyz.h. |abcde Local variable. Must be defined inside a func-
tion.Fields within a structure are also defined
using this convention.

XYZ_abcde Constant for module XYZ within an enumerated ABCDE Local constant internal to module. Must be
type. _ABCDE defined at top of xyz.c. The third version allows
XYZ_ABCDE() |#define’d macro for module XYZ. Must be defined in | -ABCDE_FGH |the use of multiple words. For example,
xyz.h. _ABCDE_FGH. If just “ABCDE_FGH", is used, it
implies module “abcde”
Xyz_abcde Exported global variable defined in module xyz. _abcde Internal global variable. Must be defined as
Must be defined in xyz.c, and declared as externin “static” at top of xyz.c. Note that even thouse
xyz.h. Global variables should be avoided! these are internal, they are likely still shared.

Table 2: Examples of always defining functions in pairs.

xyzCreate ~ xyzDestroy xyzlnit « xyzTerm xyzStart « xyzFinish xyzOn « xyzOff
xyzAlloc - xyzFree xyzSnd o XxyzRcv xyzRead o XxyzWrite xyzOpen o xyzClose
xyzStatus ~ xyzControl xyzNext o XxyzPrev xyzUp o« xyzDown xyzStop -~ XxyzGo

Class 270 2001 Embedded Systems Conference
San Francisco, CA, April 2001

synchronizationstat for status, ancctrl for control. An Summary

abbreviation liketrfm, on the other hand, supposedly short | haye presented the 25 most common problems in real-
isn’t obvious and readability is therefore compromised. In jndustry consultant and an academic professor. Correcting
such a case, the function name without abbreviatigz; jyst one of these mistakes in a project can lead to weeks or
Transform() would be a better choice. Uncommon abbrevi- months of savings in manpower (especially during the
ations are difficult to follow when reviewing the code. maintenance phase of a software life cycle) or can result in
Using the slightly longer names is much better and avoids 5 significant increase in the quality and robustness of an
confusion as to what the function does. application. If many of your mistakes are common ones,
#1 No measurements of execution time and you can find and fix them, potential company savings

. . or additional profits can be in the thousands or millions of
Many programmers who design real-time systems have noy,|;ars

idea of the execution time of any part of their code. For

For each mistake listed, | encourage you to ask yourself
example, my colleagues and | were asked to help a company h
. . . . S about your current methods and policies, compare them to
identify occasionally erratic behavior in its system. From

) . : .. the reported mistakes and the proposed alternatives, and
our experience, this problem is usually a result of a timing

or synchronization error. Thus our first request was simply decide for yourself if there are potential savings for your

.) . project or company. | expect you'll find potential for
for a list of processes a_nd Interrupt hqndlers in the SyStem’improved quality and robustness at no extra cost, just by
and the execution time in each. The list of names was eas

~’modifying some of your current practices.
for them to generate, but they had no measured execution fying y P

times; rather, only estimates by the designers before theReferences

code was implemented. [1] M. Moy and D. B. Stewart, “An engineering approach
Our first order of duty was to measure the execution time 0 détermining sampling rates for switches and sensors in

for each process and interrupt handler. We quickly discov- Fea-time systems,” irProc. of Real-Time Applications

ered that the cause of the erratic behavior was system over- SYMposiumWashington DC, June 2000.

load. Engineers at the company replied that they already[2] D. Stewart, “Designing Software Components for Real-

knew that. But they were surprised to hear that the idle pro- Time Applications,” inProc. of Embedded Systems Con-

cess was executing over 20% of the time. (When measuring ference San Jose, CA, September 2000.

everything, you must include the idle task.) The problem [3] D.B. Stewart, R.A. Volpe, and P.K. Khosla, “Design of

was that their execution time estimates were all wrong. One dynamically reconfigurable real-time software using

interrupt handler, with estimated execution time of a few port-based objectsJEEE Trans. on Software Engineer-

hundred microseconds, took six milliseconds! ing, v.23, n.12, Dec. 1997.

When developing a real-time system, measure execution4] M. Steenstrup, M. Arbib, and E.G. Manes. Port Autom-
time every step of the way. This means after each line of at& and the Algebra of Concurrent Procesdesynal of
code, each loop, each function, and so on. This process COMputer and System Science=7, n.1, pp. 29-50, Jan.
should be continuous, done as often as testing the function- 1983.
ality. When execution time is measured, correlate the
results to the estimates; if the measured time doesn’t make
sense, analyze it, and account for every instant of time.

Some programmers who do measure execution time wait
until everything is implemented. In such cases, there are
usually so many timing problems in the system that no sin-
gle set of timing measurements will provide enough clues
as to the problems in the system. The operative word in real-
time system is time.

One obstacle that many engineers face with timing code is
not knowing where are the starting and end points of each
process. If code is implemented in such a way that the start
and end points are not obvious, then the code must be rede-
signed. It is an indication of poor decomposition and likely
many circular dependencies. While it may seem extreme to
immediately suggest rewriting the code, consider how
much time can be wasted in making the real-time system
work if it is not possible to accurately measure time!

	Abstract
	Introduction
	#25 “My problem is different”
	#24 Delays implemented as empty loops
	#23 Tools choice driven by marketing hype, not by evaluation of technical needs
	#22 Large if-then-else and case statements
	#21 Documentation was written after implementation
	#20 Interactive and incomplete test programs
	#19 Software engineers not participating in hardware design
	#18 No emulators of target application
	#17 Error detection and handling are an afterthought and implemented through trial and error
	#16 Generalizations based on a single architecture
	#15 Optimizing at the wrong time
	#14 Reusing code not designed for reuse
	#13 Using message passing as primary inter-process communication
	#12 No memory analysis
	#11 Improper use of Global Variables
	#10 Indiscriminate use of interrupts
	#9 Poor software design diagrams
	#8 “It’s just a glitch.”
	#7 The first right answer is the only answer
	#6 No code reviews
	#5 Nobody else here can help me
	#4 One Big Loop
	#3 Too many inter-module and circular dependencies
	#2 No naming and style conventions
	#1 No measurements of execution time
	Summary
	References

