
© 2001 Dr. David B. Stewart

Most Common Mistakes with
Real-Time Software Development

Embedded Systems Conference 2001, Class 270

Dr. David B. Stewart
Embedded Research Solutions, LLC

9687F Gerwig Lane
Columbia, MD 21046

© 2001 Dr. David B. Stewart

Why this presentation?

NovicesNovices and and ExpertsExperts
in both in both industryindustry and and universityuniversity,,

make the make the samesame mistakes over and over again.mistakes over and over again.

© 2001 Dr. David B. Stewart

The Order

The order is subjective,The order is subjective,
based on personal observationsbased on personal observations
when using the following criteria:when using the following criteria:

ReliabilityReliability
andand
RobustnessRobustness

FrequencyFrequency
of makingof making
the errorsthe errors

is highest on listis highest on list

Time / MoneyTime / Money

CodeCode
ComplexityComplexity

© 2001 Dr. David B. Stewart

The Order is Not Really Important
What is important is that the mistake is on the What is important is that the mistake is on the

list!list!

Correcting just Correcting just ONEONE mistakemistake
can save thousands of dollarscan save thousands of dollars

or significantly improve or significantly improve
quality and robustness of software.quality and robustness of software.

Correcting Correcting SEVERALSEVERAL mistakesmistakes
can lead to savings and improvementscan lead to savings and improvements

that are incalculable!that are incalculable!

© 2001 Dr. David B. Stewart

“My Problem is Different”

Learn from experience of othersLearn from experience of others

Focus on similarities, not differencesFocus on similarities, not differences

Rarely, if ever, is entire problem differentRarely, if ever, is entire problem different

© 2001 Dr. David B. Stewart

Delays implemented as empty loops

Use RTOS timing mechanismsUse RTOS timing mechanisms

Build your own mechanismBuild your own mechanism
that automatically profiles CPUthat automatically profiles CPU

Poll the countPoll the count--down value of a timerdown value of a timer

© 2001 Dr. David B. Stewart

Tools choice driven by marketing hype,
not by evaluation of technical needs

Select tools based on your ownSelect tools based on your own
technical needs, not just becausetechnical needs, not just because
everybody else is using them.everybody else is using them.

Spending $2,000 for the rightSpending $2,000 for the right
tool can save $100,000 in labor.tool can save $100,000 in labor.

© 2001 Dr. David B. Stewart

Large if-then-else and case statements

State machinesState machines

Lookup tablesLookup tables

Boolean AlgebraBoolean Algebra

Variable functionsVariable functions
Instead, use: Instead, use:

© 2001 Dr. David B. Stewart

Documentation written after
implementation

Start implementation with documentationStart implementation with documentation
(the design document)(the design document)

Revise documentation interactively; this serves as aRevise documentation interactively; this serves as a
sanity check to ensure that the code implements sanity check to ensure that the code implements
everything defined in it. everything defined in it.

Document is written when functionality is fresh inDocument is written when functionality is fresh in
programmer’s mindprogrammer’s mind. .

© 2001 Dr. David B. Stewart

Interactive and incomplete
test programs

Simulate input devices with known patternsSimulate input devices with known patterns

AlwaysAlways test the test the entireentire application application allall the timethe time

Nightly extensive selfNightly extensive self--teststests

Create nonCreate non--interactive test programsinteractive test programs

Instead:Instead:

© 2001 Dr. David B. Stewart

Software Engineers
Don’t Participate in
Hardware Design

Leads to overLeads to over--designing the systemdesigning the system

© 2001 Dr. David B. Stewart

No Simulators of
Target Application

Faster developmentFaster development
Better debugging toolsBetter debugging tools
Multiple programmersMultiple programmers
Customer feedbackCustomer feedback
Deeper understandingDeeper understanding
Safer and cheaper!Safer and cheaper!

Using a simulator:Using a simulator:

© 2001 Dr. David B. Stewart

Error detection and handling is an after-thought,
and implemented through trial and error

Treat errors as inputs, andTreat errors as inputs, and
error handling as a stateerror handling as a state

Error detection and handlingError detection and handling
must be specified and designedmust be specified and designed
priorprior to implementation.to implementation.

© 2001 Dr. David B. Stewart

Generalizations
based on a single architecture

Develop code on multiple architectures simultaneouslyDevelop code on multiple architectures simultaneously

Don’t generalize everything!Don’t generalize everything!

Create configurable modules for whateverCreate configurable modules for whatever
is different between architecturesis different between architectures

© 2001 Dr. David B. Stewart

3*x or x+x+x

DoDo notnot perform perform finefine--graingrain optimizations unless needed,optimizations unless needed,
and only during final stages of implementationand only during final stages of implementation

Measure performance after each optimizationMeasure performance after each optimization
to ensure it is in fact an optimization to ensure it is in fact an optimization

DoDo coarsecoarse--graingrain optimization during optimization during designdesign phasephase

Optimizing at the Wrong Time

© 2001 Dr. David B. Stewart

To perform good To perform good coarsecoarse--graingrain
optimization, must analyze hardwareoptimization, must analyze hardware
peculiarities before startingpeculiarities before starting

Profile CPU before writingProfile CPU before writing
programs for it, to identify programs for it, to identify
and understand anomalies.and understand anomalies.

float+byte: 308 usec

Byte+byte: 7 usec
16-bit+16-bit: 12 usec
32-bit+32-bit: 28 usec
float+float: 137 usec

On a 9 MHz Z180:

Better understanding of Better understanding of
hardware peculiarities will lead hardware peculiarities will lead
to better to better designsdesigns..

Optimizing at the Wrong Time

© 2001 Dr. David B. Stewart

Reusing code not designed for reuse

Don’t waste time trying to use old codeDon’t waste time trying to use old code
that was not designed for reuse.that was not designed for reuse.
Instead, reInstead, re--design it using provendesign it using proven
techniques for software reuse.techniques for software reuse.

© 2001 Dr. David B. Stewart

Using message passing as primary
interprocess communication mechanism

Significant overheadSignificant overhead

Reduced realReduced real--time schedulable boundtime schedulable bound

Processes executing at different ratesProcesses executing at different rates
may be problematicmay be problematic

Potential for deadlock in closedPotential for deadlock in closed--loop systemsloop systems

Results in lots of Results in lots of aperiodic aperiodic servers insteadservers instead
of periodic processesof periodic processes

Additional complexity if a single messageAdditional complexity if a single message
must be handled by multiple processesmust be handled by multiple processes

Problems:Problems:

© 2001 Dr. David B. Stewart

Using message passing as primary
interprocess communication mechanism

Minimize interMinimize inter--modulemodule
communication and synchronizationcommunication and synchronization

First:First:

Use a sharedUse a shared--memory based protocol,memory based protocol,
such as state variable communicationsuch as state variable communication

Use proper synchronization to preventUse proper synchronization to prevent
priority inversion and deadlockpriority inversion and deadlock

Then:Then:

© 2001 Dr. David B. Stewart

No memory analysis
during design

Compute memory usage during Compute memory usage during designdesign phase.phase.

Don’t forget about memory used by string constants.Don’t forget about memory used by string constants.

For code, estimate a budget for each module.For code, estimate a budget for each module.

© 2001 Dr. David B. Stewart

Improper use of
Global Variables!

• Global variables (even Global variables (even staticstatic ones) are shared.ones) are shared.

• Limits expandability by preventing replication of Limits expandability by preventing replication of
modules.modules.

• Causes many Causes many intermoduleintermodule dependencies.dependencies.

Problem Problem ---- reduces maintainability of software:reduces maintainability of software:

© 2001 Dr. David B. Stewart

• Encapsulate global variables into a “state” structureEncapsulate global variables into a “state” structure

• Schedule access to state data to Schedule access to state data to preventprevent race race
conditions and thus avoid priority inversion.conditions and thus avoid priority inversion.

• Allocate state dynamically during initialization to Allocate state dynamically during initialization to
enable module replication.enable module replication.

• Pass pointer to state as an argument to functions.Pass pointer to state as an argument to functions.

Solution Solution ---- eliminate (most) global variables as follows: eliminate (most) global variables as follows:

Improper use of
Global Variables!

© 2001 Dr. David B. Stewart

Interrupts are an enemy to realInterrupts are an enemy to real--time predictability:time predictability:

• Always have high priorityAlways have high priority
• Force a need for global variablesForce a need for global variables
• Cannot be scheduledCannot be scheduled
• Difficult to analyzeDifficult to analyze
• Execute within wrong contextExecute within wrong context
• Operate in kernel spaceOperate in kernel space
• Priority inversionPriority inversion
• Difficult to debugDifficult to debug

Indiscriminate use of
interrupts

© 2001 Dr. David B. Stewart

Instead, minimize use of interrupts whenever possibleInstead, minimize use of interrupts whenever possible

Periodic polling threads are more desirable than Periodic polling threads are more desirable than
interrupts because they are schedulableinterrupts because they are schedulable

Complex code should be replaced by a signalComplex code should be replaced by a signal
to an to an aperiodicaperiodic serverserver

Only use realOnly use real--time analysis methodstime analysis methods
that take interrupt handling into accountthat take interrupt handling into account

Indiscriminate use of
interrupts

© 2001 Dr. David B. Stewart

Interrupts:Interrupts: 20 to 50 20 to 50 µsecsec per interruptper interrupt
Threads:Threads: 50 to 100 50 to 100 µsec sec per context switchper context switch
NonNon--preemptive processes:preemptive processes: 10 to 30 10 to 30 µsec sec per switchper switch

A A realreal--time executivetime executive with nonwith non--preemptivepreemptive periodic periodic
processes can sometimes provide more predictable processes can sometimes provide more predictable
results and better utilization than using interrupts.results and better utilization than using interrupts.

Indiscriminate use of
interrupts

Myth:Myth: Interrupts save CPU time over processesInterrupts save CPU time over processes
Reality: Reality: Not usually in Not usually in realreal--timetime systemssystems

© 2001 Dr. David B. Stewart

Interrupts save a bit of overhead, butInterrupts save a bit of overhead, but
at the huge cost of reducing the at the huge cost of reducing the schedulable boundschedulable bound
and increasing the possibility of and increasing the possibility of race conditionsrace conditions

Saving 10% overhead by using interrupts mightSaving 10% overhead by using interrupts might
reduce schedulable bound by 30% and increase reduce schedulable bound by 30% and increase
overhead of using shared variables by 20%!overhead of using shared variables by 20%!

Schedulable bound:Schedulable bound: The maximum utilization of the processor for which a The maximum utilization of the processor for which a
task set is guaranteed to still meet all its timing constraints.task set is guaranteed to still meet all its timing constraints. Ideally, Ideally,
schedulable bound is 100%. In practice, it is lower than that.schedulable bound is 100%. In practice, it is lower than that.

Indiscriminate use of
interrupts

Myth:Myth: Interrupts save CPU time over processesInterrupts save CPU time over processes
Reality: Reality: Not usually in Not usually in realreal--timetime systemssystems

© 2001 Dr. David B. Stewart

Poor Software Design Diagrams

© 2001 Dr. David B. Stewart

No Software Design Diagrams

typedef structtypedef struct _def_t {_def_t {
structstruct _def_t *next;_def_t *next;
structstruct _def_t *_def_t *prevprev;;
char name[8];char name[8];
short short lovalloval;;
short short hivalhival;;

} def_t;} def_t;

typedef structtypedef struct _xyz_t {_xyz_t {
intint i;i;
float f;float f;
short s[2];short s[2];
unsigned char b[8];unsigned char b[8];

} xyz_t;} xyz_t;

typedef structtypedef struct __abcabc_t {_t {
def_t *def;def_t *def;
xyz_t *xyz;xyz_t *xyz;
short short ndefndef;;

}} abcabc_t;_t;

*def

*xyz

ndef

abc_t

nex t

prev

name

loval

hival

def_t

structure abc_t
f ield within struc ture

zoomed-in view

abc_t
field

head name1 namendef

xyz[0]

xyz[1]

xyz[2]

xyz[nxyz–1]

i

f

s [1]

b[0] b[1] b[2] b[3]

b[4] b[5] b[6] b[7]

of a s tructure

pointer

Legend

s[0]

© 2001 Dr. David B. Stewart

Architectural decomposition:Architectural decomposition:
at least one diagram per level of decompositionat least one diagram per level of decomposition

Detailed design:Detailed design:
at least one diagram per function or moduleat least one diagram per function or module

ProcessProcess--flowflow

DataData--flowflow

FiniteFinite--state machinesstate machines

Data relationshipsData relationships

Dependency graphsDependency graphs

Poor Software Design Diagrams

© 2001 Dr. David B. Stewart

How do we create good diagrams?

Land

Water

Create a legend for every diagram.Create a legend for every diagram.

Every block, symbol, line, shading, color, and font typeEvery block, symbol, line, shading, color, and font type
should be specified in legend.should be specified in legend.

AnyAny deviation from legend shows an deviation from legend shows an errorerror in the design.in the design.

Poor Software Design Diagrams

© 2001 Dr. David B. Stewart

“It’s just a glitch”

Never assume that Never assume that
a problem has been a problem has been
fixed magicallyfixed magically

Note problem inNote problem in
your log bookyour log book
immediately!immediately!

Spend some time toSpend some time to
try and fix the problemtry and fix the problem

© 2001 Dr. David B. Stewart

“It’s just a glitch”

What are the most likely causes?What are the most likely causes?

Race ConditionRace Condition
Memory CorruptionMemory Corruption
DeadlockDeadlock
Priority InversionPriority Inversion

© 2001 Dr. David B. Stewart

(1) During design phase, take precautions:(1) During design phase, take precautions:
Formal code reviewFormal code review
Minimize shared resources and memoryMinimize shared resources and memory
Minimize use of interruptsMinimize use of interrupts
Use deadlockUse deadlock--free IPC solutionsfree IPC solutions

“It’s just a glitch”

How do we pinpoint the problem?How do we pinpoint the problem?

(2) During testing and maintenance phases:(2) During testing and maintenance phases:
Put sleep() commands within critical sectionsPut sleep() commands within critical sections
Check for stack corruptionCheck for stack corruption
Incrementally add debug statementsIncrementally add debug statements
Monitor progress on logic analyzerMonitor progress on logic analyzer

© 2001 Dr. David B. Stewart

The first right answer is the only answer

Every problem has at least 3 answers:Every problem has at least 3 answers:
The first answerThe first answer
The opposite answerThe opposite answer
A compromise between the first two answersA compromise between the first two answers

Which is the best answer?Which is the best answer?

A Whack on the Side of the Head, How you can be More CreativeA Whack on the Side of the Head, How you can be More Creative
by Roger vonby Roger von OechOech

Learn to be more creative to find the other answers. E.g.Learn to be more creative to find the other answers. E.g.

© 2001 Dr. David B. Stewart

No code reviews

Code reviews are a proven wayCode reviews are a proven way
to improve quality and robustnessto improve quality and robustness

Reviews help eliminate messy code by forcing Reviews help eliminate messy code by forcing
programmers to show their code to others programmers to show their code to others

Studies have shown that more problems can get fixed Studies have shown that more problems can get fixed
in one day of code review than in a month of in one day of code review than in a month of
debugging debugging

Reviews double as training sessions to increaseReviews double as training sessions to increase
number of employees who understand the codenumber of employees who understand the code

© 2001 Dr. David B. Stewart

“Nobody else here can help me”
syndrome

Learn by teaching others!Learn by teaching others!

© 2001 Dr. David B. Stewart

One Big Loop

© 2001 Dr. David B. Stewart

One Big Loop

UseUse proper concurrent design techniques:proper concurrent design techniques:
NonNon--preemptive:preemptive: cyclic or multicyclic or multi--rate executiverate executive
Preemptive:Preemptive: realreal--time operating systemtime operating system

Don’tDon’t use interrupts to emulate multitaskinguse interrupts to emulate multitasking

© 2001 Dr. David B. Stewart

Too many inter-module
dependencies

© 2001 Dr. David B. Stewart

abc

def ghi

jkl stu

mno uvwprq

xyz

abc

def ghi

jkl stu

mno uvwprq

xyz

abc

def ghi

jkl stu

mno uvwprq

xyz

Example of Dependency GraphExample of Dependency Graph

abc

def ghi

jkl stu

mno uvwprq

xyz

jkljkl

uvwprq

xyz

abc

def ghi

jkl stu

mno uvwprq

xyz

Minimize Circular Dependencies!Minimize Circular Dependencies!

Too many inter-module
dependencies

© 2001 Dr. David B. Stewart

#include “globals.h” problem

Follow fundamental Software Engineering concepts, especially:Follow fundamental Software Engineering concepts, especially:
· · Data encapsulation and modularityData encapsulation and modularity
·· Use abstract data types or objectsUse abstract data types or objects

Put code for module Put code for module abcabc in file in file abcabc.c.c..abc.h

abc.c

pqr.h

pqr.c

Only put definitions of anythingOnly put definitions of anything
exportedexported from from abcabc.c.c into file into file abcabc.h.h

#include#include only the only the .h.h files you need.files you need.

Too many inter-module
dependencies

© 2001 Dr. David B. Stewart

No naming and style
conventions!

Establish a set of conventions, and stick to them!Establish a set of conventions, and stick to them!

Use the conventions to help readerUse the conventions to help reader
to to quicklyquickly identify the origin identify the origin
and purpose of the symbol.and purpose of the symbol.

© 2001 Dr. David B. Stewart

No measurements of
execution time!

© 2001 Dr. David B. Stewart

No measurements of
execution time!

First, design your system so that the code is measurable!First, design your system so that the code is measurable!

Learn both Learn both coarsecoarse--graingrain and and finefine--graingrain techniques techniques
to measure execution time.to measure execution time.

Measure Measure execution timeexecution time as part of your standard testing. as part of your standard testing.
Do not only test the Do not only test the functionalityfunctionality of the code! of the code!

Use coarseUse coarse--grain measurements for grain measurements for analyzinganalyzing realreal--time propertiestime properties

Use fineUse fine--grain measurements for grain measurements for optimizingoptimizing and and finefine--tuningtuning

© 2001 Dr. David B. Stewart

Most Common Mistakes with
Real-Time Software Development

Correcting just Correcting just ONEONE mistakemistake
can save thousands of dollarscan save thousands of dollars

or significantly improve or significantly improve
quality and robustness of software.quality and robustness of software.

Correcting Correcting SEVERALSEVERAL mistakesmistakes
can lead to savings and improvementscan lead to savings and improvements

that are incalculable!that are incalculable!

Summary

© 2001 Dr. David B. Stewart

Dr. David B. Stewart
Embedded Research Solutions, LLC

9687F Gerwig Lane
Columbia, MD 21046

Most Common Mistakes with
Real-Time Software Development

Embedded Systems Conference 2001, Class 270

For more details and contact info, see
http://www.embedded-zone.com

© 2001 Dr. David B. Stewart

