Thesis Topics (BA, MA, SM)

 Supervisor: M.Sc. Kai Neubauer
 kai.neubauer@uni-rostock.de
Design Space Exploration for Dynamic Dataflow Applications (only MA)

- Streaming applications such as video de-/encoder, image processing, filter, etc. can be efficiently modeled with dataflow graphs
- Application consist of communicating tasks that produce and consume data (tokens)
 - Self-timed execution: task executes as soon as enough data is available
 - Data is exchanged via global memory
 - Synchronization has to be considered for shared resources (busses, processors, etc.)
- Quality parameters such as throughput and latency are important to evaluate a current implementation
 - Static applications modeled by synchronous dataflow graphs (SDFG) are highly analyzable
- Many applications are heavily data-dependent
 - Task functionality depends on the current available data
 - E.g.: Current frame of a video
 - Cannot be modeled with SDFGs
 - Quality parameters are hard to analyze
- Scenario-aware dataflow graphs (SA-DFG) are used to diminish the complexity
 - Synchronous dataflow graphs describe one scenario
 - FSMs define scenario transitions
 - Can be analyzed with standard techniques \(\rightarrow (\text{max},+) \)-algebra
- Goal:
 - Development of a design space exploration methodology for dynamic applications modeled as SA-DFGs
 - Integration of the method into an existing framework based on Answer Set Programming
 - Synthetic and real-life benchmarks to evaluate scalability and performance