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Abstract— Meta-heuristic optimization approaches are com-
monly applied to many discrete optimization problems. Many
of these optimization approaches are based on a local search
operator like, e.g., the mutate or neighbor operator that are
used in Evolution Strategies or Simulated Annealing, respec-
tively. However, the straightforward implementations of these
operators tend to deliver infeasible solutions in constrained
optimization problems leading to a poor convergence. In this
paper, a novel scheme for a local search operator for discrete
constrained optimization problems is presented. By using a
sophisticated methodology incorporating a backtracking-based
ILP solver, the local search operator preserves the feasibility
also on hard constrained problems. In detail, an implementation
of the local serach operator as a feasibility-preserving mutate
and neighbor operator is presented. To validate the usability
of this approach, scalable discrete constrained testcases are
introduced that allow to calculate the expected number of
feasible solutions. Thus, the hardness of the testcases can be
quantified. Hence, a sound comparison of different optimization
methodologies is presented.

I. INTRODUCTION

MANY meta-heuristic optimization approaches rely on
a unary local search operator. In the domain of

Simulated Annealing [1] and Tabu Search [2] this operator
is known as the neighbor operator. A straightforward im-
plementation of a neighbor operator on discrete problems is,
e.g., a single bit-flip. Other optimization approaches like, e.g.,
Evolution Strategies [3] are based on a mutate operator. In
this case, a common mutate implementation flips a single bit
with a given probability. Hence, the common ground of these
operators is the variation of a given solution to a specific
amount.

For discrete problems with linear constraints it can be NP-
complete to find a single feasible solution [4]. In general,
for these constrained optimization problems, a local search
for a varied feasible solution is NP-complete, too. Thus,
it might appear that a straightforward implementation of
the local search operator very often results in infeasible
solutions. Hence, many approaches in optimization heuristics
rely on local repair strategies whereas infeasible solutions
are accepted. By using penalty functions, the objectives are
deteriorated to guide the search toward the feasible solutions.
However, in hard constrained problems, these approaches
tend to fail since they are more focused on the search for
feasible solutions than on the optimization of the objectives.

In this paper, a novel scheme for a local search operator
for linear discrete constrained optimization problems that
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obtains feasible solutions only is presented. This scheme
for local search operators incorporates a Pseudo-Boolean
(PB) solver [5], [6], a specialized backtracking-based Integer
Linear Program (ILP) with binary variables. In detail, an
implementation of a neighbor operator in the context of a
Simulated Annealing and a mutate operator in an Evolution
Strategy is presented. To validate this methodology, scalable
testcases are introduced. These testcases are scalable in the
number of constraints and variables following a defined
constructions procedure. This procedure allows a calculation
of the average ratio of feasible solutions to the overall
number of solutions as well as the expected absolute number
of feasible solutions per testcase. Thus, the hardness of a
testcase can be quantified and a sound comparison of the
proposed local search operators to known methodologies is
achieved, respectively.

The remainder of the paper is outlined as follows: Sec-
tion II gives a short introduction of related work and Sec-
tion III defines the problem of constrained discrete optimiza-
tion. In Section IV, the feasibility-preserving local search
operator is presented. Section V introduces scalable testcases
for constrained discrete optimization. Experimental results
are given and discussed in Section VI before the paper is
concluded in Section VII.

II. RELATED WORK

For discrete problems, it is common to use heuristic
optimization approaches, mainly if the problem is too large
to be solved completely or if it has multiple or non-linear ob-
jectives. However, the heuristic optimization of constrained
discrete problems is still mainly unexplored. General meth-
ods for constraint handling are outlined in [7], [8], [9] and
are summarized in the following:

A common method is the usage of penalty functions
[7]. Depending on the number of unsatisfied constraints,
a penalty value is added to the objective functions and,
thus, the fitness of the individual is deteriorated. Thereby,
feasible solutions and solutions with low penalty values
are prioritized automatically in the optimization process.
Prioritizing feasible solutions over infeasible by a clear
distinction is a well known strategy [10], too. For some
problems, the feasibility of solutions can be preserved by
eliminating decision variables or using specialized operators
[11]. Furthermore, there exist local repair strategies which
based on additional domain-specific information to fix an
infeasible solution [7], [11]. However, repair strategies that
are restricted to a local view are not able to guarantee to
deliver feasible solutions only.



Known methods for constrained handling are either re-
stricted to real valued search spaces or tend to fail if the
discrete problem is hard constrained since the optimization
is more focused on the search for feasible solutions than
optimizing the objectives. In [12], a decoding strategy is
presented that overcomes these drawbacks, by using a PB
solver as a decoder. Thus, only feasible solutions are obtained
within the search process of an Evolutionary Algorithm. This
decoder-based approach can focus on the optimization of
the objectives and a good convergence towards the optimal
solutions is reached. In this paper, an alternative methodology
that uses a PB solver as a local search operator is pre-
sented instead. By using a PB solver on discrete constrained
problems as a mutate or neighbor operator, only feasible
solutions are obtained. Thus, the proposed search processes
overcome the drawbacks of traditional straightforward local
search operators which often stick to infeasible regions in
the search space prohibiting the convergence towards optimal
solutions.

To evaluate the performance of the proposed methodol-
ogy, appropriate testcases are needed. Common benchmarks
for discrete constrained optimization with meta-heuristic
approaches are, e.g., the 0/1 Knapsack Problem [13] or
the Traveling Salesman Problem [14]. In fact, obtaining a
feasible solution for these problems is trivial. With domain-
specific knowledge, it is a common method to apply a
straightforward repair algorithm [13] or operators that pre-
serve the feasibility of the solution [14], respectively. In
[12] and [15], also problems where obtaining one feasible
solution is NP-complete are created. However, these test-
cases are not scalable in the degree of hardness. On the
other hand, there exists a set of handmade and industrial
benchmarks for the optimization of Integer Linear Programs
with binary variables [16]. Though, these could be easily
extended to multiple and also non-linear objectives, none
of these testcases gives information about the difficulty to
obtain one feasible solution since these benchmarks are not
used for meta-heuristic approaches but for complete ILP and
PB solvers.

In this paper, a construction procedure for scalable test-
cases is introduced. By using this construction procedure, the
calculation of the average ratio of feasible solutions to the
size of the complete search space is enabled. These testcases
are scalable in the number of variables and constraints.
Thus, a sound comparison of the proposed methodology is
obtained.

III. PROBLEM FORMULATION

For constrained discrete problems the task of meta-
heuristic optimization approach is twofold: (1) The objectives
have to be optimized whereas (2) all constraints have to
be fulfilled. In this paper, all variables are assumed to be
binary variables. Thus, the search space is X = {0, 1}n. All
constraints are linear, with a single constraint formulated as

aT x ◦ b (1)

with a ∈ Zn, b ∈ Z and ◦ ∈ {<,≤,=,≥, >}. Thus, by
introducing a set of constraints, the feasible search space

(a) (b)

Fig. 1. Illustration of different local search operators in the search space of a
constrained problem. The circles are feasible solutions and the arrows show
one possible local search operation. (a) illustrates a straightforward local
search operator that results in infeasible solutions only. (b) is a feasibility-
preserving local search operator.

Xf ⊆ X is defined as the set of all solutions x that fulfill
all constraints. Though the demand that all constraints have
to be linear with binary variables sounds rather restrictive,
a linearization of products of binary variables is allowed by
introducing additional variables and constraints 1. Moreover,
integer variables can be encoded binary.

Given the definition of the feasible search space Xf and
the objective function f , the Constrained Combinatorial
Optimization is defined as the following multi-objective
optimization problem:

Definition 1 (Constrained Combinatorial Optimization)

optimize f(x)
subject to:

x ∈ Xf

The objective function f consists of multiple functions
including also non-linear calculations. In a single-objective
optimization, the set of feasible solutions is totally ordered,
whereas in multi-objective optimization problems, the feasi-
ble set is only partially ordered and, thus, there is generally
not only one global optimum, but a set of Pareto solutions. A
Pareto-optimal solution is not worse or equal in all objectives
than any other feasible solution in the design space [17].

In hard constrained problems the set of feasible solutions
Xf is significantly smaller than X and the search space
contains a high number of infeasible solutions, respec-
tively. If there exists no domain specific repair algorithm or
feasibility-preserving operator, a straightforward local search
tends to obtain infeasible solutions mainly. This problem is
illustrated in Fig. 1(a). For optimization problems like the
Minimal Hamiltonian Circuit and the optimization version
of the Exact Cover Problem [4] as well as the industrial
application of Design Space Exploration [18] it is a NP-
complete problem to obtain a single feasible solution and
can be formulated as a set of linear constraints with binary
variables. In this paper, a procedure for a construction of
testcases where obtaining a single feasible solution is NP-
complete is presented. Moreover, this construction procedure
allowes to formalize the hardness of this problem as the

1linearization substitution rule: x1 · x2 ↔ x3 with x1 − x3 ≥ 0∧ x2 −
x3 ∧ x1 + x2 − x3 < 2



Algorithm 1 DPLL backtracking algorithm
1: while true do
2: branch(ρ, σ)
3: if CONFLICT then
4: backtrack()
5: else if SATISFIED then
6: return x
7: end if
8: end while

expected number of feasible solutions or the average ratio
of feasible solution.

With a decreasing ratio of feasible to infeasible solutions, a
straighforward local search operator obtains a growing num-
ber of infeasible solutions. A meta-heuristic approach that
uses a naive operator on this class of prolems tends to obtain
mainly infeasible solutions. Therefore, these approaches are
more focused on the search for feasible solutions than on the
optimization of the objectives.

Thus, a local search operator that only delivers feasi-
ble solutions is desired. Such an operator is illustrated in
Fig. 1(b). The illustrated approach preserves the feasibility of
solutions regardless of the degree of hardness of the problem.
Moreover, this methodology is not domain-specific and can
be applied to any problem where obtaining one feasible
solution can be encoded into binary linear constraints.

IV. FEASIBILITY-PRESERVING LOCAL SEARCH
OPERATOR

This section presents a scheme for a feasibility-preserving
local search operator for linear constrained discrete problems.
This scheme incorporates a Pseudo-Boolean (PB) solver [5],
[6]. A PB solver uses a backtracking algorithm to solve
Integer Linear Programs with an empty objective function
and binary variables. The introduced scheme is used to
implement a feasibility-preserving neighbor and mutate op-
erator. Moreover, these operators can be used to effectively
reduce the search space within the search process since these
operators recognize if some variables have to be assigned a
specific value to obtain a feasible solution.

A. PB Solver

The task of a PB solver is to find an x ∈ {0, 1}n that
satisfies a set of linear constraints. In fact, this NP-complete
problem [4] is an ILP with binary variables and an empty
objective function that can be solved by a common ILP
solver. However, due to the boolean nature, the specialized
PB solvers tend to outrun common ILP solvers on these
problems [19]. These PB solvers are extended SAT solvers
that are actually used to solve the Satisfiability problem and
are based on a backtracking strategy. This strategy is known
as the DPLL algorithm [20] and is outlined in Algorithm 1.

The algorithm efficiently searches for a solution x that
fulfills all constraints, cf. [5], [6]: Starting with completely
unassigned variables, the operation branch(ρ, σ) chooses
an unassigned variable and assigns it a value (line 2). The
branching rule which variable is chosen and value is assigned

deduce branching
strategy solve

x x'σ, ρ

Operator O

Fig. 2. PB solver based local search operator. Given is the solution x ∈ Xf .
Following x, a branching strategy ρ, σ for a PB solver is deduced. With this
branching strategy, the PB solver finds an feasible x′ ∈ Xf automatically.

is called decision strategy. Decision strategies are often
guided by two vectors ρ ∈ Rn and σ ∈ {0, 1}n. Unassigned
variables xi with the highest value ρi are prioritized and
are set to the value σi. The configuration of the vectors ρ
and σ is called branching strategy since it determines the
backtracking branching process. After each variable assign-
ment, possible conflicts are recognized (line 3). That means,
if any constraint is not satisfiable anymore, the backtracking
is triggered (line 4), i.e., variable assignments are reverted.
In the case that all variables have an assignment and there
exists no conflict (line 5), a feasible solution x is found and
returned (line 6).

B. Feasibility-preserving Operator Scheme
The general task of a feasibility-preserving local search

operator is: For a given solution x ∈ Xf to find a feasible
solution x′ ∈ Xf . This local search operator O : Xf → Xf

is illustrated in Fig. 2.
The function O is twofold: First, a branching strategy σ,

ρ is deduced from the solution x. Second, the PB solver
generates a feasible solution x′ using the deduced branching
strategy.

In fact, the deduced branching strategy has a huge impact
on the found solution. For a given σ and two feasible
solutions x′, x′′ ∈ Xf it holds: The solution x′ is more
similar to σ than x′′ if

|{i|x′i = σi}| > |{i|x′′i = σi}|. (2)

Now, given a σ and random priorities ρ, the probability that
x′ is found by a backtracking strategy in a PB solver is higher
than the probability that x′′ is found. This is due to the fact
that with Equation (2) it holds

|{i|x′i 6= σi}| < |{i|x′′i 6= σi}|. (3)

Thus, with randomly assigned priorities, x′′ is excluded
with a higher probability early in the backtracking search
process compared to x′. Hence, x′ is reached with a higher
probability than x′′. Moreover, in a special case where for all
x′′i = σi holds that x′i = σi, the solution x′′ is not reachable
at all due to the presence of x′.

Thus, the backtracking strategy tends to find an x′ that is
more similar to σ than other feasible solutions. This holds
under the assumption that the priorities are random values.
Thus, the vector σ allows to influence the found solution of
a PB solver based local search operator, i.e., the similarity
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Fig. 3. Feasibility-preserving Neighbor Operator. One bit i is forced to
flip with a high priority.

of x and x′ can be influenced by the way σ is deduced from
x. This is utilized by the operators that are introduced in the
following.

C. Feasibility-preserving Neighbor Operator

The most common optimization heuristics that are using a
neighbor operator are Simulated Annealing and Tabu Search.
Given a solution x ∈ X , the task of the neighbor operator is
to find a neighbor x′ ∈ X . In a constrained optimization, it is
aspired that both solutions are feasible. With the scheme de-
fined in the previous section, the proposed neighbor operator
N : Xf → Xf is realized by a PB solver that preserves the
feasibility of the solutions. A good neighbor operator fulfills
two conditions:

1) The neighbor is never equal to the original solution,
i.e., x′ 6= x.

2) The difference between the solutions x and x′ is
aspired to be as small as possible.

The novel feasibility-preserving neighbor operator N for
constrained discrete optimization problems is illustrated in
Fig. 3. In the deduced branching strategy, at least one bit
flip is forced by randomly selecting one i ∈ {1, ..., n} and
setting the corresponding σi to xi (the negated value of xi).
The priority of the i-th bit is increased by a large number
h (maxiri + 1) to ensure that the PB solver flips the i-
th bit. The remaining σ values are inherited from x such
that the branching strategy tends to find a solution x′ that
is to a large extend similar to x. Thus, the priorities within
the branching strategy have to be randomly selected from a
uniform distribution, i.e., each ρ value is a random number
r ∈ R. This random priority assigment is done to fulfill
the assumption from the previous section such that a near
neighbor is found.

In the backtracking search process, first the i-th variable
is set to xi. In the following, the PB solver tries to find
an assignments for the remaining variables that fulfills all
constraints. Since the remaining σ is inherited from x, the
search tends to find a similar solution. In case the problem
is unconstrained, no conflict will occur. Thus, this operator
converges to the standard neighbor operator that flips a single
bit since x′ equals σ.
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Fig. 4. Feasibility-preserving Mutate Operator. A certain amount of bits I
are prioritized to flip. This set I deduced by the mutation rate.

D. Feasibility-preserving Mutate Operator
Mutate operators are applied to many meta-heuristic op-

timization methods. The Evolution Strategy is a popular
methodology that relies on a mutate operator merely. In fact,
a mutate operator has several similarities to the neighbor
operator: Given a solution x ∈ X , the task of the mutate
operator is to find an x′ ∈ X . In a constrained optimization
both solutions are aspired to be feasible. Thus, the feasibility-
preserving mutate operator M : Xf → Xf is implemented
following the proposed operator scheme. A good mutate
operator fulfills the following condition:

1) The difference between x and x′ are of a distinct
degree.

The novel feasibility-preserving mutate operator M for
discrete constrained optimization problems is illustrated in
Fig. 4. In a first step, a set I ⊆ {1, ..., n} is selected by
adding each element with a probability of the mutation rate.
With a growing mutation rate the size of the set I tends to
increase. The mutate operator sets for each variable i ∈ I the
corresponding σi to xi, thus, prioritizing a mutation of these
bits. Therefore, the priority ρi for the bit i ∈ I is increased
by the large number h (maxiri + 1) to ensure the mutation
of these variables. Correspondingly, for each bit i /∈ I the σi

is set to xi. Like in the neighbor operator, the priorities are
randomly selected from R.

With a growing size of I , the number of forced bit flips
increases and, thus, the resulting solutions x′ tends to have
a greater difference to x. In fact, the neighbor operator is a
special case of the mutation operator with |I| = 1. In case
the problem is unconstrained, this operator converges to the
standard mutate operator that flips a single bit with a given
probability.

E. Search Space Reduction
The presented operators always obtain feasible solutions.

Under some circumstances, this allows the search space
reduction of an optimization heuristic that relies on these
operators at runtime. For instance, if the neighbor operator
selects the i-th bits to be set to xi with a very high priority,
the PB solver is forced to find such a solution. But, if there
exists no solution where is the i-th bit is xi, the PB solver
will return a x′ that equals x. On one hand, this violates the
condition that the neighbor x′ is not allowed to be equal to



x. On the other hand, in the further optimization process the
i-th bit can be ignored since there only exists solutions with
xi. Thus, the search space can be reduced efficiently within
the optimization process.

A general rule for the reduction of the search space is as
following:

Definition 2 (Search Space Reduction Rule) For a given
set of I bits that are prioritized to be flipped and a PB
solver based feasibility-preserving operator O : Xf → Xf , it
holds: If the solution x′ = O(x) equals the original solution
x, the bits in I can be removed from the search space.

The variables that are removed from the search space are
set to the values from the solution x or x′, respectively, for
the following solutions. For the neighbor operator this rule
applies to I = {i}.

V. SCALABLE TESTCASES

This section presents scalable testcases for discrete con-
strained optimization problems where obtaining a single
feasible solution is an NP-complete problem. First, the
construction procedure for these testcases that are scalable
in the number of variables and constraints are introduced.
Moreover, a determination of the hardness of the testcases is
presented.

A. Constraint Construction Scheme

The construction of the constraints for the scalable test-
cases relies on three variables:

• n ∈ N - number of binary variables
• c ∈ N - number of constraints
• m ∈ N with c

m ∈ N - occurrence of each variable
among the constraints

The constraints of this problem are generated as follows:
Exactly c empty sets S1, ..., Sc of variables are created.
Each variable is randomly distributed over these sets such
that each variable occurs in exactly m sets. For each set
Si ∈ {S1, ..., Sc} a constraints of the form∑

x∈Si

x = 1

is created. It has to be ensured that each set S is non-
empty to allow a feasible solution. Under the assumption
c
m ∈ N and each variable occurs exactly m times among
the constraints, it is obvious that if a solution exists, it has
exactly c

m variables set to 1 and n − c
m variables set to 0.

Moreover, this problem equals Exact Cover Problem that is
known to be NP-complete.

The strict construction procedure allows to calculate the
expected number of feasible solutions |Xf |, i.e., the cardinal-
ity of the set Xf , for one testcases (for Proof see Appendix):

Theorem 1

E(|Xf |) =
(

n
c
m

)
· (c−m)!

c
m

c!
c
m−1

testcase n c m E(|Xf |) p(x ∈ Xf )
TC1a 200 80 2 1.37 · 109 8.54 · 10−52

TC1b 200 30 3 8.09 · 104 5.03 · 10−56

TC2a 300 120 2 3.15 · 1013 1.54 · 10−77

TC2b 300 60 3 3.52 · 106 1.72 · 10−84

TABLE I
PARAMETERS FOR THE TESTCASES: THE NUMBER OF VARIABLES c, THE

NUMBER OF CONSTRAINTS n, AND THE NUMBER OF OCCURENCES OF

EACH VARIABLE WITHIN THE CONSTRAINTS m. ALSO GIVEN IS THE

NUMBER OF EXPECTED FEASIBLE SOLUTIONS E(|Xf |) AND THE

AVERAGE RATIO OF FEASIBLE SOLUTIONS TO THE SIZE OF THE SEARCH

SPACE p(x ∈ Xf ).

Thus, the average ratio of feasible solutions is calculated
as following:

p(x ∈ Xf ) =
E(|Xf |)
|X|

=
E(|Xf |)

2n

Using this ratio of feasible solutions to the size of the
search space allows the quantification of the hardness of the
testcase.

B. Objective Function

The objective functions can be selected indepently from
the constraints. Here, the objective functions are linear since
the focus of this paper is on constraint handling techniques.
Each single objective function is

f(x) =
n∑

i=1

ri · xi

with ri ∈ N the randomly generated in [0; 100]. Non-linear
objective functions like NK landscapes [21] are applicable,
too.

VI. EXPERIMENTAL RESULTS

In this section, experimental results are presented. After an
introduction of the used testcases, the proposed neighbor and
the proposed mutate operator are analyzed. Afterwards, the
performance of these operators using a Simulated Annealing
and an Evolution Strategy approach are compared to a state-
of-the-art SAT-decoding based Evolutionary Algorithm pre-
sented in [12]. The section is concluded with an application
of the proposed methodology to a real-world example from
the automotive network area.

The experimental results are based on an implementation
of the local search operators using the PB solver SAT4J [22].
All test cases were carried out on an Intel Pentium 4 3.20
GHz machine with 1GB RAM.

A. Testcases

Four testcases with 10 instances per testcase were created
following Table I. The size of the search space for TC1a and
TC1b is 2200 and for TC2a and TC2b 2300. For each test-
case, a single-objective and a multi-objective (two objective
functions) problem is generated.
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B. Operator Analysis
For the analysis of the proposed novel operators, the

normalized difference metric is used. Given two solutions
x, x′ ∈ X the difference is:

D(x, x′) =

∑n
i=1∧xi=x′

i
1

n

A small value indicates that x and x′ are similar, a big value
that these solution are correspondingly different. All results
in the following are an average of 1000 operator calls.

In Fig. 5, the difference of two solutions induced by the
neighbor operator is stated. To enable a sound comparison,
the difference of pairwise random solutions is given, too.
In TC1a and TC2a, the difference induced by the neighbor
operator is clearly smaller than the random value and, thus,
the neighbor operator works as expected. On the other hand,
TC1b and TC2b have a sparse neighborhood leading to a
comparatively small difference distinction to the pairwise
random solutions.

Figure 6 shows the influence of the mutation rate on the
difference that is induced by the proposed mutate operator.
As expected, all testcases show a growing difference with an
increasing mutation rate. Correspondingly to the results of
the neighbor operator, this influence is more apparent on the
testcases TC1a and TC2a.

C. Optimization Analysis
The novel constraint handling techniques are compared to

the Evolutionary Algorithm based SAT-decoding, the state-
of-the-art methodology for constrained discrete problems

Runtimes[s] of the single-objective optimization:

TC1a TC1b TC2a TC2b
EA (SAT-decoding) 58.4 (2.9) 89.3 (6.3) 70.2 (4.1) 673 (101)

ES (Mutate Operator) 61.1 (7.0) 108 (9.9) 65.6 (8.5) 2466 (564)

SA (Neighbor Operator) 24.2 (0.4) 96.0 (13.4) 36.6 (1.9) 2723 (511)

Runtimes[s] of the multi-objective optimization:

TC1a TC1b TC2a TC2b
EA (SAT-decoding) 57.2 (2.2) 86.5(3.5) 72.9 (1.4) 830 (124)

ES (Mutate Operator) 50.9 (0.3) 107 (4.3) 58.3 (4.1) 2424 (569)

TABLE II
OPTIMIZATION RUNTIMES OF THE COMPARED METHODS. GIVEN IS THE

AVERAGE RUNTIME SECONDS AND THE STANDARD DEVIATION IN THE

BRACKETS.

with linear constraints [12]. For the SAT-decoding, the used
Evolutionary Algorithm (EA) was the elitist SPEA2 [23]
algorithm. The population size was set to 100, and in each
generation, 25 offspring were created from 25 parents by
using crossover and mutation operators with the operators
proposed in [12].

To validate the neighbor operator, we used a standard Sim-
ulated Annealing (SA) approach [1]. The cooling schedule
is linear, starting from a temperature of 100 and ending at 0.
The SA is applied to the single-objective optimization only.

The presented mutate operator is tested with an (λ + µ)
Multi-Objective Evolution Strategy (ES) with λ = 25 and
µ = 25 [3]. The mutation mechanism is done by the 1/5
rule. On all handmade testcases the number of evaluations
for all methods is set to 25000.

In order to evaluate the quality of the methods, the ε-
dominance [17] criterion is used. This measurement is used
to specify the convergence of multi-objective optimization
methods to the front of Pareto-optimal solutions. The ε-
dominance calculates the relation of a set of solutions A
to the set of the Pareto-optimal solutions B, which is
approximated by the best solutions found by all methods
in all runs.

Dε(A,B) = inf
ε
{b ∈ B | ∃a ∈ A : a �ε b}

Thus, the ε-dominance is the smallest value ε with that a set
of Pareto-optimal solutions has to be scaled in order to be
weakly dominated by the set A. The scaling is normalized
and, in the following, the reciprocal value is used such that
a high value is aspired.

Table II shows the runtimes of the compared methods.
In TC1a and TC2a the runtimes of the SA approach with
the proposed neighbor operator is significantly lower. This is
due the comparatively close neighborhood on these testcases.
In contrast, in particularly on TC2b the ES and SA are
significantly slower than the EA SAT-decoding approach due
to the large search space and sparse neighborhood.

Figure 7 shows the results of the single-objective opti-
mization. The SA approach shows the best convergence on
all testcases except TC2b. In TC2b, the EA SAT-decoding is
significantly better than the proposed local search operator
based approaches. In fact, this can be explained by the
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Fig. 7. Results of the single-objective optimization.
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Fig. 8. Results of the multi-objective optimization.

sparse neighborhood and, thus, these operators are tending
to perform similar to a random search. On the other hand,
though TC1b has a sparse neighborhood, too, this search
is more successful since the average number of feasible
solutions is only about 3-4 times higher than the number
of evaluations.

Figure 8 shows the results of the multi-objective optimiza-
tion. The ES optimization based on the proposed mutate
operator is better on all testcases compared to the EA based
approach. The clearly improved results on TC2b can be
explained by a weak performance of the SAT-decoding that
leads to a premature convergence. Compared to that, the ES
steadily exploits the search space.

D. Real-World Example

Finally, a real-world example is used to show the practica-
bility of the proposed local search operator. The real-world
example is from the automotive network area and consists of
19877 constraints with 7731 binary variables. This example
has two objectives, the first is linear (costs) and the second
is non-linear (average response time). Thus, the proposed
mutate operator within an Evolution Strategy is used and
compared to the EA-based SAT-decoding.

First, the mutate operator is analyzed on this problem.
Figure 9 shows the results. The mutate operator works as
expected on this problem as the average difference increases
with a growing mutation rate.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

0.50.10.050.010.0050.001

a
v
g
. 
d
if
fe

re
n
c
e

mutation rate

real-world example

Fig. 9. Influence of the mutation rate on the difference that is induced by
the mutate operator.
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Fig. 10. Results of the real-world example optimization.

Each method was started 3 times such that a sound average
value is calculated. Each optimization run was aborted after
5000 evaluations. The average runtime of the ES was 1260
seconds and 1440 seconds for the EA. Figure 10 shows the
corresponding results. Thus, the novel mutate operator in
combination with the ES shows a better convergence com-
pared to the EA-based SAT-decoding. Moreover, the novel
mutate operator within the ES is faster than the decoding
strategy with the EA.

VII. CONCLUSION

In this paper, a novel scheme for a local search operator
for constrained discrete optimization problems as well as
scalable testcases that allow to calculate the expected number
of feasible solutions are introduced. Based on this scheme,
a feasibility-preserving neighbor and mutate operator are
presented and applied to a Simulated Annealing and an
Evolution Strategy, respectively. Hereby, a branching strategy
for a PB solver is deduced from a given feasible solution and,
within a backtracking process, a varied feasible solution is
found. With a decreasing hardness of the problem, the pre-
sented operators converge to a straightforward implementa-
tion of the neighbor and mutate operator, respectively. Thus,
these operators are applicable regardless of the hardness of
the problem that is defined by the constraints.

The proposed scalable testcases allow a sound comparison
of the presented methodology to former approaches since
their hardness can be estimated by the average ratio of



feasible to infeasible solutions. The presented handmade test-
cases validate the competitiveness of the novel local search
operators compared to the state-of-the-art SAT-decoding
based Evolutionary Algorithm. Moreover, an application of
an Evolution Strategy using the proposed mutate operator
performed better than the SAT-decoding approach on a real-
world example from the automotive network area.

APPENDIX

Proof: In the following, two variables are named
disjunctive if they do not appear in the same constraints.
The probability that one variable is disjunctive to k other
variables (that are pairwise disjunctive) calculates to:

p(k) =
m−1∏
i=0

c− k ·m− i

c− i
with 0 ≤ k < c

m

It is obvious, that each feasible solution x ∈ Xf contains
exactly c

m variables that are 1 and n − c
m variables that

are 0. A set that fulfills this requirement is named Xp in
the following with Xf ⊆ Xp ⊆ X . If c

m randomly chosen
variables are disjunctive, these variables can be set to 1 and a
feasible solution is found. Thus, the probability for a feasible
solution of a random x ∈ Xp is:

p(x ∈ Xf |x ∈ Xp) =

c
m−1∏
k=0

p(k) =

c
m−1∏
k=0

m−1∏
i=0

c− k ·m− i

c− i

The denominator can be simplified as following:

c
m−1∏
k=0

m−1∏
i=0

1
c− i

=

c
m−1∏
k=0

1
c!

(c−m)!

=
1

c!
(c−m)!

c
m

The numerator can be simplified as following:

c
m−1∏
k=0

m−1∏
i=0

c− k ·m− i =
c−1∏
j=0

c− j = c!

An by combination:

p(x ∈ Xf |x ∈ Xp) =
c!

c!
(c−m)!

c
m

=
(c−m)!

c
m

c!
c
m−1

With Bayes’ theorem, the number of expected feasible
solutions is:

E(|Xf |) = |Xp| · p(x ∈ Xf |x ∈ Xp) =
(

n
c
m

)
· (c−m)!

c
m

c!
c
m−1
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