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With increasing design complexity, the gap from ESL (Electronic System Level) design to RTL

synthesis becomes more and more crucial to many industrial projects. Although several behav-

ioral synthesis tools exist to automatically generate synthesizable RTL code from C/C++/SystemC-

based input descriptions and software generation for embedded processors is automated as well,

an efficient ESL synthesis methodology combining both is still missing. This article presents SYS-

TEMCODESIGNER, a novel SystemC-based ESL tool to automatically optimize a hardware/software

SoC (System on Chip) implementation with respect to several objectives. Starting from a SystemC

behavioral model, SYSTEMCODESIGNER automatically extracts the mathematical model, performs a

behavioral synthesis step, and explores the multiobjective design space using state-of-the-art mul-

tiobjective optimization algorithms. During design space exploration, a single design point is eval-

uated by simulating highly accurate performance models, which are automatically generated from

the SystemC behavioral model and the behavioral synthesis results. Moreover, SYSTEMCODESIGNER

permits the automatic generation of bit streams for FPGA targets from any previously optimized

SoC implementation. Thus SYSTEMCODESIGNER is the first fully automated ESL synthesis tool pro-

viding a correct-by-construction generation of hardware/software SoC implementations. As a case

study, a model of a Motion-JPEG decoder was automatically optimized and implemented using

SYSTEMCODESIGNER. Several synthesized SoC variants based on this model show different tradeoffs

between required hardware costs and achieved system throughput, ranging from software-only

solutions to pure hardware implementations that reach real-time performance for QCIF streams

on a 50MHz FPGA.
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1. INTRODUCTION

Due to increasing chip capacities and computational power, processing of huge
amounts of data becomes more flexible and less expensive. Corresponding ex-
amples can be found in digital signal processing, telecommunications, and net-
work processing. In all cases, developers have to find an implementation that
fulfills the user requirements in terms of throughput, latency, and energy con-
sumption, while keeping the costs small. Typically, these exigencies can be best
taken into account by hardware/software systems, where time critical opera-
tions are executed on special accelerators. However, whereas today the selec-
tion of an appropriate hardware platform is performed manually, increasing
complexity, development costs, and time to market, pressure demand for an
automatic approach.

ESL (Electronic System Level) design is expected to reduce design times by
a factor of 10-100. Here, SystemC [Grötker et al. 2002] is becoming an indus-
try de facto standard. The key advantage of SystemC lies in its actor-oriented
approach, which is a widely accepted paradigm in system level synthesis [Lee
et al. 2003; Lee and Neuendorffer 2004]. Actor-oriented models separate behav-
ior from communication by means of actors and channels.

There still exists a gap, however, from ESL design to RTL (Register Transfer
Level) synthesis. Although several commercial C/C++/SystemC-based behav-
ioral synthesis (also known as high-level synthesis) tools are available—for ex-
ample, Cynthesizer by Forte Design Systems [Forte Design Systems], CatapultC
by Mentor Graphics [Mentor Graphics Corp.], and NEC’s CyberWorkBench [NEC
System Technologies, Ltd.]—and tools for automatic code generation for embed-
ded processors exist [Leupers 2000; Murthy and Bhattacharyya 2006], efficient
synthesis approaches from ESL models to hardware/software SoC (System on
Chip) implementations are still missing.

To overcome these limitations, we have developed a tool called SYSTEM-
CODESIGNER, which uses an actor-oriented approach in order to integrate be-
havioral synthesis into ESL design space exploration tools. Using this ap-
proach, SYSTEMCODESIGNER is the first tool that reduces the number of manual
steps as much as possible and provides a correct-by-construction generation of
hardware/software SoC implementations from a behavioral model. This is
achieved by starting the design process from an executable SystemC behavioral
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model. Integration of Forte’s Cynthesizer allows translating SystemC modules
from this model into RTL code. The resulting actor implementations are charac-
terized regarding their size (number of look-up tables, number of block RAMs,
etc.) and their performance (latency). On the other hand, actors are compiled for
embedded processor cores, making it possible to estimate execution times. The
obtained values are used during the multiobjective design space exploration,
where a highly accurate performance model is automatically generated from
the SystemC behavioral model. The result of the design space exploration is a
set of so-called nondominated solutions. From this set, the designer can select
those solutions which are best suited for application and synthesize them, for
example, using Xilinx EDK [XILINX 2005].

This article describes the corresponding design flow. A special emphasis is
put on the integration of behavioral synthesis that permits the automatic gen-
eration of hardware accelerators from a given behavioral model. This capability
extends results presented in a previous publication [Haubelt et al. 2007], where
hardware accelerators still have to be implemented manually, thus requiring a
lot of expertise and user interaction by the designer. Moreover, a Motion-JPEG
decoder serves as running example throughout this article in order to illus-
trate the modeling complexity supported by SYSTEMCODESIGNER. In particular,
the Motion-JPEG decoder contains complex modules whose manual hardware
implementation would be time-consuming and error-prone. Here, the seam-
less integration of Forte’s Cynthesizer high-level compiler into our design flow
brings an impressive productivity gain. Finally, this article presents a compre-
hensive accuracy analysis of the proposed performance simulation, which is
particularly important to understand when used in automated decision mak-
ing (design space exploration). For this purpose, a new method for determining
software execution times is proposed. As a result, it will be shown that new ap-
proaches in automatic software synthesis presented in this article reduce the
schedule overhead by up to 25%.

The rest of the article is structured as follows: After presenting related work
in Section 2, Section 3 introduces the Motion-JPEG example used through-
out the article. Our design system, called SYSTEMCODESIGNER, is presented in
Section 4. In order to integrate design space exploration and behavioral syn-
thesis, a synthesizable subset of SystemC has to be specified. This is done in
Section 5, which discusses SYSTEMOC, a SystemC library that strictly sepa-
rates the data transformation from the communication behavior of a single
actor. The automatic actor synthesis is discussed in Section 6. Section 7 is de-
voted to design space exploration, while Section 8 discusses the bit stream
generation for FPGA-based hardware/software SoC implementations. Finally,
Section 9 presents the results obtained by applying our proposed methodol-
ogy to the Motion-JPEG decoder example using our SYSTEMCODESIGNER and
Cynthesizer from Forte. As a key result, the decoder was implemented with im-
mediate success in various configurations, while the overall development pro-
cess took only about one month. The obtained implementations show different
tradeoffs between hardware costs and achieved system performance, ranging
from software-only solutions to real-time systems for QCIF streams targeting
a 50MHz Virtex-II FPGA.
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2. RELATED WORK

In this section, we discuss related work in the area of ESL design space ex-
ploration and synthesis. Tools providing ESL design space exploration are,
for instance, Sesame [Pimentel et al. 2006], MILAN [Mohanty et al. 2002],
CHARMED [Zitzler et al. 2002], and WIZARD [Chantrapornchai et al. 2000].
Furthermore, several publications in the area of design space exploration ex-
ist using different optimization strategies and considering different objectives
[Kim et al. 2006; Mamagkakis et al. 2006; Gupta et al. 2000]. However, none of
these approaches is able to automatically generate an FPGA prototype of the
optimized implementations.

An approach supporting automatic design space exploration and synthesis
is presented in [Kangas et al. 2006]. It is called Koski, and similarly to SYSTEM-
CODESIGNER, it is dedicated to the automatic SoC design. The input specification
is given as a Kahn process network modeled in UML. The Kahn processes are re-
fined using Statecharts. The target architecture consists of the application soft-
ware, the platform-dependent and platform-independent software, and synthe-
sizable communication and processing resources. Moreover, special functions
for application distribution are included, that is, inter-process communication
for multiprocessor systems. During design space exploration, Koski uses simu-
lation for performance evaluation. Although many similarities can be identified
between Koski and SYSTEMCODESIGNER, there are fundamental differences. The
most important difference is that SYSTEMCODESIGNER integrates behavioral syn-
thesis tools into the design space exploration, removing any manual interaction
from the design flow.

Another approach for automatic mapping of digital signal processing ap-
plications to FPGA-platforms, is the ESPAM design flow [Stefanov et al. 2004;
Nikolov et al. 2006]. It automatically converts a Matlab or C loop program into a
Kahn process network. The latter can be transformed into a hardware/software
system by instantiating processors and IP cores and connecting them with
FIFOs. Integration of Sesame allows for automatic design space exploration.
The Xilinx EDK tool is used for final bit-stream generation. The main differ-
ence between ESPAM and SYSTEMCODESIGNER lies in the modeling approach.
Whereas Compaan/Laura/ESPAM uses Matlab or C loop programs as input
specification, SYSTEMCODESIGNER uses SystemC, allowing for both simulation
and automatic hardware generation using high level synthesis. Furthermore,
SYSTEMCODESIGNER uses a more general hardware template for description of
communication and module binding, offering various implementation possibil-
ities, whereas the ESPAM hardware description is kept as simple as possible
in order to simplify its usage. Moreover, ESPAM does not provide support for
behavioral synthesis.

In Ha et al. [2006], the PeaCE approach is presented. Starting from a
Ptolemy application model, it provides a seamless codesign flow from functional
simulation to system synthesis. Moreover, PeaCE supports the generation of an
FPGA prototype. In PeaCE, the application is modeled by a task graph where
tasks are either signal processing tasks or control tasks. Signal processing tasks
are modeled through synchronous piggybacked dataflow, a dataflow model with
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control tokens. Control tasks are modeled by flexible finite state machines (hi-
erarchical state machines without state transitions crossing hierarchy bound-
aries). The target architecture is basically a multiprocessor system. However,
no support for behavioral synthesis is given.

Recently, the Center for Embedded Computer Systems [Center for Embed-
ded Computer Systems] introduced its Embedded Systems Environment (ESE).
ESE starts with a SystemC description and synthesizes an SoC implementa-
tion. In a first step, the mapping of operations to resources is done manually. In
a second step, a SystemC transaction level model is generated, which is used
for synthesis. Here, ESE provides a behavioral synthesis approach to gener-
ate hardware implementations from SystemC modules. However, in contrast
to SYSTEMCODESIGNER, the automatic design space exploration is excluded, that
is, the mapping has to be done manually.

Another interesting tool, called Cascade, is provided by CriticalBlue [Crit-
icalBlue]. Starting from C/C++ or assembler code, Cascade generates hard-
ware accelerators and corresponding interfaces to the processor core. How-
ever, in contrast to SYSTEMCODESIGNER, the generated accelerators are more
fine-gained, since these accelerators are expected to replace single assembler
instructions.

A different approach, named Metropolis, is proposed by Balarin et al. [2003].
Metropolis is a design space exploration framework that integrates tools for
simulation, verification, and synthesis. Metropolis provides an infrastructure
to help designers cope with the difficulties in large system designs by allowing
the modeling on different levels of detail and supporting refinement. The appli-
cations are modeled by a metamodel consisting of sequential processes commu-
nicating via so called media. A medium has variables and functions, where the
variables are only allowed to be changed by the functions. From the application
model, a sequence of event vectors is extracted representing a partial execution
order. Nondeterminism is allowed in application modeling. The architecture
again is modeled by the metamodel, where media are resources and processes
represent services (a collection of functions). Derivation of sequences of event
vectors results in a nondeterministic execution order of all functions. The map-
ping is performed by intersecting both event sequences. Scheduling decisions on
shared resources are resolved by so called quantity managers, which annotate
the events. That way, quantity managers can also be used to associate other
properties with events, like power consumption. In contrast to SYSTEMCODE-
SIGNER, Metropolis is not concerned with automatic design space exploration.
It supports refinement and abstraction, thus allowing top-down and bottom-
up methodologies with a meet-in-the-middle approach. Since Metropolis is a
framework based on a metamodel implementing the Y-chart approach, many
system level design methodologies, including SYSTEMCODESIGNER, may be rep-
resented in Metropolis.

3. THE MOTION-JPEG DECODER

The JPEG algorithm [ITU 1992] is a widespread method for compression of
images found in many embedded devices, such as mobile phones and digital
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Fig. 1. Block diagram of a Motion-JPEG decoder, transforming a Motion-JPEG data stream into

uncompressed images. Each block corresponds to a task performing a particular operation. Com-

munication is illustrated by edges.

cameras. It reduces the required storage space for digital images by entropy en-
coding, spatial pixel decorrelation, and color space transform. A Motion-JPEG
stream can simply be considered to consist of a sequence of individual JPEG
images.

Figure 1 shows the block diagram of the corresponding decoder. It consists
of several modules processing a stream of data. The Parser analyzes the pro-
cessed JPEG stream and extracts important control information, such as image
dimensions, number of colors, quantization strength and Motion-JPEG stream
format. This information is forwarded to the other modules by embedding them
into the stream of compressed data, or by separate communication channels.
The Huffman Decoder, the zero-run length decoder (InvZrl), and the DC De-
coder are responsible for entropy decoding. The Inverse Discrete Cosine Trans-
form (IDCT) takes frequency coefficients in the form of 8 × 8 blocks, assembled
by the Inverse ZigZag operation, and reestablishes the pixel values. Since JPEG
applies lossy compression, by truncating the frequency coefficients in order to
eliminate less important details, this operation is reversed as well as possible
by the Inverse Quantization. The Frame Shuffler is responsible for reordering
the pixels arriving block by block into a raster scan order required by most dis-
play devices and transmission protocols. The YCbCr Decoder finally converts
the image into the RGB color space before the PPM sink generates one Portable
Pixmap File [PPM format specification] per processed image.

In order to map this decoder to an embedded SoC, the designer has to decide
which parts need hardware accelerators due to timing constraints, and which
modules can run on an embedded processor, which normally is available in any
case in such a system. This decision, however, is not easy to make, because
the calculation effort for some of the modules shown in Figure 1 depends on
the processed JPEG file content. Hence, in classical system design, several
implementations have to be generated manually in order to determine whether
they satisfy the requirements.

In order to alleviate this problem, SYSTEMCODESIGNER provides a new method-
ology for determining the optimum system architecture, fulfilling the designer’s
requirements by help of an automatic design space exploration. This is, subject
of the next section, which gives an overview of the overall design flow, before
the following sections investigate some steps in more detail.
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Fig. 2. ESL design flow using SYSTEMCODESIGNER: The application is given by an actor-oriented

model described in SystemC. Behavioral synthesis is used to create architecture templates. Design

space exploration using multi-objective evolutionary algorithms automatically searches for the best

architecture candidates. The entire SoC is implemented automatically for FPGA-based platforms.

4. DESIGN FLOW

The overall design flow of our ESL technique is based on (i) actor-oriented
modeling in SystemC, (ii) hardware generation for some or all actors using be-
havioral synthesis, (iii) determination of their performance parameters, such as
required hardware resources, throughput and latency, (iv) design space explo-
ration for finding the best candidate architectures, and (v) automatic platform
synthesis. Figure 2 depicts the cooperation of these steps as implemented in
SYSTEMCODESIGNER.

The first step in our ESL design flow is to describe the application by an
actor-oriented model. This kind of description is particularly well suited for
stream-oriented applications occurring, for instance, in the domain of digital
signal processing or telecommunications. It naturally extends the block-based
algorithm specification given in Figure 1 and exposes the coarse grained paral-
lelism in an intuitive manner. Each module or process in Figure 1 is realized as
an actor communicating with other actors by help of communication channels.
The actor specification itself uses a special subset of SystemC, defined by
the SYSTEMOC library [Falk et al. 2006]. The latter provides constructs to
describe actors with well defined communication behavior and functionality.
Furthermore, it offers communication channels by which the actors can be
interconnected in order to obtain a complete system specification. This not only
delivers an executable specification important for debugging and simulation,
but also allows the extraction of the underlying mathematical model of
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computation, which is a prerequisite for system analysis and exploration.
Further details about these issues can be found in Section 5.

Each actor described in SYSTEMOC can then be transformed into both hard-
ware and software modules. Whereas the latter is achieved by simple code
transformations, the hardware modules are built by help of Cynthesizer [Forte
Design Systems], a commercial behavioral synthesis tool that we have inte-
grated into our design flow. This allows us to quickly extract important perfor-
mance parameters such as throughput and required hardware resources in the
form of flip-flops, lookup tables, and multipliers. These values can be used to
evaluate different solutions found during automatic design space exploration.

The performance information, together with the executable specification and
a so called architecture template, serves as the input model for design space ex-
ploration. The architecture template is represented by a graph that contains all
possible hardware modules, processors, and the communication infrastructure
from which the design space exploration has to select the ones that are nec-
essary in order to fulfill the user requirements in terms of overall throughput
and chip size. The fewer components allocated, the less hardware resources are
required. In general, however, this comes along with a reduction in through-
put, thus leading to tradeoffs between execution speed and implementation
costs. Multiobjective optimization, together with symbolic optimization tech-
niques [Schlichter et al. 2006; Haubelt et al. 2006] are used to find a set of
nondominated solutions. Each of these has the property to be not dominated
by other known solutions in all objectives. For example, the design space explo-
ration might return two solutions showing a typical tradeoff (e.g., throughput
vs. flip-flop count). One solution has good performance and a huge effort in area.
Another solution may use less area and achieves only lower performance. This
means that both solutions do not dominate each other, hence the user may want
to select the one serving his needs best, either the faster one or the cheaper one.

Once this decision has been taken, the last step of our ESL design flow is the
automatic generation of the corresponding FPGA-based SoC implementation in
order to allow for rapid prototyping. Since we use an actor-oriented application
modeling, complex optimized SoCs can be assembled by interconnecting the
hardware IP cores representing actors and potential processor cores with spe-
cial communication modules provided in a corresponding library. Furthermore,
the program code for each microprocessor is generated. Finally, the entire SoC
platform is compiled into an FPGA bit stream using, for example, the Xilinx
Embedded Development Kit (EDK) [XILINX 2005] tool chain for Xilinx FP-
GAs. Further details about the automatic platform synthesis step are given in
Section 8.

5. MODEL OF COMPUTATION

To allow for automatic design space exploration, certain restrictions must be
imposed on the input model. As mentioned previously, our design flow starts
with an actor-oriented executable specification in SystemC. In such models,
actors a1, a2 ∈ A are communicating entities that are concurrently executed.
Communication is restricted to dedicated channels c ∈ C. Tokens are produced
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and consumed by actors and transmitted via those channels. Actors contain
ports to which the channels are connected. Here, we focus on port to port com-
munication media with extended FIFO semantics that connect exactly one actor
output port with exactly one actor input port. In the following, these extended
FIFOs will be called SYSTEMOC FIFOs if the extensions are relevant to the dis-
cussed matter. Otherwise, we will simply refer to them as FIFOs. Furthermore,
we require that the actors of the SystemC design are partitioned into a data
path for transforming token values, and a control unit supervising the commu-
nication behavior of the actor. In order to meet these requirements, we use the
actor-oriented approach provided by SYSTEMOC [Falk et al. 2006], a SystemC
library for actor-oriented modeling that requires usage of a well defined subset
of SystemC.

In SYSTEMOC, each actor a ∈ A is divided into three parts: (i) the actor ports,
(ii) the actor functionality, and (iii) the actor communication behavior encoded
as a finite state machine (FSM). Apart from the current state of this FSM, in
the following called communication state machine, an actor may also possess a
functionality state, for example, the values of some internal variables an actor
may have.

The actor functionality is a set of functions that are only executed during
transitions of the communication state machine. These functions are parti-
tioned into actions and guards, which are distinguished by their ability to
transform the functionality state of the actor. While actions may transform
the functionality state of the actor and consume or produce tokens, guards are
prohibited from doing this. During an execution of a transition of the communi-
cation state machine, the action annotated to this transition is executed atom-
ically. Furthermore, a transition has an associated boolean expression called
activation pattern, which must evaluate to true to enable the execution of the
transition. Activation patterns consist of guards from the actor functionality as
well as of predicates on the number of available tokens on input ports and on
the number of free places on output ports. These predicates correspond to the
number of tokens that can be accessed by the consequently executed action in
a random fashion. For instance, i2(2) denotes a predicate that tests the pres-
ence of at least two tokens in the SYSTEMOC FIFO connected to the actor input
port i1, whereas o1(1) checks if at least one free place is available in the FIFO
connected to the output port o1. Actions consume and produce tokens for which
the activation pattern assures presence and free slots, respectively.1

We will exemplify this via the PPM Sink actor from the Motion-JPEG model,
which is depicted in Figure 3. Starting in the start state, the actor consumes
two tokens from port i2 as indicated by the corresponding predicate i2(2). These
two tokens contain the frame dimensions for the next frame from which the

1The MoC underlying our methodology is a generalization of FunState (Functions driven by State

machines) [Strehl et al. 2001]. In contrast to FunState, we allow all functions of an actor to share

a state. Note that this idea is somehow similar to a rule-based model of computation for SystemC

proposed in [Patel et al. 2006]. It is based on the idea of guarded atomic actions [Rosenband and

Arvind 2004]. The complete system behavior is described by rules consisting of guards and atomic

actions, where an action is ready for execution as soon as the guard evaluates to true. A behavioral

synthesis tool based on these ideas is developed by Bluespec [Bluespec, Inc.].
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Fig. 3. (a) Depiction of the PPM Sink actor from Figure 1 consisting of two input ports i1 and i2, a

set of actions and guards and the state machine that determines its communication behavior. The

transitions of the state machine are annotated with activation pattern/action pairs. (b) shows the

source code of the action fnewFrame.

action fnewFrame shown in Figure 3(b) derives the number of pixels in the frame.
The corresponding result is stored in the functionality state of the actor, that is,
missingPixels is updated for later usage by the glastPixel guard. Lines (2) and (3)
show how to access the first and second token in the SYSTEMOC FIFO connected
to input port i2 in random order. The size of the random access area corresponds
to the predicate annotated to the transition of the FSM and amounts two for
actor port i2.

After completion of the fnewFrame action, the FSM changes into the write state.
There, the frame is read pixel by pixel from port i1 and written to an unmodeled
output, for example, in the simulation phase to a ppm image file. Each execution
of the fprocessPixel action modifies the functionality state by decrementing the
number of pixels remaining in the frame. The end of a frame is detected via
the guard glastPixel, which evaluates to true for the last pixel of a frame. In this
case, the state machine reverts to the start state.

6. AUTOMATIC ACTOR SYNTHESIS

After modeling the considered application in SYSTEMOC, the next step in our
design flow consists in the automatic generation of hardware modules for some
or all actors. This allows for rapid prototyping, as explained in Section 8, and
for extraction of performance parameters in form of action execution times
and required chip areas. The latter ones are required for evaluation of each
implementation during automatic design space exploration.

The actor hardware synthesis applies state-of-the-art behavioral synthesis
tools. These behavioral synthesis tools typically do not support all possible Sys-
temC language constructs, for example, recursion, dynamic memory allocation,
and thus usage of dynamic data structures is not allowed.

The actor hardware synthesis itself consists of three steps, namely (i) trans-
formation of SYSTEMOC actors into SystemC modules, (ii) behavioral synthesis
using Forte Design Systems Cynthesizer, and (iii) generation of Verilog gate-
level netlists using Synplify Pro from Synplicity [Synplicity].

The actor transformation into SystemC modules is required in order to ab-
stain from the abstract SYSTEMOC syntax, which cannot be directly processed
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Fig. 4. Transformation steps of a SYSTEMOC actor to a synthesizable SystemC module.

by state-of-the-art behavioral synthesis tools. Especially, the communication
state machine is encoded in an object-oriented manner allowing for automatic
extraction of important communication properties. For behavioral synthesis,
however, classical SystemC modules with parallel processes and well-defined
ports driving hardware signals are required. Consequently, the SYSTEMOC ac-
tors have to be translated into such SystemC modules.

For this purpose, four steps are required, as depicted in Figure 4, namely
(i) port transformation, (ii) FSM transformation, (iii) action and guard extrac-
tion, and (iv) port access modification.

The port transformation replaces each SYSTEMOC actor port interfacing an
abstract SYSTEMOC FIFO by a SystemC hardware signal port. This is neces-
sary in order to be able to drive the control and data signals of the hardware
SYSTEMOC FIFO primitive contained in the communication library.

The FSM transformation automatically translates the abstract SYSTEMOC
syntax of the communication state machine into a code fragment suitable for
behavioral synthesis. This allows creating a SystemC module, containing a
controlling process including the transformed communication state machine
(see Figure 4). The latter checks, by means of a switch statement, for the cur-
rent state. Within each state, an enabled transition is searched by checking
the token counts in the input and output FIFOs and by calling the guard
functions. If such a transition is found, the corresponding action function is
called and tokens are consumed from the input FIFOs and produced on the
output FIFOs. Furthermore, the state variable of the actor is set to the next
state.

The action and guard extraction phase copies the corresponding functions
from the SYSTEMOC specification into the generated SystemC module such that
they can be invoked from the controlling communication state machine. The
addition of special constraints for the behavioral synthesis tool allows obtaining
optimized actor implementations.
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The port access modification finally replaces all port accesses occurring in
the guard and action functions, such as those illustrated in Figure 3(b), by
function calls as shown in Figure 4. These functions are implemented by the
SystemC hardware signal ports and drive the signals of the hardware primitives
of the SYSTEMOC FIFOs. However, since the latter demand a communication
protocol requiring at least one clock cycle, simple sequential function calls would
result in bad system performance. Consequently, to allow concurrent writes
to different hardware ports, we create processes for each SYSTEMOC output
port that handle the hardware protocol. Concurrent reads from input ports are
implemented by splitting the read access into two functions: the first function
only starts the read access and does not wait for a clock edge, whereas the
second function waits for the result from the input port.

7. AUTOMATIC DESIGN SPACE EXPLORATION

Having the application modeled in SYSTEMOC on the one hand, and the synthe-
sized hardware modules for each actor on the other hand, an automatic design
space exploration (DSE) can be performed. The latter explores optimal (or near
optimal) solutions in terms of throughput, latency or required chip size by de-
ciding which actors shall run on a processor core and which ones are better
realized by a hardware module.

The first step is to formalize the particular instance of the hardware/software
partitioning problem by providing a so called architecture template. This spec-
ifies all possible hardware modules and processor cores as well as their inter-
connection. An initial version of such an architecture template can be created
automatically by instantiating one hardware accelerator for each SYSTEMOC
actor, together with a configurable number of processors and the corresponding
communication infrastructure. The user can then adapt it for the particular
application by adding, for example, commercial IP cores.

For the case study performed in this article, the architecture template is
restricted to one hardware module for each actor, one MicroBlaze softcore pro-
cessor, and a certain number of hardware FIFO primitives realizing the ab-
stract SYSTEMOC FIFOs. Each of these abstract SYSTEMOC FIFOs can be mapped
onto four alternative FIFO primitives: For communication between hardware
modules, two alternative hardware implementations exist, namely block RAM
(BRAM) based and lookup table (LUT) based. The two other primitives rep-
resent hardware/software and software/hardware interfaces, connecting the
SYSTEMOC FIFOs to fast simplex links (FSLs) for communication with the Xil-
inx MicroBlaze softcore processor. This target architecture in principle allows
for hardware only, software only, and mixed hardware/software designs of the
Motion-JPEG decoder.

Once the designer has decided on the possible architecture template for the
considered application, a formal model has to be built that serves as input to the
design space exploration. It consists of three parts, namely (i) the application
itself, (ii) the architecture template, and (iii) the mapping constraints. The ap-
plication is represented by a process graph g p = (Vp, Ep), which can be derived
from the SYSTEMOC specification. Its actors a ∈ A and channels c ∈ C are
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represented as vertices Vp, and their connections are modeled by edges Ep.
The architecture template consisting of the hardware modules, processor cores,
and communication channels is formally specified by the architecture model
ga = (Va, Ea), where the resources (CPUs, FIFO primitives, etc.) are modeled
by vertices Va and the interconnection topology is defined by edges Ea. The
mapping relations between actors and channels in the SystemC model and re-
sources in the architecture model are represented by so-called mapping edges
Em ⊆ Vp × Va. They specify which SYSTEMOC actors and channels can be bound
to which hardware modules or processor cores. Possibly many mapping edges
e ∈ Em for one vertex in the process graph onto different vertices in the archi-
tecture model represent different implementation possibilities of an actor, and
thus set up the entire design space for automatic exploration. For each map-
ping edge, we annotate the action execution times of a SysteMoC actor occurring
when the actor is bound to the hardware resource identified by the mapping
edge. The action-accurate delay annotation improves the throughput and la-
tency estimations when the execution times for the different actions, and hence
actor invocations, are not identical. The hardware sizes are directly associated
to the resources of the architecture model.

As soon as the designer has set up the formal model consisting of the process
graph g p, the architecture model ga, and the mapping edges Em, the auto-
matic design space exploration can be executed. It searches for optimal imple-
mentations, that is, an allocation α of resources (α ⊆ Va) and a binding β of
processes onto resources (β ⊆ Em). The design space exploration is performed
by the multiobjective evolutionary algorithms (MOEA) presented in Schlichter
et al. [2006]. An MOEA is an optimization heuristic that is based on the princi-
ples of biological evolution. Starting with a set of implementations, an MOEA
is performing in two steps: (1) Generating new solutions by variation of the
implementations by mutation and crossover, and (2) a selection of good imple-
mentations based on their fitness. In multiobjective optimization, the fitness
calculation is typically based on the nondominance property, that is, an imple-
mentation that is not worse than any other implementation in all objectives is
said to be nondominated.

As a result of the design space exploration, we obtain a set of nondominated
solutions, which is an approximation of the set of Pareto-optimal solutions. The
evaluation of a concrete implementation bases on several objectives, such as
latency, throughput, and hardware cost in the form of required LUTs, flip flops,
and BRAM modules (for FPGA targets).

Whereas the necessary hardware cost can be determined by simply summa-
rizing the module characteristics from behavioral synthesis and IP core data
sheets, throughput and latency calculation is more complex. Due to the data-
dependent behavior of the JPEG decoder, the latter can only be obtained by sim-
ulation of the application using system level performance models, which take
the binding to hardware modules and processor cores into account. This is es-
tablished by the Virtual Processing Components (VPC) framework [Streubühr
et al. 2006], which simulates a particular architecture modeled in SystemC in
order to derive average case estimations for latency and throughput. In order
to allow for fast simulation, VPC builds a precompiled simulation binary that
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Table I. Results of a Design Space Exploration

Running for 2 Days, 17 Hours and 46 Minutes on a

Linux Workstation with a 2400 MHz Intel
©R

CoreTM2

CPU and 3GB of RAM

Parameter Value

Iterations 300

Solutions evaluated 7, 600

Non-dominated solutions 366

Exploration time 2d17h46min
Simulation time 30.44s/solution

is able to simulate all possible bindings for the chosen architecture template.
Thus the allocation and binding can be loaded at simulation startup by simple
configuration instead of generating multiple simulation binaries, thus leading
to fast exploration times. Each time an action of an actor is executed, the exe-
cution time needs to be simulated together with effects resulting from resource
contention. For this purpose, a scheduling policy for each resource has to be
defined. Preemptive scheduling is established by a sophisticated event protocol
implemented in the VPC framework [Streubühr et al. 2006].

7.1 Motion-JPEG Exploration Results

For the exploration of the Motion-JPEG example, we created an architecture
template using one MicroBlaze softcore processor, 224 FIFO primitives, and
19 modules generated by behavioral synthesis.2 The complete specification in-
cludes 319 mapping edges for the actors resulting in about 5 · 1033 possible
implementation alternatives.

Table I gives the results of a single run of the design space exploration for
the Motion-JPEG decoder. The exploration has been stopped after 300 itera-
tions, which correspond to a run time of 2 days, 17 hours, and 46 minutes.3

The simulation time per solution is about 30 seconds for Motion-JPEG streams
consisting of four QCIF frames with 176 × 144 pixels each. As a result, 366
nondominated solutions were found, each of them representing an arbitrary
hardware/software implementation. Moreover, each solution can be automati-
cally synthesized for an FPGA platform, as discussed in Section 8.

Note that it is possible to limit the number of nondominated solutions pre-
sented to the designer. This can be established by using bounded archives in
the MOEA, which are used to store the best solutions found so far. When using
bounded archives, the pruning of the archive always maximizes the diversity
of the stored solutions. That way, the designer still is able to perform unbiased
decision-making.

2Due to complexity, some of the actors shown in Figure 1 are split into several submodules, which

are not further detailed.
3Each iteration corresponds to the full evaluation of a full population of several so-called individ-

uals, where each individual represents a specific hardware/software solution of the Motion-JPEG

example.
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Fig. 5. Block diagram of the hardware profiler. The tables, being part of the PC Monitor, specify

the program addresses of the action entrance and exit points as well as the start addresses for

evaluation of the communication state machines.

7.2 Determination of Software Execution Times

Determination of precise action execution times for both hardware and software
implementations is an important prerequisite for accurate performance evalu-
ation. Whereas in Haubelt et al. [2007] these times have been measured using
a Modelsim simulation, this approach is not feasible anymore due to the huge
complexity of the deployed Motion-JPEG algorithm leading to extremely large
simulation times. Alternative solutions would be to use an instruction set simu-
lator or a software profiler such as GNU gprof. However, both approaches show
severe deficiencies: the instruction set simulator provided by the Xilinx Embed-
ded Development Kit (EDK, version 8.1) is not able to take the timing of external
memories into account which we expect to have significant impact due to us-
age of an external SRAM for instruction and data storage. Software profilers
have the inconvenience of modifying execution times by interrupt generation
and possible cache influence. Furthermore, they only have limited precision,
especially when rather fine-grained actions must be profiled, as in our case.

Due to these reasons, we have implemented a hardware profiler running on
the FPGA that observes the program counter of the deployed MicroBlaze proces-
sor. The latter offers a corresponding interface, making this approach feasible.

Figure 5 shows the corresponding block diagram of the implemented hard-
ware profiler. It obtains the entrance and exit points of each actor action, which
can be obtained by special compiler tools. Furthermore, it disposes of the start
addresses of the functions evaluating the communication state machines. By
observation of the program counter, the hardware profiler can detect when the
processor starts, and respectively terminates the evaluation of a communica-
tion state machine and the corresponding actor action. Together with the time
counter acting as a clock device, the hardware profiler can derive the execution
time spent in the considered action as well as in the required guard evaluation.
These times are accumulated in the result memory, which can be read out by
help of a special MicroBlaze program. This method hence realizes a real-time
and side-effect free determination of the action execution times, allowing for
accurate software exploration.

7.3 Reduction of Schedule Overhead

Despite an accurate determination of the action execution times, the overall
system throughput and latency derived by VPC simulation and measurement
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Table II. Schedule Overhead Reduction

Round-Robin Improved Round Robin

M-JPEG Stream Run-Time Overhead Run-Time Overhead Overhead reduction

QCIF 176 × 144 48.17 s 14.89 s (30.9%) 42.93 s 11.17 s (26.0%) 25%

Lena 256 × 256 166.24 s 41.67 s ( 25.1%) 151.04 s 35.17 s (23.2%) 16%

of the concrete software implementation differ. In Haubelt et al. [2007], we
identified the schedule overhead as the underlying reason.

The latter occurs because all actors bound to a common MicroBlaze are
checked in a round-robin fashion, whether one of their transitions can be taken
or not. Since as the time for evaluation of the corresponding activation pat-
terns (including guard functions) is not negligible, a schedule overhead results
whenever an actor is polled, that is, checked for execution, while no transition is
possible. This leads to a time consumption which cannot be taken into account
by the VPC framework, as the latter uses an event-based scheduling strategy.
In other words, VPC does not need to poll the actors in order to determine which
ones can be executed, but it obtains a list with all enabled transitions. The lat-
ter is generated by the SystemC kernel in zero simulation time, thus leading
to a discrepancy between the execution times predicted by the VPC and those
measured in the final software implementation.

In order to alleviate this problem, we have modified the scheduler of the
software implementation such that an actor that has been vainly polled for
execution is not taken into account anymore until the number of tokens stored
in at least one input or output FIFO has changed. Although this scheduler is
rather trivial, we measured reductions in the schedule overhead of up to 25%.
This is shown in Table II for two different Motion-JPEG streams. It compares
the run-time to process four images on a softcore processor by deploying both
a simple round-robin polling scheme and by taking the FIFO fill levels into
account.

The schedule overhead has been obtained by help of the hardware profiler
described in Section 7.2. Each time a communication state machine is executed
without calling an action, the hardware profiler determines the spent time and
adds it to a schedule overhead section in the result memory, which is accessible
to the MicroBlaze for evaluation.

8. BUILDING THE COMPLETE SYSTEM

After termination of the design space exploration, automatic platform synthe-
sis is the last step in our design flow (see Figure 2). Starting from the re-
sults obtained by the automatic design space exploration, it performs all steps
required to generate an FPGA configuration file by interconnecting the pre-
viously generated hardware modules and processor cores with the required
communication primitives. Therefore, as depicted in Figure 2, the designer se-
lects those solutions from the automatic design space exploration that best fits
his requirements. These solutions are used as input to our platform synthesis
for FPGA-based platforms.

The platform synthesis itself works fivefold: first, for each allocated CPU
resource, a MicroBlaze subsystem including memory and bus resources is
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instantiated. Second, the allocated hardware modules are automatically in-
serted from the component library as Verilog netlists. The latter might either
have been generated manually in order to allow for hand made optimizations,
or they are automatically derived from the SYSTEMOC model as explained in
Section 6.

Next, the communication resources are inserted from the communication li-
brary. The central element in this communication library is a generic synthesiz-
able Verilog RTL module representing the SYSTEMOC FIFO primitives [Haubelt
et al. 2007] for communication between hardware modules. This FIFO primi-
tive implements the SYSTEMOC FIFO interface described in Section 5 and can
deploy both embedded block RAM or distributed RAM for data storage on Xil-
inx FPGAs. Both versions only show a small overhead in comparison to native
Xilinx COREGEN FIFOs [Haubelt et al. 2007]. The size of the FIFO is directly
specified in the SYSTEMOC model.

The FIFO primitives representing hardware/software and software/
hardware communication are derived by augmenting the hardware/hardware
FIFO primitive with special bridges modules connecting the SYSTEMOC FIFO
primitive to the MicroBlaze FSL links. Support of additional CPUs and buses
requires the implementation of the corresponding bridge modules in the com-
munication library. Software/software communication is implemented in a soft-
ware library allowing the exchange of data within the MicroBlaze by reads and
writes to local memory buffers. Special care is taken for efficient code genera-
tion in order to achieve low communication overhead. Template based code for
instance permits powerful compiler optimizations which lead to fast data ex-
change. The result of these three steps is a hardware description file (.mhs-file
in case of the Xilinx Embedded Development Kit [XILINX 2005]).

In the fourth step, the code required for each MicroBlaze processor is gener-
ated by an automatic transformation of the SYSTEMOC actors into C++ code (see
Haubelt et al. [2007]). If several actors are bound to the same processor, then
a round-robin schedule policy is deployed as described in Section 7.3. Finally,
the platform specific bit stream is generated by using several Xilinx synthesis
tools performing place and route and software compilation.

9. RESULTS

After having described the overall design flow of SYSTEMCODESIGNER, this section
presents and discusses the quality of results obtained when applied to our SYS-
TEMOC Motion-JPEG Decoder implementation. The latter consists of approxi-
mately 8000 lines of code and has been restricted to color-interleaved base line
profile without sub sampling for synthesis purposes. A Xilinx Virtex II FPGA
(XC2V6000) has been selected as target platform for the implementations
running at a clock frequency of 50 MHz. The objectives taken into account dur-
ing design space exploration have been (i) throughput, (ii) latency, (iii) number
of required flip flops, (iv) look-up tables and (v) block RAMs resp. multipliers.4

4In Xilinx Virtex-II FPGAs, hardware multipliers and BRAMs partially share communication re-

sources and can hence not be allocated independently. Consequently, they are combined to one

exploration objective.
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Table III. Motion-JPEG Development Effort

Development Activity Person Days

Specification and interface definition 4

Module implementation 16

Integration 3

Debugging 11

Code Adaption for Synthesis 4

Table IV. VPC Simulation Results

Nbr. of SW Actors Latency Throughput LUTs FFs BRAM/MUL

0 12.61 ms 81.1 fps 44 878 15 078 72

1 25.06 ms 40.3 fps 41 585 12 393 96

8 4 465 ms 0.22 fps 17 381 8 148 63

all 8 076 ms 0.13 fps 2 213 1 395 29

Table III illustrates the development effort spent for realization of the com-
plete Motion-JPEG decoder and its different hardware/software implementa-
tions. The first item represents the activity of breaking the JPEG standard
[ITU 1992] down into a SYSTEMOC graph of actors. Module implementation en-
compasses the encoding of the actor’s communication state machine as well as
the corresponding actions and guards. During the integration phase, the ac-
tors have been connected to the complete system. Thanks to the actor-oriented
methodology, this step could be accomplished very quickly, since the interface
specification is relatively simple due to the applied FIFO communication se-
mantics. Then, debugging has been required in order to detect errors in both the
specification and the module implementations. Finally, coding constructs not
supported by the behavioral synthesis tool (see Section 6) have been identified
and replaced by equivalent instructions. Additionally, although not manda-
tory for obtaining a working system, we improved the performance of selected
actors by means of synthesis constraints. The YCbCr conversion, for instance,
could be accelerated by help of loop-unrolling.5 Thanks to the integration of
Forte Cynthesizer, the hardware accelerators for the different actors could be
obtained directly from the SYSTEMOC specification. Hence, whereas traditional
system design mostly requires the creation of both, a so-called golden model and
the corresponding RTL implementation, behavioral synthesis helped us avoid
this redundant effort. Furthermore, since SYSTEMOC offers a higher level of ab-
straction compared to RTL, the designer can progress more quickly. Taking the
number of lines of code as a measure for complexity, we figured out that RTL de-
sign would have been 8-10 times more costly than the SYSTEMOC specification.
The latter can be translated into a huge number of different hardware-software
systems, which would not have been possible when directly recurring to RTL
implementation.

Table IV shows the properties of some solutions found by design space ex-
ploration. Latency and throughput are VPC simulation estimates for JPEG
streams consisting of four QCIF images (176×144 pixels). Table V provides the

5Its impacts are directly taken into account by the automatic design space exploration, because both

the resource requirements and the execution times are determined after synthesis of the actors.
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Table V. Hardware Synthesis Results

Nbr. of SW Actors Latency Throughput LUTs FFs BRAM/MUL

0 15.63 ms 65.0 fps 40 467 14 508 47

1 23.49 ms 43.0 fps 35 033 11 622 72

8 6 275 ms 0.16 fps 15 064 7 540 63

all 10 030 ms 0.10 fps 1 893 1 086 29

Table VI. Influence of the MicroBlaze Cache for

Software Only Solutions

Processing Time for Four Images

without cache 146.3 s

with cache 42.9 s

performance values of the corresponding hardware implementations in order
to give an idea about the achievable accuracy of the VPC estimations. Whereas
it is not possible to give an upper bound of the occurring discrepancies, because
the objectives used during design space exploration are nonmonotonic in the
mathematical sense, the values typically observed are situated in the ranges
resulting from Tables IV and V.

The differences in the required hardware sizes occurring between the pre-
dicted values during automatic design space exploration and those measured in
hardware, can be explained by postsynthesis optimization and influence of the
MicroBlaze configuration, in particular the number of FSL links. The difference
in the block RAMs, for instance, we traced back to the fact that our SYSTEMOC
specification uses 32-bit communication channels which, however, are not al-
ways entirely required. This fact offers a possibility for the Xilinx tools to trim
some BRAM FIFO primitives.

The discrepancy between the VPC estimations for latency and throughput
and those measured for the hardware-only solution could be traced back to the
time spent in complex guards occurring, for instance, in the Huffman Decoder.
The underlying reason is that VPC deploys an event-based simulation where
the evaluation of guards is performed in zero-time by the simulation kernel,
which is not true for the final hardware implementation. The discrepancy be-
tween the VPC estimations for latency and throughput and those measured
for hardware-software solutions is due to the schedule overhead discussed in
Section 7.3. Furthermore, we observed a tremendous influence of the cache
enabled on the MicroBlaze processor.

This is illustrated in Table VI means help of a software-only solution. It shows
the overall execution time for processing four QCIF frames.6 As can be seen,
the simple enabling of both an instruction and a data cache with 16 kBytes
each results in a performance gain of factor 3.4. This is due to the fact that
both instruction code and program data are stored on an external memory with
relatively large access times. Since the cache behavior, however, depends on the
program execution history, a simple reordering of the program code can lead to

6Note that this value divided by four does not result in the latency for one image. This is due to the

round-robin scheduler, which allows that processing of an image might start before the previous

one has been finished.
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significant changes in the action execution times, which cannot be taken into
account by the VPC framework.

Consequently, in order to obtain more precise simulation results an instruc-
tion set simulation taking caches and guard execution times into account would
be necessary. Similarly a time-consuming hardware synthesis would be neces-
sary in order to reduce the discrepancy between the VPC hardware estimations
and the exact implementation results. This, however, is prohibitive during auto-
matic design space exploration, since the number of solutions that can be inves-
tigated, and hence the possibility to find all optimal implementations, strongly
decrease. Instead, we use the fast VPC simulations in order to find a man-
ageable set of good implementations, which can then be further investigated by
more precise simulation techniques. By providing an automatic synthesis path,
SYSTEMCODESIGNER significantly simplifies this opportunity, and thus helps to
evaluate a relatively large number of design points. This compensates for the
fact that the VPC estimates might not be dominance-preserving.

9.1 Influence of Input Motion-JPEG Stream

As motivated in Section 3, determination of the best hardware configuration is a
difficult task due to the data dependency of some of the involved actors, like the
Huffman decoder. In other words, the achievable system throughput does not
only depend on the chosen hardware implementation, but also on parameters
such as image size and image quality, which is related to the compression ratio
or file size.

The previous results have shown how the VPC framework can be used to
quickly estimate the performance of a given implementation, based on accurate
action execution times. The latter are derived by application profiling based on
a particular Motion-JPEG stream, which is a laborious process. However, in
contrast to other work, VPC not only simulates a fixed and constant execution
time for each actor invocation, but an individual delay can be associated to
each action. The latter should be far less dependent on the processed JPEG file
than the actor invocations themselves. That means, performance data obtained
from one JPEG stream can be reused for other streams as well, which signif-
icantly simplifies the evaluation of a given implementation, and which helps
to efficiently estimate the expected execution times for given input streams.
This is particularly beneficial for soft real-time systems containing data de-
pendent decisions like the considered Motion-JPEG decoder. These scenarios
are difficult to cover by WCET analysis methods, since the latter typically use
more restricted models of computation than can be represented in SYSTEMOC.
Consequently, largely overestimated WCET values would result for the entire
application in the presence of data-dependent control flow.

Table VII shows the achieved results for a software-only implementation
when processing different JPEG streams, whereas only the first one has been
used to derive the actor execution times. The first two JPEG streams only differ
by the encoded image quality and thus deliver different workloads for the data
dependent actors like the parser and the Huffman decoder. The third JPEG
stream uses a completely different image. In both cases, there is a pretty good
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Table VII. Comparison Between Simulated and Measured Execution Times for Four Images

and Different JPEG Streams

Input JPEG Stream VPC Estimation SW Implementation Rel. Error

(without schedule overhead)

QCIF (176 × 144) ( 5.5 kb) 31.54 s 31.76 s 0.7%

QCIF (176 × 144) (36.2 kb) 57.34 s 55.29 s 3.7%

Lena (256 × 256) (55.6 kb) 116.37 s 115.87 s 0.4%

match between the predicted and the measured values, thus allowing for highly
accurate system evaluations. This is thanks to our action-accurate exploration,
where the data dependency can be expressed in the actor’s communication state
machine. Consequently, it can also be taken into account during exploration,
whereas the action execution times themselves ideally do not depend on the
processed input image.

10. CONCLUSIONS

In this article, we presented a methodology to automatically optimize and gener-
ate an SoC—starting with an abstract actor-oriented model written in SystemC.
Our design flow allows the automatic generation of highly optimized and ac-
curately modeled SoC implementations, determined by advanced design space
exploration, in very short time. Even for larger SoC designs, first working SoC
implementations can be obtained from the SystemC behavioral source model
within a few days or even hours. Moreover, by automatic generation, the synthe-
sized system is correct by construction; no manual refinement steps are needed,
and so a major source of errors is eliminated. This is achieved by integrating a
state-of-the-art behavioral synthesis tool into a design space exploration tool.
We demonstrated the efficiency of our design flow using an industrial grade case
study, a Motion-JPEG decoder. The automatically generated hardware imple-
mentations run at 50 MHz and achieve more than 60 QCIF frames per second.
No manual optimizations were made, which probably would further speed up
the implementation.

Future work will focus on the improvement of the accuracy of our simulation
models in order to better match the synthesis results.
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