
System Level Performance Simulation for
Heterogeneous Multi-Processor Architectures

Martin Streubühr, Christian Haubelt, and Jürgen Teich

Hardware/Software Co-Design, Department of Computer Science
University of Erlangen-Nuremberg, Germany

{streubuehr, haubelt, teich}@cs.fau.de

In 1st Workshop on Rapid Simulation and Performance Evaluation: Methods and Tools (RAPIDO),
in conjunction with the 4th HiPEAC Conference, Paphos, Cyprus, January 25, 2009

Abstract. Performance modeling for real-time multi-processor architectures is
a challenging task in the design phase of embedded hardware/software systems.
As SystemC is well suited for designing a functional model of hardware/software
systems, it is desirable to use SystemC with its simulation capabilities to eval-
uate the performance of an architecture for the designed system as well. Some
approaches on the basis of SystemC are known to perform this task. However,
many of these approaches are not applicable at the system level where complex
applications are mapped to heterogeneous multi-processor architectures. In this
paper, we propose a modeling framework that permits the task-accurate perfor-
mance evaluation yet with a moderate simulation overhead. We use a Motion-
JPEG decoder application to illustrate and assess our new approach.

1 Introduction
Performance evaluation for embedded hardware/software systems has been studied
heavily in the past. In this context, the most challenging task is the modeling and analy-
sis of the real-time scheduling strategies on a multi-processor architecture. Some formal
approaches to analyze such systems exist. As formal approaches are often limited to cor-
ner case analysis and might face problems in the presence of huge systems, simulation
seems to be an option for evaluating the performance for a given set of stimuli. Here,
the problem at the system level is the modeling of effects of real-time operating systems
on multiple, distributed processors.

As SystemC [1], a module-oriented C++-based design language, is well suited for
designing hardware/software systems, it is desirable to use SystemC with its simula-
tion capabilities to evaluate the performance of a designed system as well. Some ap-
proaches on the basis of SystemC are known to perform this task. Unfortunately, many
of these approaches are not applicable at the system level where complex applications
are mapped to real-time multi-processor architectures.

In this paper, we propose the modeling framework Virtual Processing Components
(VPC) [2]. The VPC framework takes an actor-oriented functional model of the sys-
tem written in SystemC as input and permits for a given architecture mapping the task-
accurate performance evaluation with only reasonable simulation overhead in SystemC.
The architecture mapping of a functional system model onto a multi-processor HW/SW
architecture is specified in XML. It allows the modeling and simulation of shared re-
sources, like memories, busses, and multiple processing units running different schedul-
ing strategies. A processing unit may be a micro processor, an embedded controller, a
DSP, non-programmable or programmable application-specific logic.

The rest of the paper is organized as follows: In Section 2, we present two related
approaches and their advantages and limitations. After introducing some key concepts
of functional modeling of a system in Section 3, we introduce the VPC framework in
Section 4. We use a Motion-JPEG decoder application as the running example through-
out this paper. In Section 5, we present results obtained from applying our performance
simulation to a Motion-JPEG decoder.

2 Related Work
A simulation approach which permits the modeling of real-time scheduling strategies
on the basis of SystemC is described in [3, 4]. For this purpose, an extension of SystemC
to model executable software tasks is proposed. The end of each atomic operation, e.g.,
each SystemC code line, is augmented by an await() function call. The possibility
to perform preemption is given between atomic operations. A set of software tasks
is assigned to each processor. This technique provides the ability to simulate a set of
processors running an operating system in parallel to hardware modules. Unfortunately,
using this approach requires a substantial modification of the source code.

Another approach described in [5] proposes a so-called Virtual Processing Unit
(VPU) running several tasks using a priority-based scheduler. For this purpose, soft-
ware processes are modeled as timed Communication Extended Finite State Machines
(tCEFSM), where each transition represents an atomic operation. Moreover, each tran-
sition consumes the same fixed amount of processor cycles. In this approach, several
tasks modeled as tCEFSM can be executed sharing the same VPU. The task execution
times depend on the simulated VPU clock speed. The main limitation of this approach
lies in the modeling of time, where each transition of a tCEFSM requires the same
number of processor cycles, and the support of only a single scheduling strategy.

In this paper, we will overcome the limitations imposed on the two discussed ap-
proaches by: (i) task-accurate performance modeling with less modifications of the
source code, (ii) support of several preemptive and non-preemptive scheduling strate-
gies, and (iii) component dependent and task-accurate execution times. Hence, our ap-
proach supports the same level of abstraction as proposed in [5] while providing effi-
cient mechanisms for performance simulation presented as in [3, 4] at higher levels.

3 Functional Modeling Requirements
We assume that the application to be designed is given as a SystemC actor-oriented
functional model. In an actor-oriented design [6], the behavior is organized in so-called
actors which are restricted to communicate with other actors only by explicitly modeled
channels. Associated with each actor, there is a so-called activation pattern which is a
Boolean formula on predicates over the availability of data in the input channels of the
actor [6]. Our methodology presented in this paper can be used together with any actor-
oriented SystemC description. Although we do not use the SystemC Transaction Level
Modeling (TLM) standard in our examples, it is very easy to combine SystemC TLM
with our methodology presented in this paper. Due to space limitations, this aspect is
omitted here.

An actor-oriented model of a Motion-JPEG decoder is given in Figure 1. We will
use this decoder as our running example throughout this paper. In order to explore de-

JPEG Huff.
Decoder

Inverse
ZRL

DC
Decoder

Inverse
Quant.

PPM
SinkDecoder

Frame
Shuffler

IDCTInverse
ZigZag

Dup

Parser
Source

YCbCr

Fig. 1. Actor-oriented model of a Motion-JPEG decoder: Each block corresponds to an actor
performing a particular operation. Communication is illustrated by directed edges.

sign options and analyze the performance of different designs on heterogeneous multi-
processor architectures, we specified the JPEG algorithm in SystemC. Each node in Fig-
ure 1 represents an actor implemented as a SystemC module. Every module includes
exactly one SystemC thread. Our decoder implementation consists of approximately
8000 lines of code, and has been restricted to color-interleaved base line profile without
sub sampling. Using this functional model of the Motion-JPEG decoder, we are able
to model execution latencies, resource sharing, and preemptive execution using our
SystemC-based simulation framework. We introduce the framework in the following
section.

4 Virtual Processing Components
In this section, we present our SystemC-based simulation framework called Virtual
Processing Components (VPC). The VPC framework permits the task-accurate per-
formance simulation of applications mapped onto a real-time multi-processor architec-
ture [2].

The key idea of the VPC framework is the modeling of shared hardware resources
like processors, busses, and memories as Virtual Processing Components. Each Com-
ponent is configured with a certain scheduling policy such as First Come First Served,
Round Robin, Priority Based, etc. The actual coupling of the architecture is done via
the modeled (actor-oriented) application only. Hence, the VPC framework relies on
three concepts: (i) An actor-oriented application modeled in SystemC, as discussed in
Section 3. (ii) The modeling of hardware resources as Components. (iii) The ability
to model preemption. Preemption is done by choosing a scheduling strategy associ-
ated with each Component. These scheduling strategies simulate preemptive or non-
preemptive strategies to solve resource conflicts at a task-accurate granularity.

For each SystemC functional model to be simulated using the VPC framework, the
following steps are mandatory: (i) The source code of the SystemC functional model
must contain a so called compute function that provides the proper interaction and
interface to the scheduler so to accurately incorporate the effects of the application on
the multi-processor architecture, see e.g. in Figure 2. (ii) The VPC library has to be
linked to the modified SystemC functional model. (iii) The mapping of actors to com-
ponents of the architecture must be specified in a XML configuration file. (iv) The user
has to provide stimuli for simulation issues. Note, that a modification in the architecture
mapping does not require a recompilation of the SystemC model as this is done in the
XML configuration file only. Hence, by varying the architecture mapping parameters,
the VPC user is able to accomplish different performance simulation runs.

compute

(IDCT)

compute

(Dup)

Dup

Functional Model Architecture Mapping

while(true){

 in = port_in−>read();

}

 result = call_idct(in);

 port_out−>write(result);

 VPC::compute(IDCT);
 VPC::compute(IDCT);

return

return

assign

SystemC SystemC / XML

MBlaze: Component SchedulerIDCT

 VPC::compute(IDCT);

block

block

ready

assign

resign

ready

assign

Fig. 2. Preemption mechanism of VPC: Two actors IDCT and Dup compete for the same re-
source MBlaze. The Virtual Processing Component assigns the resource according to a selected
scheduling policy.

A Component is used as an abstraction from a real hardware resource, i.e., each re-
source including processors, hardware accelerators as well as communication resources
are each represented by a SystemC module. Because of the system level view, our Com-
ponents do not simulate a real hardware like an instruction set simulator or similar, but
the core execution time of actors is simulated by our Components. The core execution
time of an actor on a given hardware resource is assumed to be given, e.g. by profiling
or from library data.

Running several actors on the same Component leads to interwoven actor activa-
tions. Such multi-tasking may thus introduce additional delays. To simulate the execu-
tion time using a Component, the computemember function is introduced. An actor in
the application model is mapped onto a Component by invoking the compute method
of this particular Component. For this purpose, the compute call must be inserted in
the source code of the actor right after the activation function in front of the actual
computation. As the simulation of the actor’s functionality is simulated in zero time
(simulated time), the user defined execution time delay1 is elapsed completely during
each compute call. Thus, the granularity is task-accurate. To allow the Component
identification of the calling actor, a unique identifier is passed as parameter. An ex-
ample is shown in the source code for the IDCT actor in Figure 2. The actor tries to
read data from the input port. If the data are available, the actor is activated and can
be executed. The compute method simulates the execution time delay including any
waiting and preemption times. After the compute method returns, the functional code
is simulated in zero time.

1 Apart from profiling, the execution time delays might be estimated also using synthesis tools
and/or WCET analysis tools.

Table 1. Latency and throughput values obtained from simulation compared to measurements
from reference implementation. Decoding of four QCIF images has been used as test case.

Architecture Performance Simulation Reference Measurement

Latency Throughput Latency Throughput

hardware only 12.61 ms 81.1 fps 15.63 ms 65.0 fps
HW/SW implementation 1 25.06 ms 40.3 fps 23.49 ms 43.0 fps
HW/SW implementation 2 4 465 ms 0.22 fps 6 275 ms 0.16 fps
software only 8 076 ms 0.13 fps 10 030 ms 0.10 fps

The execution time is simulated using the SystemC function wait. In case of a
resource conflict (several actors are calling compute on the same Component), a
scheduling decision has to be done to resolve the conflict. In order to have more comfort
using preemption, a Scheduler works together with the Component. Both implement an
event-based communication mechanism to simulate preemption. The example in Fig-
ure 2 shows this mechanism: Once the actor Dup is activated, it calls compute on
resource MBlaze. The Scheduler assigns the actor Dup to the Component. To simulate
the execution of Dup, the MBlaze suspends for the execution time of Dup. When this
execution time expires, the actor execution is completed. Nevertheless, in our example,
the actor IDCT becomes active and calls compute as well. The Scheduler resigns the
actor Dup and assigns the actor IDCT. When the entire execution time of the actor IDCT
expires, the actor is removed from the Scheduler. Again, the actor Dup is assigned un-
til execution time expires. This simple example already illustrates the ability to design
complex preemptive scheduling policies at a task-accurate level within the VPC frame-
work. Note that, as only the timing effects of preemption are simulated, no real task
switch occurs and thus no storing and restoring of task states is necessary.

5 Results
This section presents results obtained by applying our system level performance simula-
tion to a Motion-JPEG decoder benchmark. The simulation results are compared to four
reference implementations of the decoder on a Xilinx Virtex II FPGA (XC2V6000). A
hardware, a software, and two hardware/software implementations of the decoder have
been used in this case study. For the software parts of the decoder, a MicroBlaze soft-
core processor (MBlaze) was used.

For setting up the performance model of the Motion-JPEG decoder, the execu-
tion times for the actors implemented in hardware or software, and the communica-
tion delays for hardware-only, software-only and hardware/software communication
are needed. These atomic execution times are obtained from profiling a software-only
and a hardware-only implementation. We derived two mixed hardware/software imple-
mentations and compared the simulation results with measurements from the according
implementations. The simulated and measured performance values are given in Table 1.
Here, a Motion-JPEG stream consisting of four QCIF images (176 × 144 pixels) has
been used to obtain latency and throughput values. Using this stream, the simulation
time for each architecture is about 30 seconds (wall clock time).

For evaluation of the simulation performance, a set of 7, 600 different architectures
has been simulated. Each architecture consisted of a proper selection of resources from

a given superset template architecture. We recorded simulation times between 29.19 s
and 32.71 s for each simulation on a Linux workstation with 3 GB of RAM and a 2.4
GHz Intel R©CoreTM2 CPU. Average simulation time and standard deviation correspond
to 30.44 s and 0.45 s, respectively. Due to configuration by an XML file, different
architectures are evaluated without the burden of time consuming recompilation.

The minor discrepancy between the performance simulation and real measured val-
ues for the hardware-only solution could be tracked back to the time spent in checking
complex activation patterns, occurring for instance in the Huffman Decoder. The un-
derlying reason is that the actor-oriented simulation deploys an event-based simulation,
where the evaluation of such checks is performed in zero-time by the simulation ker-
nel, which is not true for the final hardware implementation. The discrepancy between
the performance simulation and measured values for hardware-software solutions is
due to the schedule overhead in the micro-processor resource. The latter one occurs in
our implementation, because all actors bound to a single MicroBlaze are checked in a
round-robin fashion whether one of their transitions can be taken or not. (As the time for
evaluation of the corresponding activation patterns is not negligible.) A schedule over-
head results whenever an actor is polled, i.e., checked for execution, while no execution
is possible. This leads to a time consumption which cannot be taken into account by the
performance simulation, as the latter one uses an event-based scheduling strategy.

6 Summary
In this paper, we proposed a modeling framework called Virtual Processing Compo-
nents that allows for the task-accurate performance evaluation with a reasonable simu-
lation overhead in SystemC. The VPC framework permits the modeling and simulation
of multiple distributed processors running arbitrary scheduling strategies. The granular-
ity is given by the task-accuracy. This guarantees a small simulation overhead.

References
1. IEEE: IEEE Standard SystemC Language Reference Manual (IEEE Std 1666-2005). (2006)
2. Streubühr, M., Falk, J., Haubelt, C., Teich, J., Dorsch, R., Schlipf, T.: Task-Accurate Perfor-

mance Modeling in SystemC for Real-Time Multi-Processor Architectures. In: Proceedings of
Design, Automation and Test in Europe, Munich, Germany, IEEE Computer Society (March
2006) 480–481

3. Hastono, P., Klaus, S., Huss, S.A.: An Integrated SystemC Framework for Real-Time Schedul-
ing Assessments on System Level. In: Proceedings of The 25th IEEE International Real-Time
Systems Symposium (RTSS), Lissabon Portugal (December 2004)

4. Hastono, P., Klaus, S., Huss, S.A.: Real-Time Operating System Services for Realistic Sys-
temC Simulation Models of Embedded Systems. In: Proceedings of The International Forum
on Specification & Design Languages (FDL’04), Lille, Frankreich (September 2004) 380–391

5. Kempf, T., Dörper, M., Leupers, R., Ascheid, G., Meyr, H., Kogel, T., Vanthournout, B.: A
Modular Simulation Framework for Spatial and Temporal Task Mapping onto Multi-Processor
SoC Platforms. In: Design Automation & Test in Europe, Munich, Germany (March 2005)
876–881

6. Haubelt, C., Falk, J., Keinert, J., Schlichter, T., Streubühr, M., Deyhle, A., Hadert, A., Teich,
J.: A SystemC-based Design Methodology for Digital Signal Processing Systems. EURASIP
Journal on Embedded Systems, Special Issue on Embedded Digital Signal Processing Systems
2007 (2007) Article ID 47580, 22 pages doi:10.1155/2007/47580.

