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Abstract. The Speed and Distance Monitoring (SaDM) in a train control system
is a cyber physical system, which constantly has to process information about
the train and its environment. The specification of such systems, however, is of-
ten done in an informal way, hindering formal analysis and optimization. In this
paper, we propose to use Parametric Synchronous Dataflow Graphs (PSDF) to
formally specify the SaDM. For this purpose, the information about the environ-
ment is modeled via piecewise constant functions, where each discontinuity cor-
responds to a physical location. As the number of relevant locations depends on
the actual track side and, thus, is unknown a priori, we use parameters to construct
consistent PSDF models. Based on our formal model, we have implemented the
SaDM using SCADE.
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1 Introduction

Model-based system engineering has proven to be a well-suited methodology to de-
velop embedded systems and especially safety-critical cyber-physical systems. Model-
based approaches are widely used in the automotive and avionics domain but are still
uncommon in the railway sector. The increasing complexity of software in locomotive
on-board units renders software development with traditional methods nearly impossi-
ble. We propose model-based engineering techniques as a means to ease this process.
However, finding the right model for a model-based engineering approach is a challeng-
ing task.

The modeling formalism of synchronous dataflow models (SDF) and its extensions
like parametric synchronous dataflow (PSDF) are well-suited for streaming applica-
tions e.g. from the domain of multimedia. The big advantages like well-developed for-
mal methods for analysis and optimization could enhance the development of safety-
relevant applications in other domains as e.g. the railway sector.

In this paper, we propose to use PSDF for modeling parts of the train control sys-
tem, which constantly interacts with its physical environment. Train control systems
(or respectively automatic train protection systems) have been developed since the very



beginning of railway operation. Consequently, trains operated by different countries
mostly use non-interoperable train control systems. Especially in the converging Euro-
pean Union this leads to a problem: all trains that need to cross borders also need to be
equipped with several expensive train control systems.

The European Train Control System (ETCS), designed in the early 1990s, is the
designated solution to overcome this problem within the European borders. ETCS in-
cludes a set of modern concepts for train control to achieve high speed and high uti-
lization of the rail. Besides this, ETCS aims to be flexible to address all requirements
of the national railway operators. The resulting ETCS standard became rather com-
plex and difficult to implement, since the standard is currently only available as natural,
non-formal language document. This leads to high development costs and incompatible
implementations of different vendors caused by ambiguities of the specification.

In this environment, the openETCS project was created with the goal of an open
source implementation of the on-board unit software. To achieve this, model-based sys-
tems engineering methods are employed. In this paper we present our efforts to model
and implement the Speed and Distance Monitoring (SaDM) component using PSDF,
which is part of the ETCS standard.

2 Related Work

Since the first release of the ETCS standard, several publications examined differ-
ent aspects of the ETCS specification. Many of them deal with real-time properties
and reliability of the communication link between train and track-side equipment. In
[11,12,17,10] Petri net extensions are used to investigate the functional properties and
stochastic guarantees of the communication. Modeling and calculation of SaDM of
ETCS were covered in [16,8,14]. These focus on the functional properties of the com-
putation and use of an application-specific modeling methodology. Other publications
in the ETCS context focus on formalization and safety analysis. The authors in [7] show
in three case studies how formal languages can ease the verification process of safety-
critical systems. They show how the SPARK language and its toolset can be integrated
into the existing development process to decrease the effort of system certification in
the railway domain. However none of these publications deal with the modeling of the
tight interaction with the physical environment.

In the last decades, the formalism of dataflow graph models as a refinement of pro-
cess networks, have evolved to a valuable approach to develop streaming application
like multimedia processing. The specialized type of synchronous dataflow graphs (SDF
graphs) were presented in [13]. Due to their static nature, many analysis and optimiza-
tion methods are available for SDF graphs. Since the expressiveness of SDF graphs is
limited, many adoptions to increase their computational power have been proposed. Ex-
amples are Boolean Dataflow Graphs [6] and cyclo-static dataflow graphs|[5]. Paramet-
ric synchronous dataflow graphs (PSDF graphs) extend the modeling features towards
even more dynamic behavior, which allows reconfiguration of subgraphs based on a set
of parameters. The computation of these parameters could be done by a configuration
dataflow model or a parent model, where this subgraph is embedded. The applications
of PSDF graphs described in research are mostly limited to applications in the area of



de-/encoding data. An exception is [9], which discusses an approach to integrate the
timing of cyber physical systems into process networks, but it lacks of other physical
constrains as locations. In this paper, we propose to model the physical environment by
a set of piecewise constant function, where each discontinuity corresponds to a physi-
cal location. As the number of discontinuities is not known a priori, we use the PSDF
model ton construct a consistent model.

3 Parametric Synchronous Dataflow

The basic formalism for PSDF graphs are SDF graphs. A SDF graph G =
(V, E, cons, prod, D) consists of a set of Vertices V, asetof edges E C V — V,
token consumption rates cons : £ — N, token production rates prod : £ — N, and
a delay function D : E — Ng. The vertices are actors communicating data tokens
over unbounded channels represented by edges, so every channel is annotated with the
number d(e) of tokens on it. In SDF graphs the consumption and production rates need
to be static. An actor v € V can be fired if Ve = (v,v) € E : d(e) > cons(e). If
actor v fires, it consumes cons(e) token from each incoming edge e = (v,v) € E
and produces prod(e) token on each outgoing edge e = (v,v) € E A SDF graph is
called consistent, if a non-trivial repetition vector «y could be found, which describes the
number of activations (firings) of every actor to get into the same state (count of tokens
on the channels) as in the initial situation. In PSDF graphs this description is extended
by configurable consumption and production rates are specified by parameters, which
represent a runtime determined integer consumption or production rate.

4 ETCS - Speed and Distance Monitoring

To illustrate our proposed modeling approach, we use the speed and distance monitoring
(SaDM) from the European Train Control System (ETCS). The SaDM is described next.
One of the main tasks of ETCS is to supervise the speed and position of a train to ensure
that the train stays in the permitted speed ranges. Because of the low friction between
steel wheels and rail and the relatively high mass of the train, the braking distance is
very large compared to, e.g., automobiles. As a consequence driving on sight is limited
to relative low speeds and for higher speeds technical assistant is needed.

An established approach to ensure the safe track operation cascaded signals and
mutual exclusive track usage is used. The size of the track segments significantly effects
the utilization and possible throughput and therefore the profitability of a track. Since
the signal equipment is fixed at the track side, a customization for different rolling stock
is effectively impossible. This becomes a serious problem if trains with significantly
different maximum speeds and braking abilities are used on a track.

To prevent a human failure of the perception of safety-critical information, all mod-
ern train control systems must have an automatic intervention possibility for danger-
ous situations. More sophisticated train control systems like ETCS make usage of cus-
tomized signaling with displays within the train cab. This "cab signaling" helps to cus-
tomize the speed and distance limits for every train. The challenge of a calculation on
the on-board unit of the train control system is to ensure the safe operation of the train.
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Fig. 1: Simplified Overview of the ETCS SaDM extracted from [15]

This includes the functional safety and the time-critical aspects of the calculation of
speed and distance limits.

4.1 Overview

An overview SaDM is shown in Fig. 1. The tasks of SaDM are defined within the
System Requirements Specification [15]. The main output of the SaDM comprises in-
formation for the driver, e.g., the currently permitted speed or monitoring targets. For
critical situations, the SaDM issues automatic braking commands. In order to determine
this information, SaDM needs several inputs such as dynamic values of the current po-
sition, speed and acceleration of the train. Moreover, a certain number of other train and
track related inputs are needed which have lower dynamics as position or speed.

The most important train related inputs are the braking abilities of a train. Mod-
ern trains have multiple sets of brakes which have different operating principles and
are used in several combinations according to various conditions. Thus, the applicable
braking deceleration in a dangerous situation needs to be defined for all possible com-
binations. Other important characteristics such as curve tilt abilities, maximum train
speed or the train length also need to be considered to calculate the train dependent im-
pact on the speed and distance limits. All train related inputs are combined to a function
called Ay, that assigns a braking acceleration to the two independent parameters of
speed and location on track. Hence, A,q . is a piecewise constant function or so-called
step function of speed and position.

Beside the train characteristics, the track related information are important input
data as well. A train equipped with ETCS receives information about the track proper-
ties while moving on it. This includes a profile of track slopes and a set of static speed
restrictions which are caused by the shape of a track. Furthermore, dynamic speed re-
strictions (e.g., in areas which are under maintenance) are transmitted to the train. This



collection of location-based speed restrictions is compressed to a single data structure
called Most Restrictive Speed Profile (MRSP) which contains a single speed limit for
every position on the track ahead. Again, the MRSP can be modeled by a piecewise
constant function where every discontinuity corresponds to a location on the trackside.

From this profile the particular targets for the supervision are derived by getting all
points with a decreasing allowed speed. An additional special target is derived from
the limited permission of a train to move on the track. This End of Authority results
from the Movement Authority which is transmitted by the chief of operation to the train.
All of the described supervision targets are forwarded to the calculation of the target-
specific braking curve. To predict the behavior of the train in an emergency case the
Emergency Brake Deceleration (EBD) curve is one of the most important calculations.
It is therefore in the focus of the following sections.

4.2 Emergency Brake Deceleration Curve Calculation
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Fig. 2: Braking performance and its influence on the braking distance

The Emergency Brake Deceleration curve (EBD) represents the reliably expected
braking behavior in case of emergency. The system has to use all available and al-
lowed brakes to reach zero speed at a concrete location. In addition, there exist sev-
eral constraints, e.g., there is a slippery track which leads to a reduced braking per-
formance, or the system is unable to use all brakes but only a specific combination.
The system has to calculate the position of brake initiation to stop before the tar-
get position under any circumstances. As shown in Figure 2 the braking performance
influences the braking distance and as a consequence the maximum allowed speed
for a constant deceleration value a at a given position s is described by the formula
Vmaz = \/ 2 x a x (s — sp) + v, where sq and vy are a known point on the parabola.
Since the deceleration value is only piecewise constant for a given speed and location




range, several arcs of the form of the latter function are needed to describe the maxi-
mum allowed speed for a bigger part of the track. If the stop location and the braking
performance on each section of the track are known, the latest point for brake initiation
can be calculated to stop at the desired position. Hence, there is a need of a backward
calculation algorithm which starts its calculation from the target location and calculates
backwards to at least the current front end position of the train on the track as you could
see in Fig. 3.
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Fig. 3: Backward calculation of brake initiation depending on braking performance

The result of this algorithm is the maximum speed of the train on a specific position
on the track. By exceeding this speed limit the train will fail to stop at the desired
location. This information is known as EBD. After determining the maximum speed in
comparison to the current speed, the ETCS on-board computer can intervene and brake
automatically.

S Parametric Dataflow Modeling of the EBD Calculation

For a formalized representation of the EBD calculation several analyses were done. The
first step was the construction of the program flowchart in Fig. 4 to describe the algo-
rithm. The calculation starts for every supervision target at the first known data point
on the curve of allowed maximum speed which is the position of the supervised target
itself and its associated speed limit. The initialization phase also includes a lookup into
the two-dimensional array A_safe (V, d) containing information about deceleration
values of the train depending on the track position and speed. These three values lead
into a first arc of the EBD. Afterwards, the iteration checks whether the current iteration
point is behind the current real estimated front end position of the train. This condition
serves as a fast exit of the algorithm which is specified in [15] because the information
behind the current real front end is mostly irrelevant. Following model shows that for
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Fig. 4: Algorithm of the EBD curve calculation

the worst case analysis and a static memory allocation this condition could be substi-
tuted by a static parameter-based condition.

The next step of the calculation determines the current acceleration of the
A_safe (V,d) function and calculates the speed which the train would have at the
next speed step if constantly accelerated with the current speed starting at the current
position. This speed is compared to the speed of the next speed step of A_safe (V, d).
If it is lower, the arc is valid and could be saved and the current speed and position are
updated to the end of the new arc. In the other case, the arc is only continuous until the
speed of the next speed step of A_safe (V, d) so that the position where this speed
step is passed needs to be determined. These three values make up the following arc
and the current iteration values are updated.

For clarification it is noted that — seen from the absolute position — the calculated
arc parameters are the end point of an arc and describe the parabolic before this position
until the next point with other parameters is reached.

s[m]
Vm/s] 0 1000 3000 4400
0 1.0 1.2 1i3—0'7
40 0.8 0i6—0.8 0.9
80 0.7——0.7 0.6 0.8
120 0.6 0.8 0.6 0.7

Table 1: Iteration through 2_safe (V, d)



Table 1 illustrates an example of an iteration through a simplified A_safe (v, d).
As already indicated by the parameter of the function, the table consists of a location
and a velocity dimension. While iterating over this function, a diagonal path through
this table is taken. The only possible directions are the cell at the left or the bottom cell.
Special conditions could also allow a diagonal jump, but this could be safely approxi-
mated by two arcs, where the first one would start and end at the same point.

When we choose the parameter N to describe the number of position steps and the
parameter M as the number of speed steps, the worst case of needed iteration steps
is from the right uppermost corner to the left lowermost corner which will lead into a
count of V+ M — 1 iterations. Most safety-relevant software designs inhibit dynamical
memory allocation. Thus, a result array with N+ A/ —1 arcs entries needs to be reserved.
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Fig. 5: Parametric Synchronous Dataflow of Braking Curve Calculation

get Asafe data choose arc

With this parameter model a parametric synchronous dataflow was implemented,
which is shown in Fig. 5. The N 4+ M — 1 factor is taken from the physical environment.
Note that the exact value is depending on the track side and is unknown at compile
time. Here a parametric model is needed. An additional aspect present in the parametric
model, which was unmentioned in the previous model, is the effect of multiple targets.
Since every supervision target needs its own adjusted emergency braking curve, the
calculation has to be repeated for every target. Therefore, for every target N + M — 1
tokens are generated with the data of A_safe (V, d) and the specific target to match
the number of iterations for every curve. Afterwards, the iteration node consumes one
token from this edge and compares its value to the last iteration which is saved in the
self-edge.

If they differ, a new braking curve is calculated and the first arc based on the target
data is saved. In this case the token from choose arc is discarded, as it is a dummy
trailing token of the last braking curve.

As in the program flow before (see Fig. 4), the cycle in the graph determines the
end point of the next arc with its parameters. Because of the data dependency of each
arc on the last iteration, low parallelism can be achieved, except the parallel calculation



of the two possible cases. Until the N + M — 1-th iteration, every result of the choose
arc node is used as a new end point of an arc. But for the next braking curve a dummy
token needs to be generated. In general, if the path through A_safe is shorter than
N+ M —1, e.g., if the target is not in the upper right corner, the last significant arc is in
the left lower corner and all arcs to fill up the structure are copies of this arc. Therefore,
the trailing token of the last iteration is such a copy as well.

Because of the sequential characteristics of this PSDF graph, the values of the repe-
tition vector of the cyclic subgraph are NV + M — 1 firings for every target. If the count
of targets is considered, the factor [ needs to be multiplied. Since the spatial dimensions
change slowly, for instance only if the train gets new information from the track side
and every change results in a recalculation of all curves, the parameters are of the static
type described in [4]. But the parameters N and M also met the requirements for the
dynamic type of [4], because the subgraph fulfill the local synchrony condition defined
in [4].

6 Implementation
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Fig. 6: Top operator of calculation subgraph

The realization of the parametric SDF graph was done as part of the ecosystem of
the openETCS project. Therefore, the integration into the existing modeling framework
SCADE-Suite was used. SCADE-Suite is a widely used model development tool which
is used to generate safety-critical software with the requirements of, e.g., ISO 26262 or
EN 50128. SCADE-Suite bases on the synchronous reactive language scade, a successor
of the esterel language (first mentioned in [1], see [2,3] for further details). The trans-
lation of the given PSDF graph needs some adaptation, caused by the different models
of computation. But the changes are minimal due to the nature of applying the PSDF



graph. Since the cyclic subgraph of the computation only consists of edges which are
obviously bounded to a capacity of 1, they could be easily translated into connections in
scade. Moreover, synchronous reactive languages do forbid direct feedback loops. The
loop of the calculation needs to be cut and feedbacked through a memory element or
other elements. In the case of our graph, the feedback is solved by the iteration scheme
foldwi operator which virtually performs a sequential instantiation of every iteration,
where every iteration is connected through an accumulator connection. In Fig. 6 the
top operator with the foldwi is shown. A special constraint of the virtual inflation of
the foldwi operator is the fact that every input needs to have the dimensions of the
iteration count, so they are inflated to cMAX_BC_ARCS which is equal to the former
defined N + M — 1 parameter.
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Fig. 7: Subgraph for inner operator calculation

Fig. 7 shows the inner part of the foldwi operator which defines the calcula-
tion cycle. The left side comprises the part of choosing the acceleration values ac-
cording to the next distance step (upper part) and the next speed step (bottom part).
Afterwards, the two cases are calculated in the boxes FormularNewSpeed and
FormularNewPosition. The selection of the result of the two cases is broken up
into several switches which are controlled by the Boolean expression in the upper right
corner. The result is passed to the newArc output and saved in a higher stage.

What is unmentioned here is the operator to execute the braking curve calculation
for every target of the target list. But again, this is only a foldwi operator with the
target list as input.
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Conclusion

This paper has presented a PSDF graph model of a real world safety-critical applica-
tion of a cyber-physical system in the railway domain. The PSDF graph have proven
the ability to reflect the spatial dimension parameters of the track side layout in the
form of piecewise constant function, which were extensively used in ETCS. The cre-
ated model of the calculation of the emergency brake deceleration curve have been im-
plemented in the development environment SCADE-Suite, which encourage the goals
of the openETCS project to get a formalized specification of the ETCS norm.
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