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Abstract—The broad availability of WLAN-capable off-the-
shelf hardware lets WLAN mesh networks appear as promising
technology for future distributed wireless applications. Featuring
automatic device discovery, interconnection and routing, they
provide a higher scalability, flexibility, and robustness compared
to common centralized WLAN infrastructures. Besides these ad-
vantages, characteristics such as variable network topologies and
link qualities imply new technical challenges for administration
and real-world operation. Adopted in late 2011, IEEE 802.11s
appears as new WLAN standard amendment, enabling vendor-
independent mesh networks based on the widespread WLAN
technology. However, network monitoring and management fall
out of the standardization scope and are therefore not specified.
In this paper, we present a novel 802.11s management solution
based on the SNMP protocol. It covers dynamic mesh bootstrap-
ping, error recovery, status monitoring and remote configuration.
The presented solution was implemented and evaluated in a real-
world testbed comprising more than 10 mesh nodes.

I. INTRODUCTION

Both the growing variety and affordability of mobile con-
sumer devices serve as a catalyst for next-generation wireless
services and applications. The vision of the “Internet of
Things” (IoT) is characterized by the seamless integration of
ambient embedded systems for user assistance [1]. Highly
cooperative ensembles are built from a broad spectrum of
devices such as sensors, actors, smart displays, and especially
wearables like smart phones or tablets. This leads to complex
networks that can provide distributed information services,
e.g., in public places or smart offices. Further applications
include home and building automation or the monitoring
of industrial facilities. The widely-supported IEEE 802.11
WLAN (Wireless Local Area Network) standard family [2] is
already omnipresent in today’s home and office environments.
Nevertheless, the currently prevalent centralized infrastructure
mode is not well-suited for future applications in terms of scal-
ability, flexibility, and robustness [3]. The network comprises
a central access point (AP) and multiple stations (STAs) in
direct radio range to the AP. The AP manages data forwarding
between the associated STAs and therefore acts as single point
of failure. Network extension is commonly achieved by a
wired “Distribution System” (DS), e.g., via Ethernet. This
leads to costly deployment if good coverage is needed.

In contrast, decentralized WLAN mesh networks are char-
acterized by a flexible, scalable, and failsafe topology [3].
Distributed mesh routing is handled by all network nodes.

Neighbors within radio range (peers) automatically intercon-
nect and establish paths to selected targets. Thus, the network
becomes more robust to changes in link availability and
quality. An easy and economic network extension is simply
possible by bringing in additional mesh nodes.

The higher dynamics and complexity of WLAN mesh
networks put many challenges on monitoring and manage-
ment, as no central AP is keeping track of the network
status and associated devices. Moreover, all nodes must be
initialized properly, operate on the same wireless channel,
and share a common mesh configuration. In general, many
manual configuration steps are required on each device. This
is not suitable for a large number of nodes, and especially for
complex mesh topologies, such as multi-radio / multi-channel
setups [4]. Thus, mesh bootstrapping has to be performed
in a distributed fashion where every node is equipped with
self-configuration capabilities. Although a self-forming mesh
network could already run unattended, the limited scope per
node inherently limits optimization potentials. To regain a
global network view, it is necessary to collect status data
of all nodes [4]. Based on these information, it becomes
possible to identify weak regions and misconfiguration, and
to derive suitable optimization steps. Thereby, it is desirable
to enrich a mesh node with monitoring and management
capabilities. Furthermore, devices may not provide any user
interface or may not be accessible when mounted on walls
or roof tops. Therefore, it is necessary to provide remote
control functionality to ensure the practical operation and
maintainability of WLAN mesh networks. Consequently, we
have developed a centralized management approach with a
dedicated device role for remote monitoring and configuration.
Dynamic network bootstrapping and error recovery are already
performed in a decentralized manner by all mesh nodes.

The remainder of this paper is organized as follows:
Section II outlines the basic principles of the IEEE 802.11s
WLAN mesh standard, its Linux implementation open80211s,
and the SNMP network management protocol. In Section
III, we discuss related work in WLAN mesh management.
Section IV describes the design of our mesh management
framework. In Section V, we illustrate the results of our
real-world testbed evaluation. Finally, we give a conclusion
in Section VI and briefly state possible improvements and
approaches for future research.



II. TECHNOLOGICAL BASIS
A. IEEE 802.11s

In September 2011, IEEE 802.11s was ratified as the first
industry WLAN mesh standard [2], [5]. As an amendment to
the existing 802.11 specification, all mesh functionality is fully
integrated into the existing MAC layer while the underlying
physical layer (802.11 a/b/g/n/ac) remains untouched. Already
existing MAC-layer frame types have been extended to enable
mesh functionality such as automatic peering and routing
(path selection). By reusing the existing MAC mechanisms,
they are expected to perform with less overhead, compared
to earlier, incompatible mesh routing protocols. The mesh
topology becomes invisible to all higher layers, which avoids
any modifications above the WLAN specification. Next to
simple STAs with mesh capability, Mesh Points (MP), 802.11s
also defines specialized nodes that act as gateways to external
networks (Mesh Portal - MPP) or as AP for legacy devices
(Mesh Access Point - MAP). Figure 1 shows an example
802.11s mesh topology.
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Fig. 1. Example 802.11s mesh topology

To ensure interoperability, the 802.11s standard specifies
a mandatory basic mesh profile. It consists of the Hybrid
Wireless Mesh Protocol (HWMP) for path selection and the
radio-aware Airtime Link Metric (ALM). ALM represents
costs for choosing a specific path in the mesh network by
considering technology parameters of the physical layer and
the wireless medium. Every mesh node is solely aware of
its direct peers and nodes in multi-hop distance, to which
communication has been explicitly initiated, e.g., on applica-
tion level. A node’s path table exclusively contains forwarding
rules to target nodes over suitable next-hop peers, which are
continuously updated. To every target node, only the best rule
is kept, represented by the smallest ALM cost. Altogether,
802.11s dictates only a minimal mandatory mesh feature set.
The use of HWMP inherits a limited network view on each
node which renders network-wide management a difficult task.
The mesh standard permits the use of vendor-specific path
selection protocols that potentially entail a global network
view per node. However, this approach would compromise
overall interoperability. Thus, further management functions
have to be implemented as separate solution.
B. open80211s

The project open80211s [6] is a reference implementation of
802.11s for the Linux platform and used as basis for our solu-
tion. It is currently the most advanced 802.11s implementation

and already satisfies all mandatory and various optional parts
of the standard. The program code of open80211s is integral
part of the WLAN stack inside the mainline Linux kernel.

C. SNMP

The Simple Network Management Protocol (SNMP) has
become a de facto standard for the management of IP-based
LANs [7]. Its first version was specified in 1988 by the
IETF. The latest iteration SNMPv3, released in 2002, was
extended by complex security mechanisms. SNMP follows a
client/server model consisting of manager (client) and agent
(server). The SNMP agents, running on every network device,
provide their local status information as Managed Objects
(MOs). MOs are structured in a hierarchical Management
Information Base (MIB). Every MO can be uniquely addressed
by its Object Identifier (OID). Many standardized and enter-
prise MIBs are already available. With the reserved sub-tree
“experimental”, it is possible to define own MIB extensions,
e.g., for research projects. Communication between client and
agent is bound to UDP transport by default and follows
a simple request-response principle. SNMP defines message
types to request (GET), write (SET), and publish (TRAP) MO
data, as well as numerous error codes to identify problems.
MOs and data types are specified using ASN.1-based syntax
rules. For transport, a binary encoding is used. Considering
its wide acceptance, large set of features, and lightweight
encoding, SNMP appears as a well-suited protocol also for
the use in WLAN mesh networks.

III. RELATED WORK

Several management solutions have been proposed for IP-
layer WLAN mesh protocols. Many approaches extended
SNMP, supported it by proxy, or integrated it directly. As
shown in earlier publications [8], [9], SNMP has been success-
fully applied in common WLAN infrastructures. Nevertheless,
there is still a lack of solutions with particular focus on 802.11s
and its characteristics. The UAVnet project [10] is the only
802.11s testbed we know of to explicitly include management
functionality. The network is deployed by unmanned aerial
vehicles (UAV), forming a wireless relay for disaster scenarios.
Administration is based on the ADAM framework. It supports
firmware deployment, logging per node, time synchronization,
link loss recovery and provides a web interface to adjust device
settings. Nevertheless, focus is not on mesh management
and optimization but mainly on node initialization and flight
control. ANMP [11], Guerrilla [12] and MannaNMP [13]
present SNMP-based management of ad-hoc networks. Modi-
fied SNMP messages and self-defined MIB extensions are used
for node monitoring. These works further describe concepts
of hierarchical network clustering. Prabhu [14] describes a
hierarchical concept for SNMP usage in ad-hoc networks
proposing a division of specialized master- and sub-agents for
different management tasks.

IV. 802.11S MESH MANAGEMENT SOLUTION

We present a management solution specifically designed for
802.11s networks that addresses bootstrapping, monitoring,



and remote configuration. This includes MAC- and IP-layer
auto-configuration to ensure node availability for further man-
agement tasks. We further provide autonomous error recovery
to re-initialize a node after misconfiguration or failure. In
contrast to link state routing protocols, HWMP induces a
limited mesh topology knowledge per node. Thus, network
monitoring is implemented above 802.11s to regain a global
scope. Furthermore, standard-specific features (link block-
ing, path modification, etc.) are made remotely accessible.
Our framework is realized as Java application on top of
open80211s for Linux. Following a modular architecture, it
comprises a larger platform-independent and smaller platform-
dependent part. The latter serves as adapter for the underlying
OS and can be easily replaced for future 802.11s implemen-
tations. Relying on SNMP, it provides the client-side Mesh
Manager and server-side Mesh Agent. We use SNMP4J [15]
to implement SNMP core functionality. Mesh status data and
configuration interfaces are described as MIB extension. This
way, interoperability with other SNMP-supporting manage-
ment tools is ensured.
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Fig. 2. Architecture of mesh management solution

As shown in Figure 2, the platform-specific part encap-
sulates user space tools for WLAN interface setup (iw),
bridging (brctl), AP authentication (hostapd), IP and routing
configuration (ip, iptables), DHCP functionality (dnsmasq,
dhclient), and time synchronization (ntpd). Data extracted
from the OS include general information like the list of current
WLAN adapters, virtual interfaces, or IP routes as well as
802.11s-specific information. The “Peer List” and “Mesh Path
List” hold status information for every link entry and path
forwarding rule. While any link entry includes status, RSSI,
sent and received bytes, or frame retransmission and failure
count, any forwarding rule consists of next hop node, target
node, and ALM metric [6]. Aggregation of the distributed link
and path information allows it to derive a global network
scope. Moreover, by considering information such as link
bandwidth, RSSI, or ALM, it is possible to infer relative node
distance and spatial mesh topology.

A. Mesh Agent

The Mesh Agent core is built as state machine to handle
dynamic initialization and self-configuration. This includes a

detection of errors such as failing WLAN adapters and IP
address loss. To be reachable via SNMP, at least one mesh
interface must be connected at any time, both on 802.11s
and IP level. Furthermore, a mesh node must not be isolated.
Thus, its peer list is continuously checked for active links.
Fall-back routines are triggered automatically on occurance
of a noNeighborTimeout or noIPAddrTimeout to restart nec-
essary initialization steps. A Mesh Agent traverses the states
INIT (initializing mesh interface), SCANNING (scanning for
surrounding mesh networks), CONNECTED L2 (connected on
802.11s MAC layer), and CONNECTED L3 (fully connected
on IP level with SNMP agent running). Nodes automatically
join the found mesh network with highest signal strength. If
scan results are empty, a default profile is used. A DHCP
client is started for IP address retrieval from a Manager, acting
as DHCP server. When fully bootstrapped, an SNMP agent
provides its status information (extracted from the OS) and
remote configuration interfaces, specified as MIB extension.
For Object Identifier (OID) assignment, we chose a free
sub-tree in the experimental MIB branch (OID .1.3.6.1.3).
We put “Status Data Objects” in *.experimental.1234.1 and
“Configuration Objects” in *.experimental.1234.2.
B. Mesh Manager

The Mesh Manager role features the complementary SNMP
client and DHCP server side to the Agent, as well as a Java
GUI for status data visualization and remote configuration.
Having joined a mesh network, a Manager checks if it is
already managed, indicated by a successful DHCP request.
Since multiple Managers are not supported yet, this is repeated
until an unmanaged network is found. On success, the Man-
ager periodically sends SNMP GET requests for all “Status
Data Objects” to all available Agents. Long-term database
storage enables the calculation of statistics and derivation
of optimization steps out of the recorded network history.
Remote configuration is performed by modifying a Mesh
Agent’s “Configuration Objects” through SNMP SET requests.
Possible commands include wireless channel selection, node
type changes (MP, MPP, MAP), path modifications, peer
blocking, and the tuning of further 802.11s-specific parameters
related to path selection or link establishment.

V. REAL-WORLD TESTBED EVALUATION

We established a single-channel real-world 802.11s mesh
testbed to show the practical suitability of our management
solution. It comprises 10 ARM-based devices (1 x FOX Board
G20, 7 x Raspberry Pi, 2 x Pandaboard [16]–[18]) as Agents
and 1 notebook as Manager ((2 x 1,3 GHz Pentium SU4100,
4 GB RAM). All devices run a Linux OS (Debian 7, Ubuntu
12.04) with kernel v3.16-1 and use an 802.11g WLAN USB
stick depending on the rt2800usb driver [19], [20].

First, we determined the maximum achievable UDP data
rate for different hop counts to classify monitoring overhead.
Only the notebook and the Raspberry Pis were used, all
operating on channel 1 using default mesh parameters [6]. We
used the “Peer Link Block” option to blacklist certain peers
of a node and create a multi-hop path. For every path length,
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Fig. 4. SNMP overhead

10 UDP throughput measurements between Manager and last
Agent were performed using iperf v2.0.5 [21]. Measurements
were run for 10 seconds with a target rate set to 100 MBit/s.
For each path length, results were averaged, as shown in Figure
3. For 1 hop, the UDP net data rate was 23.7 MBit/s. After
2 hops, it dropped to 12.9 MBit/s. For 7 hops, an average of
only 1.7 MBit/s was measured. This trend could be expected,
as every hop requires channel access and transmission time.

As a second step, we evaluated the cyclic SNMP monitoring
overhead for 1 to 10 active Agents in 1-hop distance to the
Manager. SNMP traffic was captured using Wireshark v1.10
(UDP datagrams without header) [22]. Separately, 802.11
control frames were captured for direct comparison. The query
interval was set to 15 seconds. In each cycle, 10 MO tables
were collected from each node. 40 cycles were averaged for
every node count and then normalized to 1 cycle. Figure 4
shows the results. As expected, monitoring overhead scales
linearly with node count and query interval. For 10 active
Agents, only an average of 150 kB data is generated per query
cycle. For an interval of 15 seconds and 10 Agents, the average
rate is 80 kBit/s. Compared to the achievable single-hop UDP
data rate (23.7 MBit/s) in the unmonitored network, this is an
overhead of only 0.3 %.

In contrast to the single-hop setup, in a multi-hop scenario
SNMP traffic will be forwarded by intermediary nodes and
therefore induce a higher overhead. Nevertheless, the maxi-
mum considered size of a single-channel 802.11s network has
been denoted as 50 nodes [23]. Thus, a realistic upper limit
for path lengths can be expected. In future research, we will
investigate multi-hop setups of different size.

In general, orthogonal WLAN channels between node pairs
on a path can be used to increase throughput by reducing
channel accesses and interference. Grouping of nodes into
monitoring clusters can be a measure to keep path lengths
down and prevent forwarding overhead. Additionally, SNMP
supports TRAP messages for notifications that can be used to
trigger a query cycle on events.

VI. CONCLUSION

In this paper we present a Java-based management frame-
work, tailor-made for 802.11s WLAN mesh networks. Our
solution provides self-configuration and error recovery capa-
bilities on top of 802.11s and further implements SNMP-based
monitoring and remote configuration of the distributed nodes.
Thereby, it regains a global network view that is otherwise
lost due to a limited network scope, induced by HWMP
path selection. Our 802.11s-specific MIB extension already

covers the essential status data and configuration functions,
needed for practical mesh operation and optimization. For our
framework to become as failsafe as the underlying 802.11s
network, in a next step the currently centralized Manager
role will become decentralized. In future research we will use
our framework to explore cross-layer optimization strategies
within the boundaries of the 802.11s standard.
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