
DuDE-Cloud: A Resilient High Performance Cloud
Peter Danielis, Jan Skodzik, Vlado Altmann, Frank Golatowski, Dirk Timmermann

University of Rostock
Institute of Applied Microelectronics and Computer Engineering

18051 Rostock, Germany, Tel./Fax: +49 381 498-7277 / -1187251
Email: peter.danielis@uni-rostock.de

Abstract—In recent years, cloud computing, which provides
users with network resources such as memory and computing
power depending on the users’ needs, has gained enormously
in importance. Providers such as Amazon allow the users to
access their cloud storage and computing resources by different
interfaces. In this regard, guaranteeing compatibility is a severe
issue as many different proprietary interfaces exist for accessing
data in different clouds. The solution to this problem is the
RESTful Cloud Data Management Interface (CDMI) standard,
which has passed the ISO audit as first standard and is therefore
evolving into the most common standard for accessing clouds.
This paper investigates the combination of CDMI with a P2P-
based storage and computing back-end in order to realize a
self-organizing cloud for distributed data storage and processing
called DuDE-Cloud. The basis is the self-organizing hash table
(DHT)-based P2P storage and computing back-end called DuDE,
which utilizes the DHT protocol Kad. DuDE is able to bundle
existing storage and computing resources of different devices dy-
namically and has already proven its advantageous performance
over centralized solutions. In a test scenario, resources of DuDE-
Cloud were successfully accessed through CDMI using a GUI
front-end thereby proving the proper functionality. As a result, a
resilient high-performance distributed cloud solution is available
that is compatible with other clouds.

I. INTRODUCTION

Today, an ever increasing number of devices, sensors, and
all kinds of electronic components are networked in a dynamic
Internet of Things, in which these nodes communicate with
each other directly and also process and store data. They offer
services to each other so that the Internet of Thing has become
an Internet of Things and Services. As a prerequisite, it is
assumed that there are tasks that the devices can complete
cooperatively such as collecting and aggregating data. After
having processed this data, the nodes can distribute the results
to other nodes interested in these results. This procedure de-
scribes a collaborative, participatory, and cooperative sensing
and is often referred to as mobile cloud computing nowadays.

This Internet of Things and Services is even predicted to
find its way into the factory. For this development, e.g., in
Germany the term Industry 4.0 has been coined [1]. In the most
general sense, a networked and real-time capable industrial
production is aspired globally. The US-American company
General Electric (GE) recently initiated a comprehensive re-
search initiative called Industrial Internet [2]. Thereby, not
only the industrial production but also the whole industrial
infrastructure shall be intelligently networked. GE forecasts
for the future that there will be more intelligent devices, which
have to be connected to interact with each other dynamically;

both Cisco and Ericsson talk about 50 billion devices by
2020. As part of these efforts, companies aim prospectively
at connecting their devices, storage systems, and sensors as
well as actors to form cyber-physical systems. In that way,
intelligent devices, storage systems, and sensors as well as
actors shall be created in the industrial production, which
exchange data in a self-organizing way, trigger actions, and
control each other in real-time.

Existing centralized storage and computation systems will
soon no longer be able to process and store these ever
increasing data volumes, which results from the rising number
of devices [2]. Consequently, we have developed a reliable
scalable peer-to-peer (P2P)-based back-end called DuDE—
a Distributed Computing System using a Decentralized P2P
Environment [3], [4]. The distributed hash table (DHT)-based
P2P network Kad has beeen utilized to exemplarily connect
the devices of an Internet service provider’s access networks—
called access nodes (ANs)—in a self-organizing way. How-
ever, DuDE is not limited to ANs but can be applied to
connect devices in general. In the use case investigated in [3],
[4], ANs store log data, from which statistics are calculated.
DuDE allows for complex statistics calculation for a single
AN or even for all ANs. Common statistics like the number of
dropped packets, which ANs usually compile, are supported.
Moreover, DuDE’s modular design simplifies the incorporation
of new statistics formats. DuDE has been both simulated and
successfully implemented as software and has already proven
its advantageous performance over centralized solutions [3],
[4].

In this paper, we want to make the DuDE back-end ac-
cessible by standard Web services to use it as a cloud.
In this regard, guaranteeing compatibility is a severe issue
as many different proprietary interfaces exist for accessing
data in different clouds. The solution to this problem is the
Representational State Transfer (REST, RESTful) Cloud Data
Management Interface (CDMI) standard, which has passed
the ISO audit as first standard and is therefore evolving into
the most common standard for accessing clouds [5]. This
paper investigates the combination of CDMI with the P2P-
based storage and computing back-end DuDE in order to
realize a self-organizing cloud for distributed data storage and
processing called DuDE-Cloud. Before we provide the proof
of concept in Section V, we give a brief description of the
DuDE system based on [3], [4]. Below, the following main
contributions are briefly described:

• Description of the DuDE-Cloud architecture.
• Proof of concept by means of a test scenario.
The remainder of this paper is organized as follows: Section

II contains a comparison with related work. Section III gives
a brief description of CDMI and DuDE. The DuDE-Cloud
architecture is explained in Section IV. Section V provides
the proof of concept before the paper concludes in Section
VI.

II. RELATED WORK

This section is mainly intended to show the enormous
diversity of standardization bodies and services in the field of
cloud computing and underlines the necessity for a common
standard.

A. Cloud Standardization Bodies

This subsection discusses the key institutions that deal with
projects aiming at developing a uniform standard interfaces
for clouds. Such an interface should serve as the basis for
an improved communication between different cloud services.
Below, organizations are listed, which work on specific solu-
tions [5].

NIST: The USA was the pioneer for security efforts in
the cloud computing sector. As first council, the National
Institute of Standards and Technology (NIST) of the American
Department of Commerce developed a standardization plan
and a reference architecture. The council also follows the
developments of Cloud Security Alliance (CSA) and the Open
Grid Forum (OGF). The European Commission currently
orients its cloud standardization efforts towards the work of
the NIST [5].

IEEE: The IEEE usually works on networking standards.
However, currently they are developing a design overview and
a standard for interoperable cloud services called the IEEE
P2301 project [6]. Content of this project is to identify and
describe different profiles. These should allow hardware and
software from different manufacturers to communicate with
each other and to ensure the interoperability of platforms as
well. In parallel, the IEEE working group P2302 is working
on standards to be determined. these should allow for the
cooperation of several cloud services. This should become the
basis for a so-called Inter-Cloud [7].

SIENA: The Standards and Interoperability for E-
Infrastructure Implementation Initiative (SIENA) is currently
working on a project, which deals with a consistent European
cloud infrastructure. They are closely connected with the
standardization bodies such as IEEE, NIST, and the Open Grid
Forum (OGF) [8].

OGF: OGF consists of developers, users, and merchants,
which have already engaged in the field of the standardization
of grid computing and are still working on further develop-
ments [9]. In 2006, OGF was founded as an organization
consisting of the alliance of the Enterprise Grid Alliance and
the Global Grid Forum. They deal with the identification of
standards in the field of grid and cloud computing. Especially
in the field of cloud computing, OGF is working on an

interface, which enables the interaction with a cloud infras-
tructure. The main task is to ensure that the user can decide
about the acquisition, monitoring, and determination of cloud
services in the form of a remote management. Specifically,
there is a working group, which is composed of community
groups and leading organizations. Subsequently, the Open
Cloud Consortium Interface (OCCI) was developed [10]. This
interface should be used for the entire process of managing
virtual machines. OCCI uses the REST standard. Thereby, the
individual data sets can be addressed by Uniform Resource
Locators (URLs). Interoperable programs can therefore be
used for single tasks such as for autonomous scaling and
monitoring of applications.

SNIA: The Storage Networking Industry Association
(SNIA) is currently working on standards for virtualized
storage resources and storage systems. The used resources and
systems are to be adapted to the cloud environment. The search
for a standard is limited to storage resources in the network.
The SNIA has developed an interface called Cloud Data Man-
agement Interface (CDMI). CDMI provides the connection
between the storage devices and storage systems. Thereby,
users of cloud services can centrally access their data on all
storage systems. The interface is available for all architectures
of cloud computing, i.e., can be used in the public, private, and
hybrid cloud [Sch11]. The CDMI standard is the first standard,
which has passed the ISO audit and is therefore evolving into
the most common standard for accessing clouds [11], [12], [5].
Consequently, it has been selected as interface in this paper.

TM Forum: The TM Forum is an emerging industry associ-
ation, which develops solutions for the IT services sector [13].
Among other things, various standards have been developed
by initiatives like the Cloud Service Initiative (CSI).

OASIS: The Organization for the Advancement of Struc-
tured Information Standards (OASIS) has developed standards
like Extensible Markup Language (XML) and Web services.
In the area of cloud computing, the organization is mainly
concerned with security. The organization has launched a
so-called Identity in the Cloud Technical Committee, which
basically deals with safety standards. This resulted in the ID-
Cloud, which includes requirements for identity management
of cloud computing [14].

DMTF: The Distributed Management Task Force (DMTF)
is a standardization organization comprising many IT com-
panies [13]. The organization works on interoperability stan-
dards, which aim at avoiding compatibility issues and en-
abling standardized interfaces between cloud environments.
The DMTF has developed the important Open Virtualization
Format (OVF).

EuroCloud: The EuroCloud is an association of cloud
computing service providers [15]. It has brought a quality seal
for cloud services to the market. Standards such as ISO 2000
and SAS-70 are included in the evaluation of cloud computing
services.

Read/Write
Data Location

Metadata

System
User

Storage Data

Application
Specific

HTTP
GET/PUT/...

Query,
URLs

Access,
Modify

Data
Services

Fig. 1. General data storage interface for clouds [11]

B. Selected Cloud Environments

Amazon Web Services: Amazon Web Services (AWS) is
the collective term for all Amazon cloud service and includes,
among other things, Amazon Simple Storage Service (S3)
[16]. By definition, the access to Amazon S3 is provided by
Web Services using a Simple Object Access Protocol (SOAP)
or REST interface. The latter is preferable, especially when
dealing with large objects as REST can handle large objects
better than SOAP.

Google App Engine: The Google App Engine is a compre-
hensive cloud solution including a programming environment,
tool support, and an execution environment [17]. For the
permanent storage of data, Google App Engine applies Data-
store, which is a schema-less object-oriented database with
a query engine offering guarantees regarding the atomicity
of operations. The datastore implements both a proprietary
interface and standard interfaces such as Java Data Objects
(JDO) and Java Persistence API (JPA).

Eucalyptus: Eucalyptus allows the construction and op-
eration of a private cloud infrastructure [18]. The interface
of Eucalyptus is compatible with Amazon S3. The software
development is done under the BSD license making it open
source.

Apache Hadoop: Hadoop is an open source software
platform that allows to process and analyze large amounts of
data in a computer network in a simple manner [19]. The
distributed file system of Hadoop works together with the
Amazon S3 service.

OpenCirrus Project: The OpenCirrus activities include
both developments on the infrastructure level, the platform
level, and the application level. Unlike other cloud environ-
ments like Google App Engine or AWS, OpenCirrus allows
scientists and developers full access to all system resources
via an arbitrary interface [20] .

OpenStack: OpenStack is an open source software plat-
form, which allows the construction of a cloud [21]. Open-
Stack is based on the utilization of open standards and
interfaces, in particular RESTful interfaces based on HTTP.
In addition, the project is compatible with the interfaces of
AWS.

CDMI

1. HTTP Request
PUT, GET, POST, DELETE

2. HTTP Response
Status Code (200, 201, …)

Cloud

Client

Payload: JSON
(ID: “x“ |Type: “y“)

Payload: JSON
(ID: “x“ |Type: “y“ |

Value “z“)

Fig. 2. Basic flow of CDMI [11].

C. P2P-based Distributed Storage and Computing Back-Ends

DuDE, which is used as P2P-based distributed storage and
computing back-end in this paper, has already been simulated
and successfully implemented as software and has proven its
advantageous performance over centralized solutions in terms
of resilience, performance, and scalability [3], [4]. DuDE has
been extensively compared to state-of-the-art works like [22],
[23], [24], [25], [26]. For a more detailed description, the
interested reader is referred to [3], [4].

III. BASICS

In this section, basics are provided covering CDMI for
accessing clouds and the DuDE functionality in general.

A. CDMI for Cloud Access

CDMI defines the functionality and security settings of a
cloud service. In Figure 1, the general data memory interface
for clouds is shown, which CDMI applies. By using this
interface, the user has the ability to control and manage his
data and storage container.

The interface is not only intended for the users but can
also be used by administrative and management applications.
It allows for managing objects, access rights, and information
about customer and billing data. CDMI is particularly suitable
when the storage access is done by protocols such as File
Transfer Protocol (FTP), Web-based Distributed Authoring
and Versioning (WebDAV) or the well known HyperText
Transfer Protocol (HTTP) [11]. The RESTful HTTP protocol
forms the core of the interface. A unique identification (ID)
number is assigned to each object. With this number, the
relevant data object can be accessed. This ID is a string
containing requirements for generating and obtaining unique
objects. Any vendor that uses the interface is able to identify
objects without conflicts with other providers. The generated
part of the customer data and metadata is secured by a consis-
tent authentication using the Transport Layer Security (TLS).
Using the metadata, functions are stored along with other data
via CDMI and are assigned to the data containers [11]. The in-
dividual data services are designed as individual data elements
that are determined by the metadata. This metadata specifies
the requirements on the basis of individual data elements or a
set of data elements, the so-called containers. The metadata is
generated by the cloud storage system, specified by the cloud

Logical DHT-based Kad network

Administrator

Distributed Data Distributed Data

Distributed DataDistributed Data

DuDE

DuDE

DuDE

DuDE

DuDE

DuDE DuDE

DuDE

Fig. 3. Kad-based DHT ring connecting DuDE nodes for distributed statistics computing and distributed data storage.

user, and is mapped to a mounted file system directory. The
data objects represent a fundamental memory component in
CDMI and comparable to files in a file system.

The interface allows the client to locate resources available
in the memory and to manage containers with their data.
CDMI defines two ways to manage data. The data retrieval is
referred to as data path. That part for managing data is called
control path. To transmit the result of a RESTful operation,
the HTTP status code is used. As data representation, the
JavaScript Object Notation (JSON) format is used.

Figure 2 shows the communication via CDMI. The proce-
dure is carried out by means of a request/response process
whereby the CDMI client issues a request to the cloud. The
communication is done via the HTTP protocol on the basis of a
Transmission Control Protocol (TCP) connection. The request
contains the task to be processed and uses HTTP methods
such as GET, POST, etc. Furthermore, specific data can be
added to the request in the JSON format. After the request was
received and processed by the interface, the server responds
with a response. It includes an HTTP status code, is generated
by the interface and sent to the client. The status code indicates
if a transfer has been completed successfully. This is possible
due to incorrect or even invalid addresses. Specific data in the
JSON format is included in the response as well.

B. DuDE Functionality
P2P technology in access networks: In the use case

investigated in [3], [4], DuDE was directly implemented on
the ANs of an Internet service provider’s access network but
it can generally be implented on any device offering sufficient
memory and computing resources. The DuDE devices, i.e.,
nodes must cooperate to combine their computing power.
Thereby, we avoid the usage of the client-server model as
the server represents a bottleneck and single point of failure.
Consequently, a decentralized system realized by exploiting
the high scalability of P2P technology has been chosen.

DHT-based systems as structured decentralized P2P systems
offer the best trade-off between lookup and storage com-
plexity [27]. DHT systems associate nodes and functions or
data with the help of a hash function. Moreover, DHTs are
self-organizing and do not need a central control instance.
Additionally, failing peers can be compensated and detected
automatically within the system by means of maintenance

mechanisms. In addition to the good complexity of DHTs, they
show a deterministic lookup therby avoiding false negatives.
Typical representatives of DHT-based P2P protocols are Chord
[28], Tapestry [29], Pastry [30], and Kademlia [31]. The
Kademlia protocol has been selected due to its best trade-
off in terms of lookup and storage, flexible routing table,
and its simple worst case analysis [27]. Every node has its
own routing table containing some other nodes in the DHT
network. This allows to perform lookups with the complexity
of log2(N), whereby N denotes the number of nodes in the
network.

Kad protocol modifications: Kad as an implemented re-
alization of the Kademlia protocol has been used to realize
DuDE [32]. All DuDE nodes are organized into a Kad-based
DHT, whereby each DuDE node in the P2P system takes
over the responsibility for a data part. DuDE stores data in
the network redundantly, which increases data availability.
Additional search objects have been implemented to extend
the Kad protocol and to support distributed data collection.
Moreover, new packets have been implemented to achieve an
efficient communication between DuDE nodes. In Figure 3, the
network is depicted as logical ring on top of the real network
topology.

Performing the distributed computing: Selected dis-
tributed computing aspects are used to avoid overloaded
components, which exist in centralized computation systems.
Eligible DuDE nodes participating in the computation may
become task watcher and/or job scheduler. Their suitability
depends on their available resources. DuDE nodes can them-
selves decide about their participation, which leads to a high
grade of flexibility and load balance. A job scheduler is a
high-performance node, which is responsible for distributing
computation parts (tasks) to DuDE nodes with sufficient
available resources, which are called task watchers. Each task
watcher computes a part and sends it back to the job scheduler
after complete computation. An administrator is able to request
computed statistics from any DuDE node and does not need
to be connected to the job scheduler.

In summary, the novel system DuDE combines P2P technol-
ogy, an extended Kad protocol enabling complex distributed
data storage, and distributed computing. For more details on
the DuDE functionality, the interested reader is referred to [3],

JSON Data JSON Data

HTTP

TCP

Client

DuDE‐Cloud
Instance
(DCI)CD

M
I

HTTP

TCP

DCI

CD
M
I

DCI

CD
M
I

DCI

CD
M
I

DHT‐based P2P Network

Distributed Data

Distributed Data

Distributed Data

Distributed Data

GUI
CD

M
I

Fig. 4. DuDE-Cloud concept combining the P2P network with CDMI.

[4]. To make the DuDE back-end accessible by RESTful Web
services in a standard compliant way and thereby achieving
interoperability with other clouds, it has to be combined with
CDMI.

IV. THE DUDE-CLOUD ARCHITECTURE

The concept described in this section is the basis for the
implementation of a standardized cloud interface. All neces-
sary steps to integrate CDMI are described here. Furthermore,
the presented concept combines CDMI with the DuDE GUI
front-end to allow a comfortable and flexible access to the
DuDE back-end. An overall view of the concept is depicted
in Figure 4.

Any task defined by the user in the DuDE GUI is transmitted
via the client CDMI to the connected DuDE-Cloud Instance
(DCI). Each DCI has its own CDMI, via which clients are
physically connected to it. The DuDE back-end is organized
and structured via Kad and represents the cloud from the
external point of view.

The DCI, which receives tasks from the clients, must
interpret the message properly and gives a response to the
corresponding client. The (en)coding of the task must be
implemented on both sides (client and corresponding DCI).
This is also realized in a standardized way by utilizing the
JSON standard for the payload data describing the tasks.

A. GUI Front-End

To get access to the DuDE back-end, a GUI has been
developed. The GUI already offers any client the possibility
to discover all available features, which are directly supported
by the DuDE back-end (and therefore the DuDE-Cloud).

By this separations and platform independent implementation
different clients like smartphones and common computers can
be addressed. To ensure a reliable data transmission between
the clients and DCIs, TCP connections are applied. This is
realized by using the HTTP protocol to perform operations
using CDMI.

The transmitted data is encoded as JSON, which is created
by the DuDE GUI automatically. The DuDE GUI only requires
the desired task as input from the client.

B. DuDE Back-End

The DuDE back-end has to store data and may also be used
to solve a task such as, e.g., to determine different statistics
like the CPU utilization of all participants in the network.
These participants can be the connected clients or even the
DCIs itself. The DuDE back-end receives the client message
via CDMI and has to parse the JSON string to extract the
necessary parameters of the given task.

In summary, CDMI requires two main aspects, which are the
TCP-based HTTP communication and the JSON encoded data.
Therefore, the functionality, which have to be implemented to
realize the concept, consists of:

• Implementing the TCP-based HTTP communication be-
tween the clients and DCIs

• Implementation and integration of a JSON encoder within
the GUI of the client

• Implementation and integration of a JSON parser on the
DCI side

• Extension of the DCI side to interpret the content ex-
tracted from the JSON string to interact with the under-

Client
DuDE

1. HTTP Request “POST“

2. HTTP Response
Status: 200 (OK)

Payload: JSON
(ID: “ID“ |Type: “CPU“)

Payload: JSON
(ID: “ID“ |Type: “CPU“ |
Value “Utilization“)

Fig. 5. Test scenario for proof of concept.

lying P2P network

V. PROOF OF CONCEPT

This chapter provides the proof of functionality with respect
to CDMI by means of a test scenario. Using the test scenario,
CDMI is shown to be working according to its specifica-
tion. For the practical implementation, the operating system
Windows 7 Professional has been used. The DuDE back-end
was implemented using the development environment Visual
Studio 2011 C++. For implementing the GUI front-end, the
Qt development framework 4.7 has been used.

A. Test Scenario

The test scenario is depicted in Figure 5. The GUI front-end
and the DuDE back-end communicate via a HTTP connection.
The GUI sends the generated JSON string to the DuDE back-
end via CDMI exemplarily containing a request for CPU
utilization of the nodes in the DuDE network. The JSON
string is transmitted by an HTTP request using the POST
method. From the DuDE back-end, the HTTP status code 200
is sent back to signal a successful processing. Further, the
JSON string contains the requested CPU utilization. In the test
scenario, it could be proven that our CDMI implementation
works in accordance to its specification. The task of computing
the CPU utilization could be completed and results were
transmitted to the GUI via CDMI.

VI. CONCLUSION

The main result of this publication is a fully functional
interface for accessing clouds. This interface follows the
CDMI standard based on RESTful Web services. As cloud, the
P2P-based decentralized back-end called DuDE was used. This
back-end is based on the principle of distributed computing,
in which each node is assigned a specific task. A GUI front-
end has been developed for controlling the network. The
combination of the GUI front-end, CDMI, and the DuDE back-
end form the so-called DuDE-Cloud. By means of the GUI,
a request with a task to be solved has been sent to the DuDE
back-end. Exemplarily, the CPU utilization of DuDE nodes
were calculated. This task has been formatted as JSON string
and is transmitted to the P2P-based cloud sent via a HTTP
request. In a test scenario, the functionality of the DuDE-Cloud
could be successfully validated.

Prospectively, further investigation regarding real-time data
processing in the DuDE-Cloud will be carried out.

ACKNOWLEDGEMENT

This work is partly granted by the Research
Fund Mecklenburg-West Pomerania, Ger-
many, as well as the European Social Fund.

REFERENCES

[1] Communication Promoters Group of the Industry-Science Research
Alliance, acatech - National Academy of Science and Engineering,
“Recommendations for implementing the strategic initiative
INDUSTRIE 4.0,” Industrie 4.0 Working Group, Tech. Rep., April
2013. [Online]. Available: http://www.plattform-i40.de/finalreport2013

[2] P. C. Evans and M. Annunziata, “Industrial Internet: Pushing the
Boundaries of Minds and Machines,” General Electric, Tech. Rep.,
November 2012.

[3] J. Skodzik, P. Danielis, V. Altmann, J. Rohrbeck, D. Timmermann,
T. Bahls, and D. Duchow, “Dude: A distributed computing system using
a decentralized p2p environment,” in Local Computer Networks (LCN),
2011 IEEE 36th Conference on, October 2011, pp. 1048–1055.

[4] P. Danielis, J. Skodzik, V. Altmann, B. Kappel, and D. Timmermann,
“Extensive analysis of the kad-based distributed computing system
dude,” in IEEE Symposium on Computers and Communications (ISCC
2015), July 2015.

[5] C. Saravanakumar and C. Arun, “Survey on interoperability, security,
trust, privacy standardization of cloud computing,” in Contemporary
Computing and Informatics (IC3I), 2014 International Conference on,
November 2014, pp. 977–982.

[6] Cloud Computing Portability and Interoperability: Cloud Portability
and Interoperability, The Open Group. [Online]. Available: http:
//www.opengroup.org/cloud/cloud/cloud iop/cloud port.htm

[7] M. Kretzschmar and M. Golling, “Security management spectrum in
future multi-provider inter-cloud environments - method to highlight
necessary further development,” in Systems and Virtualization Manage-
ment (SVM), 2011 5th International DMTF Academic Alliance Workshop
on, October 2011, pp. 1–8.

[8] Standards and Interoperability for eInfrastructure Implementation
Initiative (SIENA). [Online]. Available: http://www.sienainitiative.eu/

[9] Open Grid Forum (OGF). [Online]. Available: http://www.snia.org/
about/alliances/ogf

[10] Open Cloud Computing Interface (OCCI). [Online]. Available:
http://occi-wg.org/

[11] X. Luo and H. Li, “Experiment design for cloud storage application
based on cdmi,” in Open-Source Software for Scientific Computation
(OSSC), 2011 International Workshop on, October 2011, pp. 148–152.

[12] Y. Weiwei, G. Chunhua, W. Feng, S. Hanyu, and Z. Jiping, “A cloud
storage synchronization strategy based on cdmi,” in Innovative Comput-
ing Technology (INTECH), 2014 Fourth International Conference on,
August 2014, pp. 120–129.

[13] DMTF and TM Forum, “Cloud Management for Communications
Service Providers,” DMTF and TM Forum, Tech. Rep., 2012.
[Online]. Available: http://www.dmtf.org/sites/default/files/standards/
documents/DSP2029%20 1.0.0a.pdf

[14] OASIS, “OASIS Identity in the Cloud TC,” 2015. [Online]. Avail-
able: https://www.oasis-open.org/committees/tc home.php?wg abbrev=
id-cloud

[15] EuroCloud Organization, “EuroCloud Europe,” 2015. [Online].
Available: http://www.eurocloud.org/

[16] Amazon Web Services Homepage. [Online]. Available: http://aws.
amazon.com/de/

[17] Google Apps Engine. [Online]. Available: https://www.google.com/
work/apps/business/

[18] Eucalyptus: Elastic Utility Computing Architecture for Linking Your
Programs To Useful Systems. [Online]. Available: open.eucalyptus.com

[19] T. White, Hadoop: The Definitive Guide, 1st ed. O’Reilly Media, Inc.,
2009.

[20] R. Campbell, I. Gupta, M. Heath, S. Y. Ko, M. Kozuch, M. Kunze,
T. Kwan, K. Lai, H. Y. Lee, M. Lyons, D. Milojicic, D. O’Hallaron,
and Y. C. Soh, “Open cirrustmcloud computing testbed: Federated data
centers for open source systems and services research,” in Proceedings
of the 2009 Conference on Hot Topics in Cloud Computing, ser.
HotCloud’09. Berkeley, CA, USA: USENIX Association, 2009.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1855533.1855534

[21] OpenStack Open Source Cloud Computing Software. [Online].
Available: https://www.openstack.org/

[22] D. Niu and B. Li, “Circumventing server bottlenecks: Indirect large-scale
P2P data collection.” ICDCS, 2008, pp. 61–68.

[23] D. Castella, I. Barri, J. Rius, F. Gine, F. Solsona, and F. Guirado,
“CoDiP2P: A Peer-to-Peer Architecture for Sharing Computing Re-
sources,” in Advances in Soft Computing, vol. 50, 2008, pp. 293–303.

[24] K. Graffi, A. Kovacevic, S. Xiao, and R. Steinmetz, “SkyEye.KOM: An
Information Management Over-Overlay for Getting the Oracle View on
Structured P2P Systems.” ICPADS, 2008, pp. 279–286.

[25] H.-M. Xu, Y.-J. Shi, Y.-L. Liu, F.-B. Gao, and T. Wan, “Integration of
cloud computing and p2p: A future storage infrastructure,” in Quality,
Reliability, Risk, Maintenance, and Safety Engineering (ICQR2MSE),
2012 International Conference on, June 2012, pp. 1489–1492.

[26] J. Paiva, J. Leitao, and L. Rodrigues, “Rollerchain: A dht for efficient
replication,” in Network Computing and Applications (NCA), 2013 12th
IEEE International Symposium on, August 2013, pp. 17–24.

[27] R. Steinmetz and K. Wehrle, Peer-to-Peer Systems and Applications, ser.
Lecture Notes in Computer Science. Springer-Verlag Berlin Heidelberg,
2005.

[28] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan,
“Chord: A Scalable Peer-to-peer Lookup Service for Internet Appli-
cations,” in ACM SIGCOMM, 2001, pp. 149–160.

[29] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. D.
Kubiatowicz., “Tapestry: A Resilient Global-scale Overlay for Service
Deployment,” in IEEE Journal on Selected Areas in Communications,
vol. 22, no. 1, 2004.

[30] A. Rowstron and P. Druschel, “Pastry: Scalable, Decentralized Ob-
ject Location, and Routing for Large-Scale Peer-to-Peer Systems,” in
IFIP/ACM International Conference on Distributed Systems Platforms,
2001, pp. 329–350.

[31] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer informa-
tion system based on the xor metric.” IPTPS, 2002.

[32] R. Brunner, “A performance evaluation of the kad-protocol,” Master’s
thesis, University of Mannheim, November 2006.

