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Abstract—Software-defined networking (SDN) is a principle
for the flexible configuration of networks, which recently has
aroused an increasing interest of researchers and companies.
Today, the operation and configuration of networks as well as
their adaptation to changing requirements represent a major
challenge if legacy network management protocols are used
due to their inability to provide network-wide configuration.
Compatibility issues with legacy protocols or even proprietary
protocols have further contributed to hardly reconfigurable and
inefficient networks and thus prepare the way for the new
concept called SDN. SDN implementations are mainly in the data
center today. Implementations will find their way into broader
networking applications over the next few years. However, even
automation networks with highest QoS requirements can benefit
from SDN support by achieving significantly more devices that
meet these requirements. Therefore, this paper addresses the
emulation of SDN-supported automation networks to examine
possible design options. Limitations and possibilities when using
the popular and widely accepted SDN emulator Mininet are
analyzed.

I. INTRODUCTION

Software-defined networking (SDN) is a novel approach
for the flexible configuration of networks, which recently has
attracted growing interest of both researchers and companies.
If network operators want to implement high-level network
policies today they need to configure each individual net-
work device separately with low-level and often manufacturer-
specific commands [1]. Compatibility issues with legacy net-
work management protocols like Simple Network Manage-
ment Protocol (SNMP) or proprietary protocols have further
contributed to hardly reconfigurable and inefficient networks.
SDN was developed to allow for the easy configuration and
operation of networks as well as their adaptation to changing
requirements. In this regard, OpenFlow represents a protocol
that has been widely accepted for the run time configuration of
network hardware by means of an SDN controller [2]. It aims
at easing the transition from research to practical applications
of SDN as it is an open standard that is supported by the
network hardware of many manufacturers.

So far, SDN implementations can predominantly be found
in data center environments. Undoubtly, SDN will gain in-
creased entry into broader networking applications in the very
near future [3]. We already want to go a step further by
introducing SDN into automation environments with strict
Quality of Service (QoS) requirements such as hard real-
time (RT) capability [4]. We derive our motivation from the
fourth industrial revolution, which is currently taking place. Its
objective consists in paving the way for the Internet of Things
into the factory resulting in the so-called Smart Factory or even

an Industrial Internet of Things, Data, and Services. The US-
American company General Electric (GE) recently initiated a
comprehensive research initiative called “Industrial Internet”
[5] and in Germany the term “Industry 4.0” has been coined
[6]. GE forecasts for the future that there will be more intelli-
gent devices, which have to be connected to interact with each
other dynamically. Therefore, improved automation structures
are necessary to manage the high complexity arising from the
increasing number of devices. Furthermore, the management
of a network consisting of thousands of devices is a technical
challenge requiring tools and technologies to be able to meet
this challenge. As soon as the number of devices increases
from 100 to 1,000 or even 10,000, the device networking
technology must be ready for this magnitude.

To conclude, devices have to be interconnected in industrial
facilities to communicate with each other and prospectively,
their number will strongly increase in the described Internet
of Things, Data, and Services while still requiring RT behavior.
In this regard, Industrial Ethernet (IE) systems are the latest
communication technology, which provides guarantees for the
arrival of an Ethernet frame and its delivery time and thus
represent a RT capable device networking technology for
automation networks [7]. However, the established IE system
solutions can especially not fulfill the future challenges in
terms of scalability and flexibility as they are right now [8]. In
this respect, future large-scale automation networks can benefit
from SDN support by achieving more parallel communication
and thus SDN support allows significantly more RT capable
devices in an automation network.

Therefore, this paper addresses the emulation of SDN-
supported automation networks to examine possible design
options. Experiments are carried out with the popular and
widely accepted SDN emulator Mininet. Mininet’s limitations
and possibilities are analyzed when emulating automation net-
works with hard RT capability. To the best of our knowledge,
our publication is the first paper, which analyzes the impact of
SDN-support on automation networks by means of emulation.

The remainder of this paper is organized as follows: Section
II explains SDN basics. Section III analyzes how SDN is
suited to build SDN-supported automation networks. Section
IV addresses the emulation with Mininet using the example
of the SDN-supported RT Ethernet automation network called
HaRTKad and evaluates results. Section V contains a compar-
ison with related work. The paper concludes in Section VI.
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II. BASICS

A. The SDN principle

In today’s computer networks, there is a variety of different
components with dedicated tasks, which are designed to ensure
an efficient and transparent communication between connected
devices. These components are, e.g., switches, routers, fire-
walls, and load balancers. Each of these network devices has
its own control logic to analyze packets and decides how they
should be changed and forwarded. The control logic of all
network devices can be regarded as control plane while the
hardware for packet forwarding and modification is denoted as
data or forwarding plane. In the typical established networks,
the logic of the control plane is distributed throughout the
network by implementing it in the network devices and it is
directly connected to the hardware of the data plane. Contrary,
the two basic characteristics of SDN are the separation of
control plane and data plane and the merging of the control
logic of the control plane in a controller software that controls
devices of the data plane. The controller (also referred to as
network operating system) communicates with the devices of
the data plane via a well-defined API and can also provide an
API to communicate with the applications running on hosts [3],
[9]. This concept is apparent from Figure 1. According to this
depiction, the APIs are also called southbound API (towards
data plane) and northbound API (towards the applications) [1].
It should be noted that the communication with the applications
via the northbound API is not mandatory for a working
SDN. However, depending on the application a communication
between controller and application can bring considerable
benefits and is therefore considered an important research topic
[10]. One of the currently most noted southbound APIs is the
OpenFlow protocol.

B. OpenFlow

With OpenFlow, researchers can test new protocols in com-
mon networks with realistic size [2]. Hardware manufacturers

can support OpenFlow on their devices without significant
changes to their hardware as the implementation of OpenFlow
switches imposes requirements that are already met by con-
ventional switches and routers [3]. The prevalence of Open-
Flow results from these properties. The two core components
of OpenFlow are the specification of the OpenFlow-enabled
switches and the definition of the API for communication
between OpenFlow switches and controller software.

Switch: The classification and processing of packets in
OpenFlow-enabled switches is done on the basis of so-called
flows. A flow is a particular connection in the network, which
can be specified with different granularity. The entire flow
definitions are stored in a flow table. An entry in the table
consists of a packet header (defines the flow), actions to
be taken (processing of packets of this flow), and statistics
(previous number of packets of this flow, the time since
the last packet of the flow, etc.). For each incoming packet,
the flow table is searched for a matching entry. These flow
tables can be implemented using Ternary Content Addressable
Memory (TCAM). Because of this hardware-based search, the
packet processing based on flows is performing well enough
in order to not limit the speed of the Ethernet connections. In
addition, TCAMs are already used in conventional switches
and routers and thus the rapid adoption of the concept by
hardware manufacturer is enabled (see [2]).

Controller: If no suitable flow entry exists for an incoming
packet in an OpenFlow switch, it is forwarded to an OpenFlow
controller. The OpenFlow controller then decides about the
further processing of the packet. It can either instruct the
switch how to handle the package (if necessary carry out
modifications, forward to a specific port, discard) or it can
create a matching flow entry for the packet, which determines
the processing for both the current and future packets of the
flow. Issuing a request to the controller results in a relatively
high delay since the controller is typically implemented in
software. For the network to provide high performance, it is
therefore desirable to create flow entries (see [2]).

C. Mininet

Structure and functionality: Mininet allows to emulate
virtual networks with SDN and OpenFlow capabilities under
Linux [11] and has been developed by Brandon Heller [12].
A detailed description of the objectives, the operation, and the
limitations of Mininet can be found in [13], [12], [14]. Mininet
provides a convenient framework to facilitate working with
virtual networks. It provides a command line program, which
can generate corresponding networks. Another feature of great
importance to carry out experiments is Mininet’s Python API.
Through the Python API, own topologies can be defined and
the configuration of individual virtual hosts, switches, and
Ethernet connections can be carried out. Mininet relies on
the emulation of a network. Thereby, many advantages of
simulators and hardware-based test environments are combined
while compensating their weaknesses: Contrary to simulators,
a comprehensive abstraction of system components is avoided
as an abstraction could lead to functional differences compared
to real hardware. Instead, virtual software components are
used in the emulation whose behavior is identical to the real
hardware from a functional perspective. This allows to run real
code on the network-connected virtual hosts in the same way as
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Fig. 2. Network design with Mininet [17].

one would use it in a hardware-based test setup. Accordingly,
the traffic pattern used in the emulation equals that of the
real test environment. However, in contrast to a real testbed
and similar to a simulator, the advantages of high flexibility
(e.g., in terms of network topology) and low costs are retained.
The emulation is enabled by options, which are included
in Linux by default such as the virtualization of switches,
Ethernet adapters, and hosts. For a better understanding, a
simple example of the concept is apparent from Figure 2.

• Virtual Ethernet adapters and connections: The ip link
command allows the generation of virtual Ethernet
connections with a virtual adapter at each end.

• Virtual switches: In Mininet, the Linux package Open
vSwitch is used to create virtual OpenFlow-enabled
software Ethernet switches. The Mininet software cur-
rently only supports OpenFlow version 1.0.0 so that
this version has been used as a reference [15]. One
of the adapters of the virtual Ethernet connection is
assigned to the switch.

• Virtual hosts: A resource-saving measure for the vir-
tualization of network hosts are namespaces. This is a
Linux concept to provide each process with a network
stack, which is independent of the rest of the system.
That is, for the corresponding processes independent
routing and firewall settings are possible and only
network adapters explicitly assigned to the respective
network namespace are visible [16]. After creating
a network namespace, a shell process is started in
this namespace, which represents the virtual host.
All programs called from there are then in the same
network namespace (e.g., firefox and httpd in Figure
2). Despite their own view of the network resources,
a virtual host has full access to the file system of the
Linux system and can start programs in the network
namespaces, which are needed in experiments to gen-
erate the desired traffic pattern.

Boundaries and restrictions: The fundamental problem
of Mininet (and emulators in general) is to emulate the correct
time sequence of events and thus to correctly reproduce the
performance characteristics of a system. This problem has
already been mentioned as the most important limitation of
Mininet in [14] and is analyzed in more detail in a subsequent
paper [13] by the same authors. The reason of the problems
with temporal correctness is the operation of a virtual network
on a single physical PC. In a real network, switches and
hosts operate in parallel and independently. In contrast, in

the emulation originally parallel operations are performed
sequentially due to the limited number of CPU cores. In
addition, computationally intensive processes on a host can
affect the performance of the entire emulated network as
the scheduler of the operating system no longer adequately
provides the software switches or other hosts with sufficient
computing time to perform the processing and forwarding of
packets.

Accordingly, the time response of the system may change
significantly. Therefore, recent research works such as [13]
have formulated a main criterion that must be met so that
an experiment can still provide useful results in the emulation.
The criterion is that the experiment must be limited by network
resource constraints such as bandwidth or latency but not
by the CPU or memory bandwidth [13]. In addition, there
are two important conditions, which must be met so that an
experiment carried out with the emulator can produce correct
results compared to those of a real testbed:

1) Virtual network accuracy: All packets need to be
transmitted always at a certain point in time in order
to ensure the set bandwidth in the emulation (e.g., a
1514 byte packet needs to be transmitted every 121.1
µs over a 100 Mbit/s link). However, the scheduler
and CPU performance of the emulating system may
not be sufficient to ensure too high transmission rates
for all virtual connections. If that is the case all virtual
connections must be limited to a certain bandwidth
to provide sufficient time for scheduling and CPU
processing on the virtual hosts.

2) Virtual host accuracy: All virtual hosts must always
show a small fraction of idle CPU time as this
indicates that the experiment is not CPU limited, i.e.,
a virtual host is not starved of CPU resources.

For a variety of experiments, results were generated, which are
comparable to those of a real testbed. Many experiments had
to be scaled down in terms of bandwidth in the network as the
hardware setup comprised 1 Gbit/s or even faster connections,
which would have violated the first condition stated above [13].
However, in this paper we will show that the criterion and
conditions stated above are still not sufficient to allow for a
precise emulation of automation networks.

III. TOWARDS SDN-SUPPORTED AUTOMATION
NETWORKS

In this section we investigate how SDN and OpenFlow
can be used to optimize networks for a particular application.
First, the general options for application-oriented control of a
network is discussed before evaluating, which advantages and
disadvantages the use of SDN in automation networks entails.

A. Application-oriented SDN controller:

The OpenFlow controller is responsible to find correct
routes between connected devices and to use the network
topology as efficiently as possible in a network. Found routes
should ideally be installed in the flow tables of the switches
as the network is otherwise slowed down by forwarding all
packets to the controller. The communication with the switch is
done through the standardized OpenFlow protocol. In addition,



however, there are no specifications for the implementation of
the controller. The complexity of the controller can thus range
from layer 2 switches through traditional layer 3 routers to
customized controllers. Thereby, the behavior of the network
can be adapted in a simple and inexpensive manner by the
user. Special hardware or support from the manufacturer of
networking hardware are not required. The controller can be
programmed taking into account the existing network topology
and the expected traffic patterns. Generally, there are two
possible approaches for the optimization of a controller to a
specific application:

1) Static scenario: Network topologies and application
traffic patterns are known at the time of programming
the controller. Efficient controller routing algorithms
can be implemented with this knowledge without
requiring any communication with the application.

2) Dynamic scenario: Both the topology and the traffic
patterns change over time. In order to ensure an opti-
mal routing (e.g., in terms of bandwidth or latency),
the controller must automatically detect the topology
and communicate with applications to synchronize
routing and transmission behavior.

In particular, the communication between the application and
the controller has great potential but there is neither a stan-
dardized nor widely used northbound APIs yet. The Open
Networking Foundation is working on the standardization of
northbound APIs [18] but currently it is still unclear whether
an appropriate standard similar to the OpenFlow protocol will
gain acceptance since the communication required between
controller and application is very specific for the respective
application.

B. SDN and automation networks:

Common RT capable Ethernet automation networks use
time slots in order to allow individual network stations the
exclusive access to the entire network. This is to prevent con-
current data transfers leading to unexpected delays in switches,
which is inacceptable for an RT system. In those systems,
parallel communication during one time slot is not possible
today because there is no instance, which has knowledge of
topology and routes used and could guarantee conflict-free
parallel communication. In this regard, an automation network
for RT data transfer can greatly benefit from the support of
SDN as SDN allows parallel communication during one time
slot without causing unexpected delays. Parallel communica-
tion within the time slots could be used both to increase the
bandwidth and to shorten the cycle time (the time until all of
the devices were allowed to send once). Alternatively, more
devices may be included in the network without deteriorating
the properties in terms of RT capability. Thereby, the potential
benefit depends on topology and controller implementation,
which will be detailed in the following section.

IV. EMULATION OF AN SDN-SUPPORTED RT ETHERNET
AUTOMATION NETWORK WITH MININET

In this section, we describe our investigation of using
Mininet and OpenFlow for the example of our developed RT
Ethernet automation network called HaRTKad (A Hard Real-
Time Kademlia Approach) [19]. The objective was to evaluate

the feasibility and potential benefits of SDN in automation
networks for RT data transmission. Since for an RT data
transmission, the adherence to maximum transmission times
must be guaranteed especially the measurement of RTTs in
the network is of interest. Therefore, in Mininet a variety of
measurements using the ping tool was conducted to collect
relevant data for a HaRTKad network controlled by OpenFlow.
For a RT system, especially the maximum RTT as well as the
fluctuation of the measured values are of importance to evalu-
ate the reliability of the system regarding the RTT. Moreover,
the impact of simultaneous communication of multiple devices
on the RTT (multiple transmitting devices within a network)
was investigated and optimization opportunities by means of
various topologies and routing procedures were analyzed.

A. HaRTKad: An exemplary automation network

A system developed by us called HaRTKad represents
an example of a fully decentralized RT Ethernet automation
network [19]. Like common RT capable Ethernet networks, it
uses time slots to grant individual devices the exclusive access
to the network. During the time slots, the devices periodically
exchange process data with each other. The coordination of
exclusive access is carried out by means of a peer-to-peer
(P2P) system and without a central control. Moreover, in this
system short-term interruptions of the RT communications are
provided in the form of a maintenance phase, which can be
used by the SDN controller for runtime configuration of the
SDN-enabled switches.

B. POX controller framework

Since the built-in controller in Mininet does not provide
the necessary functionality for our tests, a controller based
on Python network operating system (POX) was used in the
experiments. POX is a framework for developing OpenFlow
controllers in the programming language Python [20], [21].
While Mininet provides fast and easy access to a virtual
network as test environment, POX allows the rapid imple-
mentation of new controllers for this network. For this, in
POX basic functions needed by any OpenFlow controller are
already implemented. Furthermore, POX can be extended by
the desired functionality (e.g., new routing algorithms) with
self-written Python modules. The following modules were used
in the practical part of this work:

• openflow.discovery discovers the network topology.

• openflow.spanning tree must be used together with
the openflow.discovery module. It uses information
obtained during the discovery to establish a spanning
tree.

• forwarding.l2 pairs makes OpenFlow switches behave
like common layer 2 switches (flooding for unknown
destination MAC addresses, targeted forwarding for
known destination MAC addresses).

C. Test arrangement and procedure

To perform the measurements, the behavior of the
HaRTKad system had to be emulated in Mininet using the
Python API. In the performed measurements, the traffic pattern
comprises ICMP echo request and reply packets to emulate the
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Fig. 3. Binary tree topology with routes of two different traffic patterns. Red
arrows show the routes of non-overlapping paths (see Table I no. 1-5). Green
arrows show the routes of overlapping paths (see Table I no. 6-7). ICMP echo
requests and responses take the same path.

process data exchange in HaRTKad system. The traffic pattern
specifies, which virtual hosts simultaneously send an ICMP
echo request to which virtual target hosts. Using this traffic
pattern, the training phase is started. In this phase, pings are
sent once resulting in the installation of the appropriate entries
in the flow table of OpenFlow switches. In order to ensure that
during the measurement no (relatively slow) communication
between switches and controllers is necessary, no timeouts are
set for these entries. Finally, the measurement is performed.
In this case, all ICMP echo requests of the traffic pattern are
triggered simultaneously (as far as this is possible in software)
and the measured RTT is logged. For a series of measurements,
this step is repeated 500 times and from the collected data, the
minimum, maximum, and average RTT as well as the standard
deviation are calculated.

All virtual Ethernet connections are limited to a speed of
1 Mbit/s by means of the Linux traffic control. The payload
of the ICMP echo requests is set to 1472 bytes. With this
configuration, measurement values for the RTT as high as
possible shall be generated so that influences of the scheduler
and the inaccuracy of the time measurements are below the
RTT by orders of magnitude. Also, a CPU limitation of the
emulation for the virtual networks is avoided by configuring
slower Ethernet connections. Tests have been carried out for
four topologies: single switch, binary tree, mesh grid, and
FatTree topology. Due to space constraints, solely results for
the binary tree and FatTree topology are presented.

Binary tree topology: The following measurements were
made for a Binary tree topology (see Figure 3) with a total
of 15 virtual switches and 16 virtual hosts. The forward-
ing.l2 pairs module of the POX framework was used for
reactive installation of flow entries. The two traffic patterns
comprise (1) the simultaneous transmission of several ICMP
echo requests from hosts with non-overlapping paths as well
as (2) the simultaneous transmission between hosts with over-
lapping paths. ICMP echo responses take the same path like
ICMP echo requests in the opposite direction. As expected, the
series of measurements with this topology showed that the RTT
is proportional to the number of the traversed switches and
that the parallel communication over non-overlapping paths
does not cause any delay (see Table I no. 1-5) while any
overlapping of the paths causes delays (see Table I no. 6-7).
Moreover, it becomes apparent that this topology allows very

TABLE I. BINARY TREE TOPOLOGY EVALUATED WITH TWO TRAFFIC
PATTERNS: (1) NON-OVERLAPPING PATHS (NO. 1-5) AND (2)

OVERLAPPING PATHS (NO. 6-7).

No. Src. Dst. Max. Mean Std. # Traversed
Host Host RTT [ms] RTT [ms] Dev. [ms] Switches

1 H3 H4 1.26 0.090 0.094 1

2 H13 H14 1.359 0.095 0.107 1

3 H9 H12 4.672 0.146 0.228 3

4 H5 H8 6.449 0.156 0.307 3

5 H1 H16 9.144 0.270 0.556 7

6 H1 H4 38.301 3.430 5.418 3
H2 H3 30.516 3.500 5.435 3

7 H7 H10 32.139 3.045 4.959 7
H5 H12 40.628 3.768 5.563 7
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Fig. 4. FatTree topology with six sending virtual hosts and random RipL-POX
routing (see Table II). Red arrows show the routes of ICMP echo requests.
Green arrows show the routes of ICMP echo responses.

few combinations of parallel communication since no different
selectable paths exist between hosts. For an extensive parallel
communication between hosts, a better topology is required.

FatTree topology: The measurement series shows how
efficient parallel communication is if a suitable topology and
a controller that can exploit the potential of the topology are
used. The FatTree topology is hierarchical and has been de-
signed for the efficient networking of data centers. It provides
the following benefits [22]:

1) The network shall provide enough bandwidth to make
the total bandwidth of the attached hosts completely
usable (realized by redundant paths and same bisec-
tion bandwidth at all levels of the tree).

2) Similar and inexpensive switches shall be used
throughout the network.

3) The network should be easily scalable.

An appropriate topology for 16 hosts is apparent from Figure
4. The labels for hosts and switches are based on [22].
For emulating a FatTree topology in Mininet, the ”Ripcord
Lite” (RipL) Python library was selected [23]. To exploit
the potential of the topology, the POX module ”Ripcord Lite
for POX” (RipL-POX) was used [24]. This module provides
routing methods to utilize redundant paths. For the tests, Ripl-
POX was configured so that flows are reactively installed
and the used paths are selected randomly from a previously
calculated set of valid paths. It is therefore to be expected
that redundant paths are used but due to the random selection
not the best routing is always achieved. For this topology, one
traffic pattern with randomly selected paths was used resulting
in non-overlapping paths (see Table II no. 1-4) and overlapping



paths (see Table II no. 5). Thereby, ICMP echo requests and
responses took another way in two test cases (no. 2 and 4 in
Table II). Like in case of the binary tree topology, the RTT is
proportional to the number of the traversed switches, parallel
communication over non-overlapping paths does not cause any
delay (see Table II no. 1-4), and any path overlapping leads to
delays (see Table II no. 5).

TABLE II. FATTREE TOPOLOGY WITH SIX SENDING HOSTS AND
RANDOMLY SELECTED PATHS RESULTING IN NON-OVERLAPPING PATHS

(NO. 1-4) AND OVERLAPPING PATHS (NO. 5).

No. Src. Dst. Max. Mean Std. # Traversed
Host Host RTT [ms] RTT [ms] Dev. [ms] Switches

1 312 313 3.619 0.100 0.190 1

2 003 012 8.21 0.143 0.373 3

3 002 013 2.43 0.148 0.168 3

4 113 303 3.852 0.187 0.208 5

5 102 213 30.249 2.803 4.583 5
112 203 37.513 3.047 4.843 5

D. Results evaluation

Non-overlapping routes: For all investigated topologies
and traffic patterns, the average RTT of below one millisecond
for non-overlapping routes results from the fact that the traffic
control does not cause any delays. As bandwidth and delay
of the underlying virtual Ethernet adapters are only dependent
on the available computing power, the recorded values only
depend on the scheduling of the processes involved in packet
forwarding. Since the scheduler is not optimized for latency-
dependent processes and during series of measurements not
exactly the same scheduling is performed for each sent ping,
the measured values fluctuate. Moreover, all measurements
with parallel and non-overlapping communication routes do
not show significant changes in the measured properties. In
contrast to the absolute values of RTT and the fluctuations,
this behavior is consistent with what one would expect from
a real hardware testbed with switches: packets forwarded via
different ports do not interfere. Furthermore, one can observe
that packets over several switches require a larger average RTT
and standard deviation (see Table I no. 1-5 and Table II no. 1-4)
as more processes are involved in the transmission of packets.
This also corresponds to the behavior of a hardware testbed,
in which each traversed switch contributes an additional delay
(the exact time delay is implementation dependent).

Overlapping routes: For all measurements with overlap-
ping routes, both the influence of scheduling and bandwidth
limitation is relevant. If ICMP echo requests meet in a switch
the, which arrived at the switch later, is delayed (see Table
I no. 6) as it has to wait until the traffic control allows the
packet to be sent. The added delay of 12 ms (explanation see
following Section IV-E) for the second packet corresponds to
the expected delay of a corresponding hardware testbed very
well. As it is stochastic, which of the two ICMP packets
arrives at a switch first, it can be assumed that two hosts
measure an RTT increased by 12 ms for 50 % of their sent
packets. Therefore, both hosts should measure an average RTT
of 6 ms. The measured values are slightly lower due to the
influence of the scheduler. The maximum values are subject
to the random impact of the scheduler again. Only by traffic
control, a maximum delay of about 12 ms is caused. The

standard deviation is therefore generally not meaningful in the
measurements with overlapping paths (see Table I no. 6-7).

Results summary: Overall, it becomes apparent that
Mininet cannot emulate the time behavior of a real network
but the impact of parallel communication is still visible. The
measurements for binary tree and mesh grid topology also
show that in addition to the topology the controller is important
for efficient parallel communication. Although the mesh grid
topology, in contrast to binary tree topology, offers many
alternative routes they cannot be used by the controller. For
this reason, the FatTree topology was chosen and operated with
the RipL-POX controller. The concept of the FatTree topology
to use cheap similar switches throughout the network perfectly
matches the objectives of SDN and OpenFlow. Moreover, the
redundant paths intended for increasing the bandwidth are
also well suited to implement parallel communication. As
the routes shown in Figure 4 and the measurements listed
in Table II demonstrate, the RiPL-POX controller can use
the existing paths effectively. Only two of the six performed
pings are delayed due to overlapping paths (see Table II
no. 5). Since RipL-POX was configured to select random
routes, the results can differ for repeated executions of the
test. Moreover, as RipL-POX has no routing method, which
dynamically adjusts the chosen routes to the traffic pattern and
avoids overlapping paths effectively, this controller is not yet
sufficient for applications that require a guarantee for low delay
(i.e., RT applications). Nevertheless, the great potential of the
topology could be demonstrated with this experiment.

E. Comparison of Mininet results with real hardware testbed

In order to understand the results, one must consider how a
real hardware testbed behaves with respect to RTT and latency
and how this behavior is emulated by Mininet. An ICMP echo
request with a payload of 1472 bytes including ICMP (8 bytes),
IP (20 bytes) and Ethernet (14 bytes) headers is 1514 bytes in
size. Including frame check sequence (FCS, 4 bytes), preamble
(7 bytes) and start frame delimiter (SFD, 1 byte), there are
1526 bytes to be transferred physically. With a 1 Mbit/s
Ethernet connection, the calculated transmission time equates
to 12.208 ms. Since the ICMP echo reply packet has the
same size and transmission time, the RTT should theoretically
equate to at least 24.416 ms. In addition, there are further
delays through switches and the cable. The propagation delay
depends on cable lengths (negligible here); the delay through
switches is implementation-dependent. For simplification, cut-
through switching is assumed here so that there are almost no
delays caused by the switches. For traffic patterns with non-
overlapping routes, a theoretical average RTT of 25 ms would
be expected. Here, the standard deviation of RTT in a real
network should be very low and the maximum value should
only slightly deviate from the mean value. The reason for this
is that the packet processing for known flows is completely
performed in hardware in typical switch implementations and
is therefore deterministically predictable. The impact of the
network on the RTT should therefore almost be constant. In
the case of two overlapping routes, the packet, which arrives
at the switch first, should not be delayed while the second
experiences a delay of about 12 ms (transmission time of
the first packet). Assuming that it is stochastic, which of the
packets arrives first, an increase of the mean RTT of 6 ms
and of the maximum RTT of 12 ms is expected compared to



the situation with non-overlapping paths. As apparent from the
experimental results, this behavior is not adequately modeled
in Mininet. The basic differences from the previously described
theoretical behavior of a real network are:

• Too low average RTT (< 1 ms) for non-overlapping
paths (see Table I no. 1-5 and Table II no. 1-4).

• Increase of the mean RTT in the case of two overlap-
ping paths is lower than the expected 6 ms (see Table I
no. 6-7 and Table II no. 5).

• Very large standard deviations of all measurements.

• Maximum values are significantly different from the
mean value, random outliers.

In the emulation, there are two important factors responsible
for these differences: The scheduling of the processes and the
operation of the traffic control. Both the scheduling and the
traffic control need to be optimized to develop an RT capable
Mininet called MininetRT to enable the timely exact emulate
automation networks with hard RT capabilites.

Impact of the scheduler: The scheduling may affect the
measurement in two ways. On the one hand, it can happen
that packages are delayed as the process, which is responsible
for the further processing of the packet, is not executed
immediately upon arrival of the packet. On the other hand, it
is possible that two hosts, which transmit simultaneously and
introduce a delay for one of the packets due to overlapping
paths, are executed with too long time interval and the mutual
influence of the packets thereby decreases or even disappears.
The operation of the traffic control has an impact on the mea-
surements as it is responsible for emulating both the bandwidth
and the delay properties of 1 Mbit/s Ethernet connections.
Thus, the influence of traffic control and scheduling is very
different. The traffic control determines whether the emulation
in general has a realistic behavior in terms of RTT while the
scheduling only causes random measurement errors.

Impact of the traffic control: In Mininet, the bandwidth
of virtual Ethernet connections is configured with the Linux
traffic control tool. A detailed description of the operation
and capabilities of Linux traffic control can be found in [25],
[26]. Each network adapter is assigned its own FIFO queue.
Thereby, tokens are collected in a bucket and one token
corresponds to the send permission for one byte. The bucket
is continuously filled with tokens at a configurable rate. If a
frame is sent it is checked whether enough tokens are available
in the bucket (according to the frame length in bytes). If so the
corresponding number of tokens is removed from the bucket
and the frame is passed to the associated Ethernet adapter
without any delay for transmission. Otherwise, the packet will
be delayed until enough tokens are available in the bucket.
This explains why the average RTT for all traffic patterns
without overlapping routes amounts to less than 1 ms although
one would theoretically expect higher delays when using 1
Mbit/s connections. Moreover, it follows from the described
mechanism that the buckets have to be so small that they are
empty after sending a packet and have to wait for new tokens.

V. RELATED WORK

A. EstiNet OpenFlow network simulator and emulator

The EstiNet OpenFlow network simulator and emulator
[27], [28] is another project, which aims at providing a fast
and easy test option for OpenFlow networks and thus is
comparable to Mininet. Similar to Mininet, EstiNet allows
conducting experiments in virtual networks using an OpenFlow
controller and host applications. It provides a simulation mode
for maximum accuracy and an emulation mode, which allows
for a faster realization of experiments at the cost of a small
loss in accuracy. The underlying principle differs significantly
from Mininet and is intended to better provide reproducible
and accurate results. In [28], RTTs were measured for different
sized OpenFlow networks and the results of the two EstiNet
modes were compared with results from Mininet. The author
shows that Mininet provides less reliable results and partly
shows an inexplicable behavior, which did not occur in our
measurements. The possibility to be able to provide better
results in terms of RTT makes EstiNet an interesting tool for
measurements. However, the test setup in [28] seems to be
chosen unfavorably as static delays have been added to the
virtual Ethernet connections, which are intended to simulate
the propagation delay of packets while the transmission time
of packets is neglected. This is exactly the opposite approach
to our approach as we take into account transmission times for
the consideration of real delays in parallel communication.

B. KVM-supported RT data transmission in OpenFlow nets

A work of the University of Tokyo [29], which has already
dealt with RT communication over OpenFlow networks, pro-
poses an extension of the Linux KVM (Kernel-based Virtual
Machine) module by an RT capable virtual Ethernet adapter
called RTvNIC, which allows virtual machines a RT communi-
cation over an OpenFlow network. The treatment of all virtual
network adapters is expanded by one Earliest Deadline First
(EDF) packet scheduler, which prefers packets from RTvNICs
to packets from normal virtual Ethernet adapters. Apart from
this advanced system for virtual Ethernet adapters, a new
component is provided in KVM, which communicates with the
OpenFlow controller. This component shall request the reser-
vation of bandwidth from the OpenFlow controller for all paths
required by RTvNICs. The authors have compared a working
implementation of their system in a virtual environment with a
system without RTvNICs and notice a significant improvement
of RTT. Because of the implementation, is to be assumed that
only soft RT is achieved. Guarantees to meet time deadlines
are not possible so that the system does not provide hard RT
capabilities, which are necessary in automation networks.

C. Achieving end-to-end RT QoS with SDN

The work in [4] aims at creating an end-to-end RT time
QoS communication service based on SDN. A deterministic
network model is introduced to compute optimal paths and
a simulation-based performance analysis validates the con-
cept for one selected network scenario. The authors’ idea
improves the average link utilization from 30 % to more than
60 % in comparison to traditional QoS reservation approaches.
Although the contribution underlines the feasibility of SDN-
supported automation networks, it is limited to one topology



(ring topology) and should be extended to various topologies.
Moreover, it should be possible to communicate the require-
ments of RT applications to the controller. Furthermore, a
future implementation of the approach should prove that it
can be realized as online routing algorithm in practice.

VI. CONCLUSION

In this publication, we have assumed that SDN and Open-
Flow can bring immense benefits in the field of automation
networks. OpenFlow is an important component in the SDN
environment and has already established as well-usable south-
bound API as the protocol is supported by both hardware man-
ufacturers and many controller frameworks. Moreover, SDN
provides another significant opportunity to use automation
networks more efficiently by implementing the controller and
developing a northbound API in an appropriate way.

We used the popular and widely accepted Mininet emulator
to carry out experiments by emulating an exemplary automa-
tion network. Recent research works have formulated criteria
that must be met so that Mininet experiments can provide
timely exact results in the emulation. However, this paper has
shown that these criteria are not sufficient to allow for a precise
emulation of automation networks with hard RT capabilities.
This publication reveals the reasons for that, which further
works of the research community can use as starting points,
to develop an RT capable MininetRT by means of optimized
scheduling and traffic control. Overall, we believe that SDN-
supported automation networks offer enormous potential by
allowing parallel communication of multiple devices during a
time slot and still guaranteeing hard RT.
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