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Abstract—The term Internet of Things (IoT) describes a
scenario where embedded systems are integrated into everyday
objects, turning them into smart devices to assist the user in
his everyday life. Each of these smart objects only offers a very
limited amount of computational power since it is only specialized
in a limited set of tasks. In order to achieve complex goals,
the devices have to interact with each other. Therefore, they do
not only need to be interconnected either by wire or through
wireless technology but also need a set of common protocols to
enable vendor-independent communication. In the past years,
various protocols pursuing this objective have emerged. One of
the most promising approaches is the Constrained Application
Protocol (CoAP) because it offers high interoperability and very
low communication overhead at the same time. Typical IoT
applications include the observation and manipulation of their
environment through sensors and actuators. Since the physical
world is continuous in time and does not wait for calculations to
finish, it is essential that the execution times of the applications
stay within certain boundaries. These timing constraints are
referred to as real-time requirements. However, current protocol
implementations do not consider real-time requirements for IoT
applications. In this paper, we introduce the jCoAP communica-
tion stack as a lightweight Java implementation of CoAP. We give
a brief introduction to real-time communication and CoAP and
provide insight in the design concept of jCoAP and the offered
functionalities. Furthermore, a performance evaluation is done
in order to point out the suitability of the jCoAP framework for
real-time IoT applications.

I. INTRODUCTION

In the past few years, the idea of the Internet of Things

(IoT) has become more tangible. Every day new technologies

emerge that enable devices to communicate with each other

in a vendor-independent manner. In order to maximize the

benefit gained from interconnecting devices, it is desirable to

integrate these devices into the already existing network infras-

tructure [1]. Since the Internet Protocol (IP) is widely used in

this infrastructure, it seams preferable to use communication

protocols that rely on IP. One well known IP-based approach

in device communication is the Devices Profile for Web Ser-

vices (DPWS) [2]. It offers high interoperability through Web

Service (WS*) technologies and high integrability because

it relies solely on protocols that are well-established on the

internet. However, due to the usage of heavyweight protocols

like SOAP and HTTP, the communication overhead is rather

high [3]. To avoid this dilemma, the CoRE working group

of the IETF specified the Constrained Application Protocol

(CoAP). CoAP is a RESTful web transfer protocol that is

ideally suited for the use in resource-constrained environments

[4]. It offers high interoperability, low header overhead and a

stateless HTTP mapping which enables easy integration. Still,

for many IoT applications interoperability and integrability

alone are not sufficient. These applications often involve the

observation and manipulation of the physical world through

sensors and actuators. Yet, the physical world is continuous

in time and does not stop to wait on a calculation to finish.

In order to avoid danger for life or property, the applications

must satisfy certain timing constraints (deadlines). Applica-

tions that underlie these requirements are referred to as real-

time applications and can be divided into three categories.

In hard real-time applications any deadline miss will lead to

a system failure. In firm real-time applications on the other

hand, the value of information that is delivered after the

deadline is zero, whereas in soft real-time applications the

sporadic violation of deadlines is tolerable and the value of

the delivered information degrades with the time it arrives after

the deadline. Due to the distributed nature of IoT applications,

it is not sufficient for every device to finish their part of

the application within the deadline boundaries. In fact, the

impact of the communication between the devices on the

overall timing behavior is rather high. Hence, it is necessary

to enable real-time behavior on the communication layer.

In this paper we introduce the jCoAP communication stack

and compare its timing performance with the well-known

Californium CoAP implementation [5]. Furthermore, we will

evaluate the influence of the used operating system and Java

Virtual Machine (JVM) on the predictability of the latencies

of transactions between interconnected nodes.

The main contributions of this paper are:

• Introduction and description of the design concept of

jCoAP.

• Evaluation of the performance in a real world testbed.

• Revelation of measures that need to be taken to enable

real-time communciation with jCoAP.

The remainder of this paper is organized as follows. In

Section two we will give a short overview of the related work

in this area. Section three gives a brief introduction to CoAP

and its core features. In Section four, the design concept of

the jCoAP framework will be explained. Section five describes
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the experimental setup for the performance evaluation that was

done. Section six draws conclusions from the experimental

results and provides an outlook on future work.

II. RELATED WORK

A. Device Communication

In the area of device interconnection, many IP-based ap-

proaches can be found. The two mainly discussed design

principles are Service Oriented Architectures based on DPWS

and RESTful communication. In [6], [7] it is shown that

DPWS offers a high degree of interoperability. However, due

to the utilization of XML based SOAP and HTTP messages it

needs a considerable amount of computational power on the

device side and causes a lot of communication overhead. It

has been shown in [8] and [9] that DPWS can be optimized

to better fit the needs of resource-constrained environments by

applying compression techniques to the SOAP messages and

programming optimizatons to the protocol implementation.

These optimizations mainly involve the reduction of memory

footprint. The smaller memory footprint is bought with a loss

of features and hard to develop services though. Still, DPWS

relies on HTTP which has a high message overhead and is

based on TCP. The use of TCP involves a handshake procedure

and implies the automatic retransmission of lost packets. This

behavior is undesireable as it causes unnecessary network load

and unpredictable timing behavior.

CoAP can be used to overcome this trade-off. The first

specification of CoAP was released in 2010 by the CoRE

working group as an internet draft [4]. Since then, this draft

evolved to an approved standard and many different CoAP im-

plementations have emerged. One of the most important ones

is the Californium stack, which was developed by Kovatsch

et. al. [5]. It is written in Java and known as the most fully-

featured implementation. In 2013, Mathias Kovatsch suggested

to include Californium into the Eclipse Project as CoAP

reference implementation. Besides Californium, Kovatsch et.

al. built two other implementations of CoAP that are widely

used. The first one to mention is the Erbium Stack which is a

C implementation [10]. Erbium is the built-in CoAP stack of

the Contiki Embedded Operating System. It is very suitable

for heavily resource-constrained devices such as TelosB mote

and easy to use. However, it is part of the Contiki OS and

therefore only available for a very limited number of platforms.

The second one is a JavaScript based browser plug-in for

Firefox called Copper [11]. It enables the user to visualize

and manipulate CoAP resources on a remote server through the

Web Browser. Since it can only be used as a client, it is widely

used for testing purposes. Another important C implementation

is the libcoap stack by Bergmann et. al., which is used as

part of the TinyOS Embedded Operating System [12]. There

are various other CoAP implementations of small relevance

due to their lack of updates or their poor usability. However,

none of the aforementioned CoAP implementations have been

evaluated regarding their suitability for real-time applications.

CoAP Observe
Draft 13

CoAP Group Comm.
Draft 18

CoAP HTTP Mapping
Draft 03

CoAP Resource Dir.
Draft 03

CoRE Link Format
RFC 6690

CoAP Basic Specification
RFC 7252

CoAP Blockwise Transf.
Draft 14

CoRE Interfaces
Draft 01

CoRE LinkCollection in 
JSON | Draft 01

Fig. 1. Development status of CoAP

B. Real-Time Communication

For distributed real-time applications it is crucial that the

communication protocols on all layers show deterministic

behavior. In the past, a variety of field bus systems has

been used to achieve this behavior. These systems lag some

abilities that are needed in today’s IoT applications though.

Firstly, the number of participants in the network is drastically

limited. Secondly, these field bus systems are usually based

on proprietary interfaces and hence are hard to integrate into

current network infrastructures. This leads to the conclusion

that field bus systems are not suitable for IoT applications.

Mainly driven by the limitation in the number of devices,

several real-time Ethernet solutions have emerged in the in-

dustrial area, also referred to as Industrial Ethernet (IE) [13].

This allows the easy integration of devices horizontally (with

other devices) and vertically (with a company’s remaining

network infrastructure). Thus, it becomes possible to optimize

controlling and monitoring of industrial plants. [14] gives an

overview of the currently available IE solutions. However,

most of these solutions require either specialized hardware

or a specialized process data protocol on top of standard

Ethernet. This leads to higher acquisition costs and degrades

the integrability. To avoid this, Skodzik et. al. developed the

HaRTKad framework [15]. HaRTKad is a peer to peer based

approach that achieves hard real-time communication over

standard GBit Ethernet through a time-slot-based medium

access strategy. However, it still needs protocols on top to

process the data.

III. THE CONSTRAINED APPLICATION PROTOCOL

CoAP is a specialized web transfer protocol, designed as

a lightweight RESTful communication protocol for heavily

resource-constrained devices; thus enabling high interoperabil-

ity between devices and increasing the ease of integration of

these devices into already existing network infrastructures.

CoAP consists of the base specification and several sub-

specifications [4]. The base specification describes the basic

flow of the communication process, including the packet and
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Fig. 2. Basic CoAP stack

header structure as well as header options, whereas the sub-

specifications extend the base specification with additional but

not mandatory functionalities that can be used with CoAP.

Amongst others, these extensions include a publish/subscribe

mechanism, group communication and the transfer of big

amounts of data with a simple stop-and-wait algorithm called

Blockwise Transfer. As it can be seen in Fig. 1, only the base

specification and the CoRE Link Format, which is used to

describe resources in CoAP, are confirmed standards until now.

The sub-specifications are still under development.

CoAP follows the client-server-principle, where a client

sends a request to a server in order to invoke a service on,

send data to, or retrieve data from the server. The CoAP

stack is depicted in Fig. 2. CoAP is based on UDP to

avoid the TCP handshake and automatic retransmission of

packets since this behavior is cost-intensive and not neces-

sarily desirable in resource-constrained environments. CoAP

itself consists of two sub-layers. First, there is a messaging

layer. It defines four types of messages: confirmable (CON),

non-confirmable (NON), acknowledgement (ACK) and reset

(RST). Since CoAP utilizes UDP, there is no reliable packet

transmission per se. To overcome this disadvantage, CoAP

offers optional reliability through CON-messages. If a CON-

message is received, the receiving node must respond with an

ACK-message in order to confirm a successful transmission. If

the sender of a CON-message does not receive an ACK within

a certain timeout, it will resend the message. The mapping of

ACK-messages to the corresponding CON-message is done

via a message ID. However, in the real-time domain the

retransmission of data is undesired because the value of the

information is zero if it is not delivered in time. To enable

a non-reliable communication, NON-messages can be used,

as they do not need confirmation. RST-messages are used

as a response to requests that can not be interpreted. The

request/response layer is placed on top of the message layer.

It enables the request/response pattern between the network

nodes. In this layer, the four basic methods GET, PUT, POST

and DELETE are performed. In order to match responses to

the corresponding requests, a message token can be used.

Fig. 3 shows the basic CoAP header.

Ver T TKL Code Message ID

Token (if any, TKL bytes)

Options (if any)

11111111 Payload (if any)

Byte 1 Byte 2 Byte 3 Byte 4

Fig. 3. Structure of the CoAP header

The first byte contains the protocol version (V), the message

type (CON, NON, ACK or RST) and the length of the message

token (TKL, can be zero). The second byte contains a message

code that determines whether the message is a request (GET,

PUT, POST or DELETE) or a response, in which case it

contains a response code that depends on the corresponding

request. Byte three and four contain the message ID. The

following bytes contain the message token of the length

specified in the TKL field and the options. Both fields are

not mandatory. An option consists of an option number, the

option length and the option value. The option number for

every option type is fixed and defined in [4] or the sub-

specification that introduces the option type to CoAP. Every

option can occur multiple times. The options are ordered by

their option number. In case a message contains payload, a

1-byte payload marker must succeed the options. The header

is binary encoded to minimize the header size and the parsing

effort. The CoAP header is at least 4 Bytes long. However, it

is most likely to be larger, as numerous options can be used to

trigger special behavior. Options are also used to indicate the

URI of the target resource on the server. In order to enable

an efficient device communication, several special features,

e.g. service discovery, need to be provided. Subsequently, it

will be described how CoAP realizes the three most important

features.

A. Resource Discovery

A server in the network can be discovered either through

learning an URI that references a resource on the server or

through the ”All CoAP Nodes” multicast address. To discover

the resources that are provided by a server, the client sends

a GET request for the ”/.well-known/core” resource. The

server must respond to this request with a list of all provided

resources including their URI and the supported content types

(optional). This request can either be send to one particular

server or to all nodes in the network. Clients that receive such

request will either respond with a RST message or just drop

the request message.

B. CoAP Observe

A typical use case for IoT applications is to initiate actions

depending on the environmental conditions. In these cases, the

environment has to be observed through sensors. Actors then

ask frequently for the current value. However, this behavior

causes unnecessary network load, as the clients request the

new sensor value even though it has not changed. Therefore,
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Fig. 4. jCoAP client and server

CoAP offers a publish/subscribe mechanism called ”CoAP

Observe” [16]. Here, a client sets the observe option in its

first GET request for a resource. When a server recognizes an

observe option in a request, it adds the client to the list of

observers for this particular resource. Every time the resource

changes its value, the server notifies every client in the list of

observers with the new value. To indicate that the new message

received by the client is a notification, the server also uses the

observe option. The option value is a 24 Bit long sequence

number for reordering purposes.

C. Blockwise Transfer

Since CoAP omits the use of TCP, it needs other mech-

anisms to transmit large amounts of data. Unlike TCP, that

uses a streaming approach, CoAP offers a simple stop-and-

wait algorithm called ”Blockwise Transfer” [17]. On a request,

the server first divides the data into smaller blocks. Then, only

the first block is sent in the response and the block option

is set to indicate that more blocks will follow. The client

buffers the data, reads the block option in the response and

then sends a request for the next data block to the server,

also using the block option. This is repeated until the whole

data is transmitted. CoAP provides two types of block options,

Block1 and Block2. The usage of the block options depends

on whether data is going to be retrieved from or sent to the

server. If a device wants to store data on a server through a

PUT request, it needs to use the Block1 option; whereas the

Block2 option is used if data is retrieved from a server through

a GET request. Both block options contain the block number,

the block size and a flag that indicates whether there are more

blocks to follow. The block size can vary between 16 Bytes

and 1024 Bytes per block.

IV. THE STRUCTURE OF JCOAP

jCoAP is designed as a very lightweight Java CoAP frame-

work. It can be used to implement both, a client and a server.

The basic structure is depicted in Fig. 4. A client consists

of one or more applications. Each application can initiate

a connection to a remote server. For every connection, a

client channel is created to map the incoming packets to the

corresponding client application. The channels are identified

through a channel key (CK). This key is created as a com-

bination of the server’s IP address and port through Formula

1.

CK = P ∗ (P +Hash
serverIP

) + Port
server

(1)

Here, P is an arbitrary factor and Hash
serverIP

the hash

value of the server’s IP address. The hash value is calculated

through the built-in function of the standard Java InetAddress

class. When a client sends a request to a server, the packet

is forwarded through the channel to the SocketHandler. The

SocketHandler manages open ports and all outgoing and

incoming packets. All outgoing packets are stored in a send

buffer and are sent one after another through the specified

port. When a server receives a message, it is forwarded to

the right server channel. The channel is selected through

the channel key that can be calculated from the sender’s

IP address and port. If no channel with the specified key

exists, the server creates it. The channel forwards the message

to the ResourceServer component which inherits the main

functional part of the server. It parses the received request

for the operation type and header options. Afterwards, it

selects the target resource and checks whether the desired

operation is allowed for this resource. A resource can be

any application, file or value. After the operation on the

resource has finished, the resource server creates the proper

response and sends it back to the client. Again, the client

receives the message in the SocketHandler. The SocketHandler

checks whether the message is a valid response and selects

the corresponding channel. In contrast to the server, the client

drops the packet if no channel can be found, for a server cannot

initiate a connection. To notify the client application of the

newly received response, the client invokes the onResponse()

method of the application. Afterwards the application can

process the received data. JCoAP not only offers standard

CoAP functionality according to [4], it also implements parts

of the extended functionalities like Blockwise Transfer which

will be subsequently described. However, some substandards,

e.g. Group Communication, have not been implemented yet,

for this is still work in progress.

A. CoAP Observe

Alongside of the basic CoAP functionality, jCoAP also

provides the CoAP Observe feature. The ResourceServer

contains a list of all resources offered by the server. Each

resource maintains a list of server channels. These server

channels correspond to the clients that want to observe this

resource. When a server receives a GET request that contains

the observe option, it calls the addObserver() method on the

resource specified in the request and passes the channel as

argument. The channel will then be added to the resources list

of observers. Every time a value change occurs on a resource,

its changed() method is called. In this method a notification

message for the value change is generated. Afterwards, it will
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Fig. 5. Blockwise Transfer in jCoAP

iterate through the list of observers and send the notification

through every channel in the list. To cancel a subscription,

the client will either send a RST message as response to a

notification or a GET request that again contains an observe

option.

B. Blockwise Transfer

The jCoAP framework implements the Blockwise Transfer

feature in a very simple way.

Fig. 5 shows the work flow of a client and a server in a

blockwise transaction. In the following, a blockwise GET and

PUT request will be explained briefly. If a client wants to

retrieve data from a server in a blockwise manner, it sets the

Block2 option in the message header of the GET request. On

the server side, every message is checked for the presence of

any block option. In this case, a Block2 option is recognized.

The channel then checks whether this message belongs to

an already ongoing transaction. If the received request is the

first one in this transaction, the message is forwarded to the

ResourceServer. Here, the requested data is retrieved from the

resource. This data is then used to create a BlockContext in

the channel which is mainly a data buffer. On subsequent get

requests the channel will automatically generate the matching

response and retrieve the requested data block from the buffer

in the BlockContext. When a client wants to send data to

the server, it will add the Block1 option to its PUT request.

When a Block1 option is recognized by the server channel, it

will again check whether this request belongs to an ongoing

transaction. If this is not the case, the channel creates a

BlockContext and buffers the payload of the received request.

Afterwards, it will generate a matching response. The payload

of all subsequent PUT requests from this client will be buffered

in the created BlockContext. When the transaction is done, the

channel creates a single message object from the buffered data

and forwards it to the ResourceServer. The ResourceServer

will then invoke the PUT operation with the complete data on

the specified resource.

Fast�Ethernet,�10/100�MBit/s

Serial�
Connection

Trigger

CoAP
Client

CoAP
Server

PC

Switch

Request

Response

Fig. 6. Test setup for the performance evaluation.

V. PERFORMANCE ANALYSIS

To analyze the performance of the presented jCoAP frame-

work, an example client-server application was created. Fig. 6

shows the test setup.

Both, the client and the server, are deployed on an Intel

Galileo Board of the first generation. The Intel Galileo is

equipped with the QuarkX 1000 SoC which is based on the

x86 architecture and has a clock frequency of 400MHz. The

board additionally supplies 256 MB RAM, a 10/100 MBit/s

Fast Ethernet adapter and a host USB interface. As operating

system, a customized Embedded Linux created with the Yocto

Build Tools has been used. The boards are interconnected

through 10/100 MBit/s Fast Ethernet and a switch. The server

offers an echo resource which contains a byte array as value.

The PC triggers the start of the test. The client then generates

a 16 Byte random payload and sends a PUT request as CON

message to the server in order to assign a value to the echo

resource. When the client receives the corresponding ACK

message, it starts to retrieve the value of the echo resource

with a GET request 100 times in a loop. After each loop, a

new random payload which is 16 Bytes longer is created and

sent to the server. Subsequently, a new loop of GET requests

is initiated. This will be repeated until a 160 Byte payload

is reached. For every transaction, the time is measured using

the System.nanoTime() method. This means, only the wall-

clock time which can vary depending on the system load

caused by other applications is measured. In order to ensure

comparable results, the tests were executed under similar

conditions on the system load. A transaction begins when the

send method is called by the client and ends when the retrieved

data is accessible to the client application. Subsequently, we

compare the performance of jCoAP with the widely used

Californium framework. Afterwards, we describe the evolution

to deterministic timing behavior step by step. Additionally,

we show that the use of blockwise transfer is not necessarily

preferable for larger amounts of data.

For our first experiment, we have realized our test ap-

plication with both CoAP implementations, jCoAP and
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Fig. 7. Transaction Time (logarithmic scale) for CoAP test application
implemented with jCoAP and Californium. The light gray density curve on
the left of each payload size belongs to jCoAP. The dark grey density curve
on the right belongs to Californium.

Californium. We have used a standard Linux kernel version

3.8 and the Oracle Java HotSpot Client Virtual Machine

version 25.11-b03 with its default configuration to run the test

application. Fig. 7 shows the transaction time in milliseconds

for a block size of 16 Byte per message. The black lines mark

the median transaction time while the colored areas indicate

the density distribution of the measured transaction times. The

dark gray density curves on the right side of each payload size

belong to Californium whereas the light gray density curves on

the left belong to the jCoAP version of the test application. It

can be seen that the performance with the jCoAP framework

is much better than with Californium. However, the density

distribution reveals that in both cases the measured transaction

times are subject to large fluctuations. This is due to the

indeterministic nature of Oracle’s JVM and the standard Linux

kernel in the sense of the timing behavior. Furthermore, it

can be seen that the timing fluctuations are higher for smaller

payloads. The larger the payload, the more packets need to be

exchanged for a single transaction. Hence, the fluctuations for

the single packets are more likely to cancel each other out. The

reasons for the observed indeterminism mainly originate from

the Garbage Collection of the JVM and concurrent allocation

attempts for system resources by other processes [18].

A. Deterministic Timing Behavior

In this section we describe how we achieved deterministic

timing behavior with jCoAP. Our first step towards this goal

was to use a fully preemptable Linux kernel as real-time

operating system. In this way, we are able to assign higher

priorities to the Java Virtual Machine (JVM). The JVM was

run with a priority value of -77, so that it was able to even

interrupt kernel tasks [19].

Fig. 8 shows the median transaction time and the density

of the measured time values achieved with this approach. It

can be seen that outliers with very long transaction times

appear, while most of the measured transaction times are

below average. We believe that these strong outliers mainly
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Fig. 8. Transaction Time (logarithmic scale) for jCoAP test application using
Oracle JVM and preemptive Linux.
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Fig. 9. Transaction Time (logarithmic scale) for jCoAP test application run
with JamaicaVM and JamaicaBuilder on preemptive Linux. The light gray
density curve on the left of each payload size belongs to the JamaicaVM.
The dark gray density curve on the right belongs to the JamaicaBuilder.

originate from the Java Garbage Collection (GC). Although

the JVM is highly prioritized and thereby has privileged access

to system resources, it is not predictable when the GC will

start or how long it will take. To verify this thesis, we used

a real-time JVM with deterministic GC. The chosen real-time

JVM was Aicas’ JamaicaVM because it fully supports the

Real-Time Specification for Java (RTSJ) [20]. The JamaicaVM

offers two possible ways to run Java applications as real-time

tasks. Firstly, the Java application can be directly run with

the JamaicaVM. The second way is to use the JamaicaBuilder

to cross compile a standalone binary directly from the Java

application’s source files. The results achieved with both

approaches are shown in Fig. 9.

The density curve and average bar on the left of every

payload size belong to the version directly run with the

JamaicaVM whereas the right density curves belong to the

cross compiled version. It can be seen that the median trans-

action time of both approaches increases linearly with the

number of sent messages per transaction and is much larger

than the median transaction time that could be achieved with
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Fig. 10. Transaction Time (logarithmic scale) over WLAN for jCoAP test
application run with JamaicaVM on preemptive Linux.

Oracle’s JVM and a preemptive Linux kernel. Furthermore,

it can be seen that the cross compiled version of the the test

application is slightly faster. This is due to optimizations that

are performed during the compilation process. The resulting

binary is specifically build for a particular target architecture

and needs to be recompiled for different devices though. Yet,

the transaction time for both approaches is still suitable for

smart environments in building or home automation [21]. More

importantly, the density of the measured time values reveals

that not only the outliers caused by the undeterministic GC

can be eliminated, but also the fluctuations of the time values

are minimized. This leads to a deterministic timing behavior

of the transactions between two CoAP devices.

B. Wireless Communication

For the performance evaluation of jCoAP in wireless en-

vironments, we equipped both Galileo Boards with a USB

WLAN adapter through their host USB interface. The WLAN

adapter utilizes a Ralink RT 2870 USB chip set. The client and

the server board were interconnected via a wireless 802.11g

ad-hoc network. Fig. 10 shows the obtained results.

It can be seen that the median transaction time in wireless

and wired networks (compare Fig. 9) are much alike. However,

it also shows that in wireless networks few outliers with

very high transaction times appear. These are caused by the

high susceptibility of wireless communication to interferences.

Interferences can either be caused by external radio sources or

other participants of the network that try to access the commu-

nication medium at the same time. In order to avoid concurrent

access attempts on the medium, 802.11 uses a Carrier Sense

Multiple Access/Collision Avoidance (CSMA/CA) technique.

Here, the sender of a message checks whether the communi-

cation medium is already in use and only sends the message

if this is not the case. When the medium is in use, the sending

process is postponed for a random period of time. After this

period is over, the medium is checked again for a concurrent

access. Every time a concurrent medium access is detected, the

sending process is postponed for an exponentially increasing

period of time. This leads to unpredictably long transaction

times whenever interferences appear. To minimize the impact

of this effect, a Time Division Multiple Access (TDMA)

method can be applied. Hereby, a time slot is assigned to

every network participant, in which it has exclusive access

to the communication medium. In this way, the probability

for concurrent medium access attempts of other network par-

ticipants can be drastically reduced. However, external radio

sources can still interfere with the communication. Since there

are only few outliers, it can be stated that jCoAP can at least

satisfy soft real-time requirements in wireless environments.

TABLE I
TRANSACTION TIME AND STANDARD DEVIATION FOR DIFFERENT

EXPERIMENTAL SETUPS.

Transaction
Time (median)

Transaction
Time (avg.)

Standard
Deviation

Ethernet & Standard Linux Kernel
Oracle JVM 14.691 ms 14.885 ms 2.937 ms

Ethernet & Preemptive Linux Kernel
Oracle JVM 12.154 ms 12.584 ms 0.972 ms
JamaicaVM 21.818 ms 21.856 ms 0.142 ms
JamaicaBuilder 20.223 ms 20.238 ms 0.202 ms

WLAN & Preemptive Linux Kernel
JamaicaVM 21.476 ms 46.436 ms 246.176 ms

Table I gives an overview of the median and mean trans-

action time and the corresponding standard deviation for

the evaluated jCoAP setups. It shows the trade-off between

average speed and time predictability of the communication,

whereby the combination of JamaicaBuilder with the preemp-

tive Linux kernel achieves the best results.

C. Blockwise vs. Non-Blockwise Transfer

In our previous experiments we used the blockwise transfer

functionality of jCoAP to deliver the desired data. In this

way, it is possible to interrupt the communication after every

data block that is transferred. This comes in handy when

TDMA techniques are applied so that every device has only

a limited amount of time to send data. However, blockwise

communication in CoAP causes additional communication

overhead and increased transaction times because every data

block has to be requested separately by the client. Therefore,

it is important to choose the right block size to minimize

the communication overhead while maintaining the ability

to pause the communication at any given time. In order to

evaluate this, we ran our test application with a block size

of 1024 Bytes. This block size was chosen in regard to

the maximum ethernet frame size of 1514 Bytes so that the

CoAP packet would fit into a single Ethernet frame, even

with the maximum payload. In this way, it is still possible

to pause the communication at any given time. Fig. 11 shows

the obtained results. It can be seen that the transaction time

increases only slightly when the payload in a single packet is

maximized. This is due to the increased time that is needed

to process the incoming messages on the server and client

side before the data is available to the application. However,

140



22
23

24
25

26
27

28
29

128 256 384 512 640 768 896 1024

Payload in Bytes

Tr
an

sa
ct

io
n 

T
im

e 
in

 M
ill

is
ec

on
ds

Fig. 11. Transaction Time for jCoAP test application run with JamaicaVM
and increasing payload in a single packet on a preemptive Linux kernel.

as previous experiments have shown, the increase in the

transaction time that is caused by the usage of multiple data

blocks instead of a single larger packet is much higher. Yet,

the transaction time would also increase if the size of a single

packet exceeds the size of the maximum transfer unit (MTU)

that depends on the used communication technology due to

fragmentation. Fragmentation would also prohibit to pause

the communication at any given time. Therefore, we conclude

that the block size should always be chosen in regard to the

communication technology, so that it is as large as possible

but never exceeds the MTU.

VI. CONCLUSION

In this paper, we have presented a lightweight Java im-

plementation of the Constrained Application Protocol called

jCoAP. We have shown that jCoAP enables CoAP-based

communcation for embedded devices with comparably small

latencies. Furthermore, we have shown that a slower but more

predictable communication can be established even for wire-

lessly interconnected devices by using a real-time operating

system and JVM. Additionally, suggestions on when and how

the blockwise communication feature of CoAP should be used

were made. Yet, in our test cases only two devices were

interconnected, hence no simultaneous communication oc-

curred. However, real operational scenarios include a multitude

of devices. This will cause more concurrent medium access

attempts. Thereby, the predictability of every single transaction

will be reduced, especially in wireless environments. To mini-

mize these effects, time division multiple access (TDMA) is a

promising approach to be evaluated in future work. Therefore,

a common time basis for all devices is needed. In our future

work, we will evaluate different TDMA and time synchro-

nization approaches to enable real-time communication with

jCoAP for multiple devices.
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