
AKadeMesh: Software-Defined Overlay Adaptation
for the Management of IEEE 802.11s Networks

Michael Rethfeldt, Arne Wall, Peter Danielis, Björn Konieczek, Dirk Timmermann
University of Rostock

Institute of Applied Microelectronics and Computer Engineering
18051 Rostock, Germany, Tel.: +49 381 498-7269

Email: michael.rethfeldt@uni-rostock.de

Abstract—The new standard amendment IEEE 802.11s enables
low-level interoperability for future WLAN mesh networks.
Support of the Hybrid Wireless Mesh Protocol (HWMP) and the
Airtime Link Metric (ALM) for MAC-layer routing is mandatory.
Its default distance vector routing mode facilitates scalability but
also results in a limited network view per mesh node. Moreover,
mesh mechanisms operate transparently to higher layers which
makes the management and optimization of 802.11s networks a
challenging task. Available on every standard-compliant node,
ALM offers the potential to derive mesh topology information.
We present AKadeMesh (Adaptive Kad-enhanced Mesh), a cross-
layer approach specifically designed for 802.11s networks. It is
based on the P2P protocol Kad and dynamically adapts its logical
overlay to the physical mesh underlay by directly considering
ALM. The resulting topology-aware P2P overlay is used to realize
logical clustering for the distributed management of 802.11s net-
works, thereby maintaining unrestrained interoperability to the
mesh standard. Our solution was implemented and evaluated in
a real-world test bed. Results demonstrate its practical feasibility
and verify the expected clustering benefit.

I. INTRODUCTION

Compared to common centralized WLAN infrastructures,
WLAN mesh networks feature automatic peering and multi-
hop routing and thus provide a flexible and low-cost wireless
network extension with higher scalability and robustness. The
new standard amendment IEEE 802.11s enables low-level in-
teroperability, integrating necessary mesh mechanisms directly
into the 802.11 MAC layer [1]. Support of the Hybrid Wireless
Mesh Protocol (HWMP) and the Airtime Link Metric (ALM)
for MAC-layer routing are mandatory. The default reactive
distance vector routing facilitates scalability but also results in
a limited network view per node. Moreover, mesh mechanisms
are transparent to higher layers which makes the management
and optimization of 802.11s networks a challenging task.
To overcome these limitations, we previously developed an
802.11s Management Framework featuring centralized remote
monitoring and configuration. Real-world evaluation proved
that decentralization of the framework is necessary to ensure
its scalability and robustness [2]. Common approaches in
research propose logical network clustering with distributed
management nodes, each being responsible only for a specific
network region [3]. Nevertheless, to the best of our knowledge
no specific solution for 802.11s exists that directly utilizes
the standard’s default mechanisms. Particularly HWMP and
its ALM routing metric, available on every 802.11s-compliant
node, offer the potential to derive mesh proximity informa-

tion to serve as basis for cluster formation. Another current
research field exists in the utilization of logical Peer-to-Peer
(P2P) overlay networks to optimize distributed applications
over wireless mesh networks, such as data organization,
search, or synchronization [4]. Typically, P2P protocols do not
consider the structure of the physical underlay which leads to
low performance in lossy and dynamic environments, such as
wireless mesh networks. Thus, cross-layer solutions must be
applied that integrate underlay information into upper layers
to mitigate this mismatch.
Consequently, we have developed AKadeMesh (Adaptive

Kad-enhanced Mesh), a cross-layer approach specifically de-
signed for 802.11s networks. It is based on the P2P protocol
Kad and adapts the logical P2P overlay to the physical mesh
underlay by directly utilizing the 802.11s standard’s routing
metric ALM. The resulting adaptive and topology-aware over-
lay is used to perform logical clustering for the distributed
management and monitoring of 802.11s networks, thereby
maintaining unrestrained interoperability to the 802.11s stan-
dard. Our solution was implemented and evaluated in a real-
world test bed. Results demonstrate the practical feasibility of
the approach and verify the expected clustering benefit.
The remainder of this paper is organized as follows: Section

II outlines the basic principles of the 802.11s standard and
its Linux reference implementation. We briefly introduce our
previously centralized 802.11s management framework, that
served as starting point for AKadeMesh. Subsequently, the
P2P protocol Kad is motivated and its basic mechanisms are
introduced. Section III describes the concept and design of
AKadeMesh. In Section IV, we illustrate the results of our
real-world test bed evaluation. In Section V, we discuss related
work in the fields of mesh network management and the
application of P2P protocols over wireless mesh underlays.
Finally, we give a conclusion in Section VI and briefly state
approaches for future research.

II. TECHNOLOGICAL BASIS

A. The IEEE 802.11s WLAN Mesh Standard

As first common industry WLAN mesh standard, IEEE
802.11s was ratified in September 2011 [1], [5]. It enables
vendor-independent infrastructure-less multi-hop communica-
tion based on the widespread WLAN technology. Mesh func-
tions like peering and routing are directly integrated into the
802.11 MAC layer. To ensure interoperability, every 802.11s



Mesh Point (MP) must support HWMP and its metric ALM
as mandatory default profile for mesh routing [6]. HWMP is
based on the reactive Ad-Hoc On-Demand Distance Vector
(AODV) routing protocol [7]. Mesh paths are chosen accord-
ing to the ALM. It represents the costs for transmitting a frame
over a specific link in the mesh network by considering the
applied WLAN physical layer and the wireless medium. The
so-called airtime cost (ca) is calculated as follows:

ca =

[
Oca +Op +

Bt

r

]
· 1

1− efr
(1)

Oca and Op are constants for the channel access and MAC
protocol overhead. Bt is the test frame size. By default, a
frame size of 8192 bit is used. r denotes the test frame data
rate, given in Mbit/s, whereas efr denotes the expected frame
error rate. The estimation of efr as well as the values of the
overhead constants are not predefined by the 802.11s standard
but left open to vendor implementations [8]. Path tables on
every MP contain forwarding rules to target nodes via best
neighbors (smallest resulting ALM). Since ALM works as
cumulative metric, it represents both overall path quality and
length. The Linux project open80211s [9] is currently the most
advanced open-source reference implementation of 802.11s. It
is fully integrated into the mac80211 kernel module, i.e. the
Linux software WLAN MAC layer. Since some parameters
in ALM calculation are left open to vendor implementations,
open80211s provides own variants for error rate estimation and
overhead constants. Real-world studies have demonstrated the
routing performance of open80211s [8].

B. 802.11s Mesh Management Framework

Our solution is based on a centralized management frame-
work for 802.11s networks that we developed previously [2].
Running on each mesh node, it encapsulates the features of
the Linux 802.11s implementation open80211s. Every node
runs an integrated SNMP agent (Simple Network Management
Protocol). Local mesh status information, such as peer links
or paths with ALM cost, and configuration functions are
represented as SNMP data model. Status information and
configuration functions can be accessed either by a local or
an external SNMP client. Our framework further differentiates
between an Agent and Manager role. The latter additionally in-
tegrates an SNMP client for remote query of status information
and configuration of nodes. Thus, SNMP serves as interface to
manage 802.11s nodes and to combine their otherwise limited
network view to a global scope. Real-world evaluation with
an increasing number of nodes revealed that decentralization
of the existing framework is inevitable to ensure its scalability
and robustness.

C. The Kad P2P Protocol

For realizing efficient structured P2P overlays, the Kademlia-
based implementation variant Kad offers the best conditions
[10]. To each peer, which is part of the Kad network, a hash
value is assigned. Based on its hash value, a peer assumes
a place in the logical address space. The distance needed
to derive the similarity degree between two hash values is

calculated by the XOR metric. Two values are similar if their
distance is not greater then a defined search tolerance. In the
protocol, the composition of the network and the communica-
tion between peers are specified [11]. To join the Kad network,
a peer executes the so-called bootstrapping. For this purpose,
it contacts a known peer, is inserted into the known peer’s
routing table, and learns further peers from the known peer’s
response. Each contact in a peer’s routing table has a life
time. An efficient maintenance mechanism makes sure that
peers with expired life time are contacted and removed from
the routing table if they do not answer. Furthermore, other
peers are contacted periodically to learn new contacts (self-
and random-lookup). Peers always have sufficient information
about other peers in their direct neighborhood. In distant
regions, they know at least one contact or more due to the
routing table’s flexibility. An iterative algorithm is applied for
lookups on the address space [12], [13]. During a lookup,
the searching peer first contacts peers closest to the requested
hash value from its own routing table. In return, those peers
answer the searching peer. Thereby, it learns new contacts
until it knows contacts within search tolerance. The lookup
algorithm is simplified by using the XOR metric, making Kad
more consistent and efficient [14].
With focus on dynamically distributing the functionality of

our 802.11s Management Framework at run time, Kad is best
suitable due to its low maintenance efforts for adapting the
overlay to dynamic changes [12], [13]. Moreover, its search
tolerance mechanism can directly be applied for establishing
cluster formation and control.

III. CONCEPT

A. Mesh Management Scenario

In this paper, we present a decentralized management solution
for 802.11s mesh networks. First, to illustrate the limited
scalability of a centralized solution, we assume a simplified
request response scenario for cyclic network monitoring. In
every query cycle, a single management node (Manager) sends
a request to each node, answered with a response containing
the node’s status information. With regard to the number
of messages generated, a linear scaling is only given for
mesh nodes in single-hop distance to the querying Manager,
as no frames have to be forwarded by intermediary nodes.
Considering a linear multi-hop path of nodes, the Manager
being the first node of the path as a worst case, the resulting
number of request/response messages per query cycle can be
assessed as follows:

#messages = 2 ·
#nodes−1∑

i=0

(#nodes− i) (2)

Every node in the path must forward requests destined to
its successors in the path. The same applies to all responses
that need to be passed back to the Manager, located at the
beginning of the path. After the first hop, #nodes-1 requests
and #nodes responses are forwarded, etc. Considering large
mesh networks with tens to hundreds of nodes, it becomes
obvious that a centralized monitoring approach is not suitable
in terms of scalability and induced overhead.



B. AKadeMesh – Distributed 802.11s Mesh Management

Our framework AKadeMesh (Adaptive Kad-enhanced Mesh)
focuses on the decentralized management of 802.11s WLAN
mesh networks. It follows the Software Defined Network-
ing (SDN) paradigm, shifting network control functions into
higher abstraction levels. The aim of our approach is to create
and maintain a logical network overlay that dynamically adapts
to the mesh topology. Thereby, the adaptive overlay acts as
middleware to abstract from the underlying physical network,
providing a platform-independent address space as well as
data organization and maintenance mechanisms. AKadeMesh
is based on a self-developed, previously centralized 802.11s
management framework and the Kad P2P protocol. The orig-
inal framework features remote monitoring and configuration
of Mesh Agents by a single Mesh Manager. AKadeMesh
reduces the centralized monitoring overhead by distributing it
to multiple Managers, each only being responsible for a part of
the network. In this way, both scalability and robustness of the
management plane are increased. The Manager-Agent-Ratio
is used as service requirement for this application scenario.
Constraints for AKadeMesh are overall mesh network size and
topology.
The network topology is derived from the metrics of the mesh

paths, i.e., the 802.11s standard’s ALM. ALM represents both
overall quality and length of a path. In [15] and [16] it has
been shown that ALM outperforms other routing metrics, such
as ETX and ETT. Thus, it is our preferred basis for cluster
formation and Manager selection.

Initial
Manager

Topology 
Discovery

Manager 
Assignment

Manager
Placement

Agent
Placement

Management Decentralization Kad P2P Overlay Adaptation

Adaptive Cluster Maintenance

Fig. 1. AKadeMesh Work Flow

Figure 1 shows the work flow of AKadeMesh. In our proto-
type design we assume the existence of an initial Manager. In
a practical scenario, this node could result from a preceding
competition phase. The initial Manager performs a global
topology discovery once, collecting the routing tables of all
Agents, including the ALM costs to other nodes. Subse-
quently, additional Managers are promoted with respect to
the Manager-Agent-Ratio service requirement and the current
mesh topology, derived from the combined ALM. Based on
the Kad protocol, all Managers are placed in a logical network
overlay along with Agents in their responsibility zone, deter-
mined by ALM proximity. The resulting optimized overlay
represents non-overlapping clusters of Agents, each assigned
a separate Manager. Hereafter, the initial node placement in the
logical overlay is dynamically adapted to the underlying mesh
topology using the maintenance mechanisms of the Kad proto-
col. For instance, Kad provides for detection of node churn and
roaming by means of Bootstrap, Hello, and Ping operations
as well as peer life time expiry [11]. After overlay creation,
distributed cluster maintenance and refinement is handled
by the distributed Managers, again starting with topology
discovery, i.e., intra-cluster ALM collection. Kad provides

further operations for publishing and retrieval of information
[11]. These are suitable to perform synchronization between
Managers, such as the exchange of cluster status data or a
handover of Agents due to roaming.

a) Manager Decentralization :
Based on the Manager-Agent-Ratio service requirement, the

initial Manager selects #managers additional Managers from
the remaining set of #nodes nodes. In our prototype design,
the combination of Managers with maximum overall inter-
Manager distance d is selected, using ALM as distance mea-
sure (see Listing 3).

#comb =

(
#nodes− 1

#managers− 1

)
choice = max

#comb∑ #managers∑
i!=j

dij

i, j = 1, ...,#managers

(3)

After Manager promotion, all Agents are associated to their
nearest Manager, denoted by smallest ALM. This simple
approach prefers combinations with Managers located at the
network edges, which helps in forming non-overlapping clus-
ters but does not account for inhomogeneous mesh topologies.
Nevertheless, it serves as satisfactory starting point and proof
of concept for a clustering strategy, solely based on 802.11s
ALM without the need for additional proximity information.

b) Overlay Adaptation :

Once determined, all Managers and their Agents are placed in
the logical Kad address space that therefrom facilitates cluster
maintenance. Figure 2 illustrates the Kad overlay adaptation.

Agent

Manager

2n-1
0

Manager

2n-2

2n-1

Agent

Hash
Position

Search
Tolerance

Fig. 2. P2P Overlay Clustering Approach

Depending on a given address space width and the number of
Managers, the Kad search tolerance (ST) is adjusted as shown
in Listing 4. It directly represents equally-sized clusters, i.e.,
the responsibility zone of each Manager. Thereby, the initial
Manager obtains address 0 and is assigned the first logical
cluster. The remaining Managers are placed consecutively in
ST distance, each at the start address of its cluster.

i = dlog2(#managers)e
ST = 2hashBitLength−i

posManj = j · ST
j = 0, ...,#managers− 1

(4)



Subsequently, all Agents are sorted by ALM cost to their
associated Manager in ascending order and placed equidis-
tantly within their cluster address space, denoted by Manager
position and ST:

posAgentj = posMan+ j · ST

#clusterAgents

j = 1, ...,#clusterAgents

(5)

Initial overlay creation and address assignment are performed
by the initial Manager, acting as Kad bootstrap node. The new
overlay addresses are synchronized in the network via Kad
Bootstrap operations, triggered by the initial Manager. After
first decentralization and overlay formation, Kad’s Hello and
peer timeout mechanisms [11] for the detection of incoming
and leaving nodes can be used by the distributed Managers
to handle on-line cluster maintenance. Each Manager issues
the cyclic monitoring of mesh information only for Agents
within its cluster, leading to a reduced network overhead
induced by our 802.11s Management Framework. Manager
synchronization and exchange of preprocessed status data is
possible via Kad Publish operations [11].

c) Architecture :
Figure 3 shows the architecture of AKadeMesh. Our solution

relies on the Linux WLAN MAC layer, implemented as Kernel
module mac80211, which integrates the 802.11s implementa-
tion open80211s. As first application-layer component we run
our Java-based Mesh Management Framework that automates
the bootstrapping of an 802.11s node and acts as Agent
(server) or Manager (client) to realize SNMP-based remote
monitoring and configuration.

WLANlAdapter

Linuxl.lopen80211s

MeshlManager

SNMPlServer

JavaKad

SNMPlClient

GetlMeshlPathsl.lALM
SetlManagerlRolelOlAgentlList

AKadeMesh

Manager

WLANlAdapter

Linuxl.lopen80211s

MeshlAgent

SNMPlServer

JavaKad

SNMPlClient

Agent

SNMPlClient

Managementlof
ClusterlAgents

ManagerlPromotion
OverlaylAdaptation
OverlaylMaintenance

IEEE 802V11s Mesh Network

GetlMeshlPathsl.lALM
SetlManagerlRolelOlAgentlList

JavalVirtuallMachine JavalVirtuallMachine

Fig. 3. Architecture of AKadeMesh

The network clustering and decentralization of the former
centralized Manager role is done via Kad, running above
the Management Framework. We use our own Kad imple-
mentation, called JavaKad. The combination of Management
Framework and JavaKad composes AKadeMesh. Both com-
ponents communicate locally via SNMP, as already supported
by the Management Framework. This way, a mesh node’s
routing information, including ALM path costs, are integrated
into JavaKad for overlay clustering. A mesh node configured
as Agent can be promoted as Manager after receiving a
corresponding command from another Manager via Kad. Thus,
in top-down direction, JavaKad passes received promotions

and cluster Agents to be monitored to the underlying Manage-
ment Framework. Based on these, the latter performs cluster
adaptation or switches between Agent and Manager role.

IV. REAL-WORLD TEST BED EVALUATION

A. Experimental Setup

For practical evaluation, 12 devices were used to form a mesh
network, comprising 10 Raspberry Pi boards and 2 notebooks
running Linux distributions with Kernel v3.18. Every device
was equipped with a WLAN USB adapter (Buffalo WLI-
UC-GNM, Ralink chipset driver rt2800usb) configured to
operate as 802.11s mesh point in 802.11g mode. All nodes
were located in the same room within single-hop distance
and configured to use a channel not overlapping with other
networks in the building. We conducted both single-hop and
multi-hop measurements. For the latter, open80211s enables
the enforcement of multi-hop paths via peer link blocking. As
the used WLAN adapters did not support transmission power
reduction and a deployment range leading to path lengths of
up to eleven hops was not feasible, enforcement was necessary
for setting up a reproducible multi-hop environment. On each
node, we blocked the establishment of links to all peers except
predecessor and successor in the desired multi-hop chain.
The enforced path represents a worst case scenario, as the
possibility for frame collisions is increased and no parallel
transmissions of non-adjacent nodes are possible, compared
to a multi-hop topology caused by distance.

B. Test Cases
With focus on our mesh management application scenario

we measured the amount of monitoring data sent by every
mesh node, including both generated and forwarded SNMP
messages. We used a separate WLAN adapter configured in
monitor mode to capture the traffic of all nodes in the room us-
ing Wireshark v1.12. As communication over multi-hop paths
generates additional frame transmissions due to forwarding
on intermediary nodes, the induced network load is highly
topology-dependent (see Section III-A). Thus, we developed
three test cases to demonstrate the limited scalability of a
centralized monitoring and the benefit of our decentralization
approach using AKadeMesh.
The 10 Raspberry Pi boards were configured as Agents

in all test cases. One of the notebooks was always con-
figured as initial Manager. In the first test case, all nodes
were allowed to communicate directly via a single hop. The
initial Manager periodically queried status information from
all Agents (including the second notebook), based on our
centralized Management Framework. The second test case
again comprised only a single Manager, with all Agents now
connected in a linear multi-hop chain. Intended as a worst-
case scenario, the Manager was located at one end of the
path, the last Agent being the second notebook in eleven-
hop distance. The third test case included AKadeMesh and
the dynamic delegation of a second Manager. The second
notebook, previously configured as Agent and located at the
remote end of the path, was dynamically assigned the second
Manager role. Following our decentralization strategy depicted



in Listing 3, both Managers were located at the end of the
path, each responsible for a cluster of five Agents. After initial
decentralization and cluster formation, both Managers sent
SNMP requests only to Agents in their cluster. The SNMP
query interval was set to 15 seconds and 25 query cycles were
captured in all test cases.

C. Discussion
To compare the resulting overhead of the centralized single-

hop, centralized multi-hop, and distributed multi-hop monito-
ring scenario, we averaged the SNMP traffic sent within 25
query cycles and normalized it to a single cycle.

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9 10 11

S
iz

eA
of

AD
at

a
AS

e
nt

A[k
B

yt
e

]

NumberAofAAgentsAMonitored

Single-Hop

Multi-Hop

Fig. 4. Scalability of
Centralized Monitoring

1206

512 444

0

200

400

600

800

1000

1200

1400

CentralizedS
Multi-Hop

DistributedS
Multi-Hop

KadSOverlayS
Creation

S
iz

eS
of

SD
at

aS
S

en
tS[

kB
yt

e]

Fig. 5. Distribution Benefit
of AKadeMesh

0

50

100

150

200

250

300

350

400

S
iz

e 
of

 D
at

a
 S

en
t [

kB
yt

e]

FWD Errors

SNMP Data

Fig. 6. Data Sent Per Node
(Centralized Multi-Hop)

0

50

100

150

200

250

300

350

400

S
iz

e 
of

 D
at

a 
S

en
t [

kB
yt

e]

FWD Errors

SNMP Data

Fig. 7. Data Sent Per Node
(Distributed Multi-Hop)

Figure 4 demonstrates the scalability of centralized monito-
ring in a single-hop and a multi-hop scenario, i.e., the first two
test cases. In general, the amount of data sent increases linearly
if all status information are queried directly within single-hop
range. However, the availability of more nodes leads to larger
SNMP responses per node, since mesh information, such as
peer and path tables, increase with node count. In the multi-
hop setup, data needs to be forwarded by intermediary nodes.
Thus, in this scenario, the data sent in total increases non-
linearly with path length (see Section III-A).
In the analysis of our traffic captures, we observed an

open80211s bug causing routing loops in multi-hop setups
with four and more hops (second and third test case). During
the frame forwarding process, i.e., the SNMP response of
an Agent was sent back to the Manager at the beginning of
the path, occasionally intermediary nodes selected a neighbor
leading in the wrong direction. The next hop node then
forwarded the frame back in the right direction and frame
circulation started. It ended after mesh frame time-to-live
(TTL) had decremented to zero or path validity had expired,
followed by a path refresh resulting in a possible correction
of forwarding entries. Since mesh frame TTL is initialized
to 31 by default, these circulations caused many more frame
transmissions than a correct path traversal. Recently (June
2015), two patches were released in the development branch
of the mac80211 kernel module, potentially addressing this

issue [17], [18]. For now, we isolated the amount of SNMP
data forwarded incorrectly by filtering all SNMP messages
with unexpected mesh TTL. In contrast to the frame sequence
number, the mesh TTL is only decremented after frame
forwarding and not on retransmissions caused by collisions
or bad frame integrity.
Figures 6 and 7 show the SNMP data sent by every node per

query cycle in the second and third test case. All data sent cor-
rectly, including MAC-layer retransmissions, is given in blue
bars, forming a descending step function. This corresponds
to the expected multi-hop forwarding behavior, as introduced
in Section III-A. In the centralized multi-hop setup (Figure
6), Pi 1 forwards requests generated by the single Manager
to all succeeding nodes in the path. The same accounts for
all responses sent back to the Manager. Thus, nodes in greater
distance to the Manager need to forward less messages. Figure
7 contains the data sent by each node in the distributed multi-
hop scenario, after promotion of the second Manager. Again,
the first node next to each Manager forwards most requests and
responses. The amount of data sent incorrectly due to routing
loops is shown in red bars for both test cases. This behavior
mainly occurred on nodes in the middle of the multi-hop chain.
Especially SNMP responses with a size of more than 1 kB
circulated up to 30 times before mesh frame TTL ran out.
Figure 5 visualizes the overall benefit of AKadeMesh, ap-

plied in the third test case. A single Manager polling status
information in a multi-hop chain (second test case) caused a
total amount of 1206 kB SNMP data sent per query cycle.
Dynamically assigning a second Manager and building two
clusters, the resulting data size sent per query cycle was
decreased to 512 kB. This corresponds to a 57 % reduction
of monitoring traffic. To initialize the logical overlay, i.e., to
perform dynamic Manager promotion, Agent association and
logical address distribution (Kad bootstrapping), only 444 kB
of Kad data were sent once, causing even less overhead than
a monitoring cycle after decentralization.

V. RELATED WORK
A survey on mesh network monitoring techniques is pre-

sented in [3]. Relevant work includes ANMP, representing an
extended SNMP version. Contrary to our solution, clusters are
not dynamically established. Moreover, ANMP has not been
implemented and tested. Furthermore, Mesh-Mon is presented,
which is a hierarchical overlay network for propagation of
monitoring information. Problems with scalability in large-
scale networks have been identified, which we address in our
paper. In [4], an overview and analysis of P2P algorithms over
MANETs are given. The work includes a categorization of
algorithms and an analysis of challenging issues. The four cat-
egories comprise DHT-based, flooding-based, advertisement-
based, and social-based methods. The conclusion states that
one challenge is to minimize the consumption of network
resources and to divide the burden of sharing data equally
among the set of nodes by considering network topology.
This is exactly the challenge that we address in this paper.
The authors in [19] introduce a DHT-based Cluster Routing
Protocol (DCRP), improving network performance by reduc-



ing the time for path selection and number of communication
hops in large-scale WMNs. The concept is implemented as
OLSR plugin, which is no longer applied by IEEE 802.11s,
and thus represents an outdated approach. Preliminary simu-
lation results only consider the clustering aspect but do not
investigate the DHT-based service. The work in [20] pursues
the localization of mobile users in WMNs without flooding
to decrease latency and overhead, using a DHT-based routing
scheme. DHT routing is inferred from the underlay resulting in
one logical hop. Compared to our approach, the authors have a
different focus. Only localization messages are routed whereby
our application is optimized for the management of 802.11s
networks. The motivation for the work in [21] consists in
minimizing overhead transmissions for signalling purposes to
make P2PSIP feasible in mobile sensing networks. An adaptive
algorithm based on Kademlia and dSIP for the calculation of
the refresh time is proposed. However, there is no topology-
aware overlay as only maintenance intervals of the Kademlia
network are adapted. To achieve an efficient file query by
clustering peers by their common interests, the approach in
[22] suggests a proximity-aware and interest-clustered P2P file
sharing system (PAIS), based on the Cycloid P2P network.
PAIS focuses on wired communication over the Internet. A
node’s Hilbert number serves as proximity index, calculated
from the distance vector to a landmark. Contrary, we use ALM
to derive proximity in 802.11s WMNs.

VI. CONCLUSION

In this paper we present AKadeMesh (Adaptive Kad-
enhanced Mesh), a framework for decentralized manage-
ment of 802.11s WLAN mesh networks. Combining a self-
developed 802.11s Management Framework and the P2P pro-
tocol Kad, AKadeMesh provides an adaptive topology-aware
network overlay for Manager decentralization and logical
clustering, increasing scalability and leading to a reduced
management overhead. We integrate the 802.11s standard’s
mandatory routing metric ALM into the Kad protocol to
consider the physical mesh topology in the logical overlay.
To the best of our knowledge, our cross-layer solution is
the first approach to perform ALM-based mesh clustering.
Thereby, no changes to the 802.11s standard are made and
no additional proximity information are required. AKadeMesh
further acts as middleware, granting efficient lookup of mesh
status information, monitored and organized in the distributed
management plane. Real-world evaluation in a 12 node test
bed demonstrates practical feasibility and verifies the expected
clustering benefit in a worst-case multi-hop scenario. In future
research, we will perform large-scale evaluation both in a
40 node test bed and in a simulation environment, that are
currently under preparation. Using this, we want to investigate
strategies to determine the Manager-Agent-Ratio for different
network sizes and further develop distributed cluster mainte-
nance and Manager synchronization.

ACKNOWLEDGMENT

The authors would like to thank the German Research Foun-
dation (DFG), Research Training Group 1424 (MuSAMA) for
their financial support.

REFERENCES

[1] “IEEE Standard for Information technology - Telecommunications and
information exchange between systems - Local and metropolitan area
networks - Specific requirements Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specifications,” IEEE Std
802.11-2012, 2012.

[2] M. Rethfeldt, P. Danielis, G. Moritz, B. Konieczek, and D. Timmermann,
“Design and Development of a Management Solution for Wireless Mesh
Networks based on IEEE 802.11s,” in Integrated Network and Service
Management (IM), 14th IFIP/IEEE Symposium on, 2015.

[3] R. Pinto, “WMM: Wireless Mesh Monitoring,” Ad Hoc Network, 2009.
[4] L. Liu, Y. Jing, Y. Zhang, and B. Xia1, “A Survey on P2P File Sharing

Algorithms over MANETs,” Consumer Electronics Times, 2013.
[5] R. C. Carrano, L. C. S. Magalhães, D. C. M. Saade, and C. V. N.

Albuquerque, “IEEE 802.11s multihop MAC: A tutorial,” IEEE Com-
munications Surveys & Tutorials, 2011.

[6] S. Bari, F. Anwar, and M. Masud, “Performance study of hybrid wireless
mesh protocol (HWMP) for IEEE 802.11s WLAN mesh networks,”
in Computer and Communication Engineering (ICCCE), 2012 Interna-
tional Conference on, 2012.

[7] C. Perkins, E. Belding-Royer, and S. Das, “Ad hoc On-Demand
Distance Vector (AODV) Routing,” RFC 3561, 2003. [Online].
Available: http://www.ietf.org/rfc/rfc3561.txt

[8] R. G. Garroppo, S. Giordano, and L. Tavanti, “A joint experimental and
simulation study of the IEEE 802.11s HWMP protocol and airtime link
metric,” International Journal of Communication Systems, 2012.

[9] “open80211s,” http://open80211s.org/open80211s/. [Online]. Available:
http://open80211s.org/open80211s/

[10] P. Danielis, V. Altmann, J. Skodzik, T. Wegner, A. Koerner, and
D. Timmermann, “P-DONAS: A P2P-based Domain Name System in
Access Networks,” in ACM Trans. Internet Technol., 2015.

[11] R. Brunner, “A Performance Evaluation of the Kad-Protocol,” Master’s
thesis, Mannheim, Germany, 2006.

[12] D. Stutzbach and R. Rejaie, “Improving Lookup Performance Over a
Widely-Deployed DHT,” in INFOCOM, 2006.

[13] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer informa-
tion system based on the XOR metric,” in IPTPS, 2002.

[14] R. Steinmetz and K. Wehrle, P2P Systems and Applications, Springer
Lecture Notes in Computer Science. Springer-Verlag Berlin, 2005.

[15] K. S. Nagegowda, H. R. Ranganath, C. Puttamadappa, and T. G.
Basavaraju, “Performance Evaluation of Scalable Routing Protocols
using Routing Metrics for Wireless Mesh Networks under different Net-
work Scenarios,” IRACST - International Journal of Computer Networks
and Wireless Communications (IJCNWC), 2014.

[16] S. Islam, M. M. Alam, M. A. Hamid, and C. S. Hong, “High throughput
path selection for IEEE 802.11s based Wireless Mesh Networks,” in 4th
International Conference on Uniquitous Information Management and
Communication, 2010.

[17] “mac80211 Patch: don’t invalidate SN on discovery failure.”
[Online]. Available: http://comments.gmane.org/gmane.linux.kernel.
wireless.general/139013

[18] “mac80211 Patch: don’t special case routing to transmitter.” [Online].
Available: http://www.spinics.net/lists/linux-wireless/msg138083.html

[19] M. Pinheiro, S. Sampaio, F. Vasques, and P. Souto, “A DHT-based
approach for path selection and message forwarding in IEEE 802.11s in-
dustrial wireless mesh networks,” in 14th IEEE international conference
on Emerging technologies & factory automation, 2009.

[20] M. Bezahaf, L. Iannone, M. de Amorim, and S. Fdida, “Transparent and
Distributed Localization of Mobile Users in Wireless Mesh Networks,”
in Quality of Service in Heterogeneous Networks. Springer Berlin
Heidelberg, 2009.

[21] P. Sendı́n-Raña, F. González-Castaño, F. Gómez-Cuba, R. Asorey-
Cacheda, and J. Pousada-Carballo, “Improving management perfor-
mance of P2PSIP for mobile sensing in wireless overlays,” Sensors,
2013.

[22] H. Shen, G. Liu, and L. Ward, “A Proximity-Aware Interest-Clustered
P2P File Sharing System,” Parallel and Distributed Systems, IEEE
Transactions on, 2015.


