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Abstract—Real-time systems play a major role in the realm of
industrial automation. It is predicted for the number of smart
interconnected devices that participate in such systems to grow
significantly in the future. This development is also referred to
as Industrial Internet of Things (IIoT) or Industry 4.0. The
high number of devices results in highly distributed applications.
Therefore, it is no longer sufficient for each device to be real-
time capable. In fact, the influence of the communication on the
overall timing behavior of the applications grows. Taking this
into account, a variety of real-time capable Ethernet approaches
called Industrial Ethernet (IE) emerged. However, the established
IE solutions rely on proprietary hardware and/or non standard
conform protocol adaptations. This leads to very expensive hard-
ware and incompatibilities with other IE solutions or common
Ethernet, and thus degrades the interoperability. HaRTKad
describes a purely software-based P2P approach that allows
deterministic communication over common Ethernet. Although
it solely relies on well-known standards and allows real-time
communication, it suffers from a multitude of problems. In this
paper, the low network utilization, the handling of hash collisions
and the traffic prioritization are revealed as the most significant
limitations of HaRTKad and possible solutions to these problems
are presented.

I. INTRODUCTION

In the area of industrial automation, fieldbus systems pose a
well-established solution for real-time device communication.
They not only enable a deterministic message exchange but
also satisfy the hard real-time requirements described in [1].
However, fieldbuses lack scalability as they are drastically
limited in address space. Furthermore, the different solutions
are not compatible with each other leading to a low degree of
interoperability. To overcome the weaknesses of such fieldbus
systems and allow a total horizontal and vertical integration
of automation systems, several Ethernet-based solutions called
Industrial Ethernet (IE) emerged [2]. They can satisfy hard
real-time requirements like fieldbuses, while allowing a much
higher number of network participants. The number of nodes
in the network is theoretically only limited by the available
MAC or IPv4/v6 address space. Furthermore, IE solutions are
much more flexible in terms of network topology, whereas
fieldbus systems are typically limited to line or ring structures.
Additionally, IE systems have a major economical advantage
compared to fieldbuses. The use of Ethernet technologies
leads to highly reduced costs for development, production
and deployment of such systems and allows for a total vertical

and horizontal integration [3]. In this way, industrial facilities
can be directly integrated into corporate processes. However,
despite of the many advantages, IE systems also suffer from
some weaknesses. The majority of the available solutions are
based on a master-slave or client-server approach. This implies
the necessity of a central instance that poses a single point of
failure (SPoF) and a bottleneck. Furthermore, some realizations
require dedicated and expensive hardware or rely on non
standard conform protocol adaptations to provide the hard real-
time behavior. This degrades the flexibility and interoperability
between the different solutions. These weaknesses will take on
greater significance in the future as the number of intelligent
and interconnected devices in industrial facilities will increase
drastically [4]. To overcome the described problems, Skodzik
et al. proposed Peer-to-Peer (P2P) networks as an alternative to
the master-slave or client-server based approaches applied by
other IE solutions. This approach omits modifications on lower
layers, as P2P networks are realized solely on the application
layer. Thus, no special hardware or protocol adaptations are
needed. In order to prove the feasibility of this approach,
Skodzik et al. developed a hard real-time capable P2P system
based on the Kademlia protocol, called HaRTKad [5]. The main
focus of HaRTKad is to increase the network’s robustness and
scalability while only utilizing common Ethernet technologies
and maintaining hard real-time capabilities. Although the
experimental results in [5], [6] and [7] show the general
feasibility of the concept, several new problems arise. In this
paper, we reveal the most significant limitations of HaRTKad
and propose possible solutions to the described problems. The
main contributions are:

• Identification of the limitations of HaRTKad
• Proposal of an algorithm to handle hash collisions in

DHT-based P2P networks
• Description of a method to enable traffic prioritization in

HaRTKad and increase the maximum number of network
participants

The remainder of this paper is organized as follows: In
Section II, the related work in the area of real-time commu-
nication systems is presented. Section III describes the basic
mechanisms of HaRTKad and Section IV outlines the most
significant weak spots of HaRTKad. In Section V, we present
a way to cope with hash collisions. Section VI, describes an



approach to enable traffic prioritization in HaRTKad. Finally,
the paper concludes in Section VII.

II. RELATED WORK

Traditional fieldbus systems like PROFIBUS or CC-Link
are gradually replaced by Industrial Ethernet to allow a higher
number of interconnected devices and increase interoperability
with the remaining company infrastructure. [1] gives a summary
of current IE solutions and categorizes them according to their
real-time capabilities and hardware/software requirements. The
majority of current IE realizations like PROFINET IO/IRT,
EtherCAT or SERCOS III rely on the master-slave or client-
server principle, which implies the necessity of a central
instance [8] [9] [10]. EtherCAT, for example, needs a central
master to synchronize the connected devices and control the
information exchange. This central instance poses a SPoF
and bottleneck. Furthermore, many solutions utilize special
hardware to achieve the real-time behavior, which is expensive
and usually proprietary. This results in strong constraints in the
planning and deployment phase of a network. PROFINET
IO/IRT requires special switches, as the network frames
are forwarded on a fixed route that is determined by the
transmission time. In [11], a real-time Ethernet approach based
on the master-slave principle is developed where any device
in the network can act as master. In order to achieve real-
time behavior, the data link layer is exchanged with a custom
protocol. This results in the necessity of special hardware and
incompatibility with common Ethernet. [12] also proposes a
real-time capable Ethernet protocol adopting the master-slave
pattern. Here, the master represents a SPoF and the slave nodes
require special hardware to participate in the network. Santos et
la. present a scheduling framework, where a hierarchical server
architecture is used to enable a dynamic bandwidth reservation
for certain message streams [13]. As prove of concept, the
approach was implemented in specialized switches as hardware
software co-design. This concept is called Hard Real-Time
Ethernet Switching Architecture (HaRTES). In [14], HaRTES
is extended with the capability of multi-hop communication
over multiple HaRTES switches. To achieve this, a distributed
scheduling algorithm called DGS is presented. However, the
utilization of specialized switches degrades the interoperability
and results in higher deployment costs. Schmidt et al. present a
real-time Ethernet solution without the disadvantage of a central
instance called DRTP [15]. In the developed concept, two
proprietary layers are introduced directly above the Ethernet
layer to control the medium access. Hereby, the medium access
scheme is based on a TDMA approach with defined time slots.
However, the missing support of TCP/UDP and IP prohibits a
total vertical and horizontal integration. The hard real-time P2P
approach HaRTKad by Skodzik et al. also employs a TDMA
approach to manage the medium access. But in contrast to [15],
it is based on unchanged versions of Ethernet and IP/UDP.
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Fig. 1. Structure of Kad address space illustrated as a ring including nodes,
data objects and the search tolerance ST.

III. HARTKAD

HaRTKad is a hard real-time capable modification of the
distributed hash table (DHT)-network Kad, which is a specific
implementation of the Kademlia protocol. Kad realizes a fully
decentralized structured network where all nodes and data
objects are identified through a unique ID, also referred to
as hash value. The hash value is calculated through a hash
function, like Message Digest 4 or 5, from a fixed and unique
node name or a node’s IP or MAC address. Every node in a
Kad network is responsible for a certain set of data. This data
set is specified through the search tolerance ST. If the distance
D between the node’s hash value and the hash value of the
data is smaller than ST the node is responsible for the data.
In order to determine the distance between two hash values,
the XOR metric is used as described in Eq. (1).

D = Hashnode ⊕Hashdata < ST (1)

The address space in a Kad system can be illustrated as a
ring, where nodes and data objects are placed according to
their hash value as depicted in Fig. 1.

The ST divides the address space in different areas of
responsibility that are represented by the dark blue dotted
lines. In order to retrieve data from another node, a Kad node
must at first find the Kad node responsible for the data object.
Therefore, each node maintains a routing table. This routing
table contains information of many nodes with a short and
only few nodes with a long distance to the own hash value.
When a node (node A) is searching for a data object, it first
contacts the node with the lowest distance to the data object
(node B). If node B is responsible for the requested data, it
will answer with the data. Otherwise, it will return the contents
of its routing table. Then, node A contacts the node with the
lowest distance to the data object from node B’s routing table.
This is repeated until a maximum number of search steps is
reached (timeout) or a node responsible for the data is found.
While the worst case complexity of a node search is O(n),



the average complexity is O(log2(n)), where n is the number
of network participants. The low average complexity results
from the special structure of the routing table and the fact
that the Kad nodes and the data object share one address
space. To fulfill the hard real-time requirements of industrial
applications, information must be exchanged in a deterministic
manner. Industrial Ethernet solutions achieve this through an
arbitrary media access controlled by a central instance. This
central instance would, for example, assign certain time slots
to the network participants when a TDMA-based approach is
applied. However, there is no central instance in a Kad-network
to manage the network access. Hence, a node must know by
itself when it is allowed to communicate over the network.
HaRTKad uses the hash value of a node as basis to determine a
node’s time slot. This correlation is possible because both, hash
value and time slot, are unique. In order to calculate the time
slots for each node, HaRTKad utilizes the search tolerance. Kad
originally uses a static value for the search tolerance, which is
not sufficient for the purpose of time slot calculation. Therefore,
HaRTKad adopts and modifies the algorithm presented in [16],
where the ST is adjusted at runtime to ensure that at least one
node is responsible for each possible data object. However, this
algorithm requires knowledge about the number of network
participants and their position on the hash ring. To gather this
knowledge, [17] describes a mechanism that allows a Kad
node to discover all other network participants with a high
probability and without a-priori knowledge. This mechanim
is called KaDis (Kad Discovery) and will be executed by a
master node. The master is determined through a competition
phase of all peers, where the first node to start the KaDis
algorithm will be the master node. The role of the master is
assigned to another node in the network if the initial master
leaves the network. HaRTKad modifies the aforementioned
algorithm for the dynamic ST adjustment, so that each area of
responsibility contains a maximum of one node. This algorithm
is referred to as inverse dynamic search tolerance (IDST). The
newly obtained value for the search tolerance STIDST will be
stored consistently by the IDST algorithm on all nodes. Fig. 2
shows an example where the hash value size is 4 Bit and three
nodes are participating in the HaRTKad network. The IDST
algorithm is executed periodically in a maintenance phase that
is introduced in HaRTKad. In this way, joining or missing
peers can be detected and removed from or added to the time
cycle.

Based on its hash value and STIDST each node can
determine its own time slot via Eq. (2).

Slotnode =
Hashnode

STIDST
(2)

The total number of available time slots also depends on
STIDST as described by Eq. (3). Here, b denotes the width
of the hash values.

Nslots =
2b

STIDST
(3)
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Fig. 2. Utilization of the search tolerance to determine the time slots for each
node.

The cycle time, that can be seen as one turn around the ring,
is calculated through Eq. (4). Here, tex stands for the time that
is needed to find a node and exchange data with it.

Tcycle = tex ∗Nslots (4)

Finally, the relative time in the cycle tring can be determined
through Eq. (5).

tring = tnow mod Tcycle (5)

In order to realize a TDMA access scheme, all network
participants must have a common time basis for the current time
tnow. Therefore, HaRTKad implements the distributed time
synchronization scheme described in [6] that is also executed in
the maintenance phase. After the IDST algorithm has finished
and all nodes are synchronized, each node can calculate its
time slot and decide independently through Eq. (6) whether it
is allowed to use the communication medium. Hereby, tring
must be significantly smaller then a node’s time slot end, so
that a started network transaction can be finished within the
node’s own time slot. The period of the maintenance phase
depends on the clock accuracy of the devices.

(tring > Slotnode∗tex)∧(tring << Slotnode∗tex+tex) (6)

In order to give guarantees on the real-time behavior, all
network participants need to run the HaRTKad software and
consider only their own time slot for communication. Otherwise,
the real-time behavior can be compromised due to concurrent
network access and collisions during the communication.
Practical evaluations of HaRTKad can be found in [5]–[7].

IV. LIMITATIONS OF HARTKAD

HaRTKad is one of the few purely software-based approaches
to real-time communication over Ethernet and the only one
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Fig. 3. Low medium utilization due to the high amount of created time slots.

among them to achieve isochronous real-time. Its placement
on the application layer and the use of common Ethernet and
the standard IP/UDP stack allow a total horizontal and vertical
integration of devices. Still, HaRTKad suffers from some severe
limitations. The first major problem is the possibly low network
utilization in cases where nodes are clustered in a small area
of the available logical address space. The low logical distance
between the nodes leads to a very low value for STIDST . This
may result in a high number of time slots of which only a
small fraction will actually be used. Fig. 3 shows an example,
where twelve time slots are created for only four nodes. Hence,
in eight time slots the communication medium remains unused.

This problem can be solved through a balancing algorithm.
[18] describes numerous balancing algorithms for DHT net-
works that establish a uniform distribution of nodes on the
hash ring. Another major issue of HaRTKad is the handling of
hash collisions that appear when two nodes have the same hash
value. A feasible solution to this problem is described in section
V. The third major weakness of HaRTKad is the missing ability
to prioritize certain network traffic. Two possible approaches
to solve this problem are discussed in section VI.

V. HANDLING HASH COLLISIONS

When a new node enters the network, it generates its hash
value. Although it is very unlikely, depending on the used hash
function and length of the hash value, it can occur that the
generated hash value is already assigned to another node in the
network. This phenomenon is also referred to as hash collision.
Under the assumption of an ideal hash function, where all hash
values for random inputs are evenly distributed across address
range, the probability P of hash collisions for n nodes in a
b Bit wide address space can be calculated through Eq. 7.

P = 1− 2b − 1

2b
∗ 2

b − 2

2b
∗ ... ∗ 2

b − (n− 1)

2b
(7)

Based on the Taylor expansion for ex described in Eq. 8, an
approximated value for P can be determined via Eq. 9. The

approximation becomes more accurate for higher values of N
and b.

ex =

N∑
i=0

xi

i!
(8)

P = 1− e
−n(n−1)

2b+1 (9)

The probability for a hash collision for 100 nodes in a 64 Bit
address space is approximately 2.68 ∗ 10−16. Nevertheless, the
occurrence of hash collisions can lead to several problems.
First of all, two peers with the same hash value cannot find
and hence, not communicate with each other. Furthermore, the
real-time properties of HaRTKad can be compromised, as the
two nodes would operate on the same time slot according to
the IDST algorithm. This can put high pressure on the network
infrastructure and lead to message loss and non-deterministic
behavior. Therefore, it is necessary to handle hash collisions
in a feasible manner. In the author’s opinion, hash collisions
should be already avoided when a node enters the network.
Hereby, the entering peer calculates its hash value and searches
for other peers in the network with the same hash value in
advance. If a positive response is received, the entering peer
needs to generate a new hash value and repeat the look-up
procedure. The probability of multiple hash collisions in a row
decreases exponentially with number of attempts, as the overall
collision probability results from the multiplication of the
individual probabilities for each attempt. In the given example
with 100 nodes in a 64 Bit address space, the probability of
hash collisions decreases to 7.2 ∗ 10−32 for two subsequent
attempts to calculate a unique hash value.

However, the proposed solution can lead to a falsely negative
collision detection in cases where two nodes with the same
hash value enter the network at the same time. Here, both
peers will erroneously conclude that their hash value is unique.
Although this scenario is rather unlikely to occur, it needs to be
considered in order to give real-time guarantees. This issue can
easily be solved in the HaRTKad maintenance phase, where
each peer performs periodic self lookups and random lookups.
Here, ST should be set to 1 so that a peer can lookup exactly
its own hash value. All nodes, that have the concurrent peer
in its routing table, will answer with its contact information.
Typically, this information would be ignored, as it only reflects
the peer’s own contact information. However, this contact
information contains the concurrent peer’s IP address, so that
it can be contacted directly. Afterwards, one of the peers must
change its hash value and check again whether it is unique in
the network as described earlier in this chapter. Which one of
the two peers changes it’s hash value is to be decided during
the implementation process. Both peers entered the network at
the same time, so that none of them is more established in the
network. All other nodes will delete the peer with the changed
hash value from their routing tables in the maintenance phase,
as it is no longer responding to requests for the old hash value.



VI. PRIORITIZING COMMUNICATION

Devices and applications in heterogeneous automation net-
works have different requirements regarding the timing behavior
of the communication. The authors suggest to follow the
categorization proposed by Mark Felser et al. and Gerhard
Fettweis et al. [19] [20]:

• Class 1: 100 ms cycle time
• Class 2: 10 ms cycle time
• Class 3: 1 ms cycle time

Fully autonomous production lines require communication
latencies of less then 1 ms, while other applications, such as
the monitoring of slow changing processes, e.g. in a smelter, or
consumer and multimedia applications tolerate communication
latencies of up to 100 ms. HaRTKad does not take these
different requirements into account. The time slots are assigned
uniformly to all participating peers without prioritization of
certain traffic. In conclusion, this means that peers with lower
requirements have the same amount of communication time
available as peers with higher requirements. This imbalance
can be resolved in two different ways. The first solution would
be to introduce flexibly scaled time slots. Originally, HaRTKad
defines a fixed time slot length for all peers. In order to enable
a prioritization of traffic, the time slot length for each peer
could be scaled in regard of the real-time requirements. In
consequence, the peers with higher requirements would have
longer access times to the communication medium. Hereby, it
is vital that the time slots are scaled in a feasible manner, so
that the desired cycle time is not violated. However, it would be
difficult for a node to determine the point in time it is allowed
to access the medium. As the length of the time slot would
differ for each peer, a node must be aware of the time slot
length of every preceding node on the hash ring. The access
criterion shown in Eq. (6) would change accordingly to Eq.
(10). Here, tex n is the time slot length of the nth node on the
hash ring.

(tring >

Slotnode∑
n=0

tex n) ∧ (tring <<

Slotnode+1∑
n=0

tex n) (10)

The second and simpler solution is to allow the sharing of
time slots among nodes. Hereby, multiple peers with lower
real-time requirements share a single time slot and only access
the medium in alternating cycles. This approach allows the
prioritization of certain traffic without the modification of
the basic time slotting mechanisms provided by HaRTKad.
Furthermore, the maximum number of network participants
can be increased if time slots are shared among several peers
as depicted in Fig. 4. Here, all three class 1 nodes and the
two class 2 nodes share a time slot, which allows three more
class 3 nodes to enter the network without an increase in the
number of time slots or modification of the time slot length.
Theoretically, up to 99 class 1 nodes or nine class 2 nodes can
share a single time slot when the cycle time Tcycle is 1 ms.
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Fig. 4. Enhancement in the maximum number of network participants with
fixed number of time slots and time slot length.

However, both approaches require information about the real-
time category that is required by a node to decide which devices
can share a time slot. In order to simplify the assignment of
a time slot to multiple peers, it is desirable to cluster nodes
with the same real-time class in the logical address space.
The authors propose to dynamically split the address space
according to the total number of peers and the number of nodes
with the same time requirements. The KaDis algorithm can be
easily modified to additionally gather information about the
real-time class of each device on the master node. Thereafter,
the master node can calculate the portions of the address space
reserved for each real-time class as described by Eq. (11).

Aclass# =
Nclass#

N
∗ (sb − 1) +Aclass(#−1) (11)

Here, Nclass# is the number of devices in the respective
real-time class, N is the total number of devices in the network
and b is the width of the hash value. Furthermore, Aclass(#−1)

is the address space occupied by the next lower real-time
class. Afterwards, the values for the address space portions
are distributed to all peers in the network alongside STIDST .
Now, each peer can modify its own hash value to satisfy the
criteria in Eq. (12) with regard to their own real-time class.

Aclass2 > Hashclass1

Aclass3 > Hashclass2 ≥ Aclass2

Hashclass3 ≥ Aclass3

(12)

Furthermore, the way STIDST is determined needs to be
adapted so that a single time slot is assigned to multiple nodes.
The simplest way to modify the calculation of STIDST is to
only take nodes with high real-time requirements into account
as depicted in Fig. 5.

The nodes that share a time slot communicate in alternating
cycles in the order of their hash values. The sharing of time
slots is to be preferred over the use of flexibly scaled time
slots, as a node needs the ability to calculate its medium access
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Fig. 5. Modified calculation of STIDST .

time on its own to avoid the necessity of a central instance.
Even a combination of both approaches would inherit the
disadvantages imposed by flexibly scaled time slots.

VII. CONCLUSION

In this paper, the handling of hash collisions, the low network
utilization and the prioritization of certain traffic have been
identified as the most significant limitations of HaRTKad. To
solve the problem of hash collisions, a simple check-and-
adjust approach that can be easily integrated into HaRTKad’s
maintenance phase has been proposed. Furthermore, two
different approaches to allow traffic prioritization for nodes
with higher real-time requirements have been discussed. Firstly,
a flexible time slot length was suggested, so that nodes with
higher real-time requirements would get more medium access
time per cycle. The main drawback of this approach is that a
node would no longer be able to determine the point in time
when it can access the medium exclusively by itself. It either
needs to know the time slot lengths of all preceding nodes on
the hash ring or a central instance would be required to assign a
time slot start and end to each node. Secondly, a more feasible
solution, where multiple nodes with low real-time requirements
share a single time slot, was proposed. This approach requires
only minor changes in HaRTKad and will cause only negligible
communication overhead. In our future work, HaRTKad will
be extended with the proposed mechanisms. The feasibility of
the described solutions will then be evaluated in a real world
test bed consisting of up to 40 nodes and through simulation
of larger networks.
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