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Abstract—In the recent past, the development of applications
and protocols for the Internet of Things (IoT) made a big leap
forward. New approaches have emerged to adopt IoT technologies
in the realm of industrial automation. This development is also
referred to as Industrial Internet of Things (IIoT) or Industry
4.0. It is predicted for the number of smart interconnected
devices participating in automation systems to grow significantly
in the future. However, the industrial domain introduces new
requirements for IoT technologies regarding the timeliness of
interactions. Current IoT protocols, like the Constrained Appli-
cation Protocol (CoAP), do not yet provide real-time behavior
for the inter-device communication. In our previous work, we
have already proposed a real-time extension for CoAP that
enables deterministic network behavior through a TDMA-based
approach. We have shown that the proposed mechanisms for time
synchronization, time slot management, and access control can
be realized purely software-based. However, a central instance
is needed as a time server. This introduces a Single Point
of Failure (SPoF) to the system, limiting the robustness and
scalability of the approach. In this paper, we introduce a concept
for a distributed time server for CoAP. The proposed concept
includes a refined time synchronization mechanism as well as
strategies to select multiple time servers and share information
between them. Furthermore, the described amendments to the
real-time extension are integrated into the lightweight platform-
independent jCoAP communication stack and evaluated in a
multi-device real-world test bed.

I. INTRODUCTION

In the past few years, the development of technologies for
the Internet of Things (IoT) has taken a big leap forward.
A great variety of communication protocols have emerged,
that enable different devices to interact with each other in
a vendor-independent manner. A very promising candidate
among these protocols is the Constrained Application Protocol
(CoAP). CoAP is a RESTful (Representational State Transfer)
web transfer protocol that combines high interoperability with a
low communication overhead and machine-to-machine (M2M)
communication features. These M2M features include, among
others, discovery and publish/subscribe mechanisms and group
communication capabilities. A stateless HTTP mapping allows
for an easy integration into already existing networks and
information systems. Recently emerged efforts aim to adopt IoT
technologies in the realm of industrial automation. The main
goal is to allow a flexible composition of automation systems
and an easy integration into a company’s IT infrastructure. This
development is also referred to as Industrial Internet of Things

or Industry 4.0. The number of smart interconnected devices
that participate in automation systems is predicted to grow
significantly in the future [1]. However, industrial applications
introduce new requirements to IoT protocols apart from
interoperability. Real-time capabilities are an essential part of
these requirements. Delayed reactions can cause serious hazards
for health or property. The timeliness of transactions is currently
controlled on the lower layers of the network stack, e.g., through
fieldbus systems. However, fieldbusses are drastically limited
in address space and only provide limited interoperability.
Therefore, they are not feasible for IIoT applications. To omit
these problems, a variety of Ethernet-based interconnection
solutions called Industrial Ethernet (IE) have emerged [2].
However, the majority of IE solutions relies on proprietary
hardware or non-standard conform protocol adaptations. In
consequence, the existing IE systems are neither compatible
with each other nor with common Ethernet, which leads to
separate incompatible communication domains. Widely used
standards like common Ethernet do not guarantee deterministic
timing behavior, though. Here, a probabilistic network access
scheme, buffering within switches, and the limited bandwidth
of switches lead to latency fluctuations and thereby cause
non-deterministic timing behavior of distributed applications.
In our previous work we have already proposed a real-time
extension for the CoAP standard, that allows deterministic
communication over common Ethernet through a TDMA-based
medium access control. We have shown that the proposed
mechanisms for time synchronization, time slot management,
and access control can be realized purely software based. The
extension was integrated into the platform independent jCoAP
communication stack, a lightweight Java implementation of
CoAP. However, a central instance was needed to enable time
synchronization resulting in a Single Point of Failure (SPoF).
In this paper, we introduce a distributed time server concept to
increase the robustness and scalability of the proposed real-time
extension for CoAP. The described concept was integrated into
the jCoAP communication stack and evaluated in a real-world
testbed. The main contributions of this paper are:

• Distributed time servers and time slot management
• Refinement of the time synchronization between CoAP

nodes
• Evaluation in a real-world test bed with multiple devices



The remainder of this paper is organized as follows. In
Section II, an overview of the related work in the field of
device and real-time communication is given. Section III gives
a basic understanding of the Constrained Application Protocol.
In Section IV, the currently proposed real-time extension for
CoAP is discussed. Section V describes the proposed concept
for a distributed time server for CoAP including the refinement
of the time synchronization and balanced time slot management
between multiple servers. Section VI deals with the evaluation
of the distributed time server concept in a real-world test bed.
Section VII draws conclusions from the experimental results
and gives an outlook on our future work.

II. RELATED WORK

A. Device Communication

In the IoT domain, IP-based approaches for device com-
munication are preferred, as they simplify integration into
already existing networks [3]. A widely used approach is the
Devices Profile for Web Services (DPWS) [4]. DPWS aims to
bring classical web services technologies based on the WS-*
protocols into the domain of resource constrained devices. Web
services offer a high degree of interoperability and flexibility.
However, like classical web services, DPWS utilizes XML-
based SOAP and HTTP messages. This causes a significant
communication overhead and requires a sufficient amount of
computational power and memory on the device. [5] shows that
the communication overhead of DPWS can be significantly
reduced by applying compression techniques to the SOAP
messages. Furthermore, [6] describes how the memory footprint
of DPWS can be reduced. On the other hand, the proposed
techniques also lead to a reduced feature set and hard to develop
services. Moreover, DPWS still relies on HTTP/TCP which
introduces a high message overhead. TCP causes additional
overhead due to its handshake procedure and the automatic
retransmission of lost messages. However, retransmissions
are not necessarily desirable in real-time systems as they
cause non-deterministic timing behavior and the information
value decreases over time. CoAP is a promising lightweight
alternative to DPWS. Since the first specification of CoAP in
2010, many different CoAP implementations have emerged.
The most significant one is the Californium stack, which has
been developed by Kovatsch et al. and is now the reference
implementation of CoAP within the Eclipse Project [7]. In
[8] we compared Californium to our own Java implementation
called jCoAP in terms of performance and real-time capabilities.
The results show that jCoAP can be processed much faster
and deterministically on the device level. Besides Californium,
Kovatsch et al. developed two other CoAP implementations:
Erbium, which is a C implementation and part of the embedded
operation system Contiki [9], and Copper, which is a JavaScript
based plug-in for the web browser Firefox [10]. Although
Copper can only be used as a client, it is often used to test
CoAP implementations and applications. Another important C
implementation of CoAP is libcoap by Bergmann et. al., which
is part of the embedded operating system TinyOS [11]. In [12],
a SOAP-over-CoAP binding is presented to replace HTTP

as a transport protocol in DPWS. However, the computation
overhead is still rather high compared to plain CoAP, as CoAP
itself already provides important M2M features. Besides DPWS
and CoAP various other protocols like MQTT exist. These
protocols have various restrictions, e.g., MQTT is only suitable
for purely event-based systems.

B. Real-Time Communication

Traditional fieldbus systems like PROFIBUS or CC-Link
have been used in the real-time domain since the 1990s. Yet,
these systems suffer from a very limited address space and
hence lack scalability. However, the number of interconnected
devices in real-time systems is steadily increasing. As a result,
fieldbus systems are gradually replaced by IE solutions, which
allow a much higher number of network participants. Another
goal is to increase the interoperability of real-time systems with
the remaining IT infrastructure of a company [13]. An overview
of currently available IE solutions along with information about
their real-time capabilities and hardware/software requirements
can be found in [2]. Many of these IE approaches, like
PROFINET IO/IRT, EtherCAT, or SERCOS III are based
on the master-slave or client-server principle, which implies
the existence of a central instance [14]–[16]. Furthermore,
many solutions require special hardware to achieve real-time
behavior. These hardware components are typically proprietary
and very expensive. This leads to strong constraints regarding
the plannings and deployment of such networks. For example,
PROFINET IO/IRT requires special switches as the network
frames are forwarded on a fixed route that is determined by
the transmission time [14]. [17] proposes another real-time
Ethernet approach that is based on the master-slave principle,
where every node can act as a master. In order to achieve
deterministic timing behavior, the data link layer is exchanged
with a custom protocol. As a result, specialized hardware is
needed and hence, compatibility with common Ethernet is lost.
[18] also proposes a real-time Ethernet protocol adopting the
master-slave pattern. Here, the master represents a SPoF and the
slaves require special hardware to participate in the network. In
[19] Santos et al. present a new concept called Hard Real-Time
Ethernet Switching Architecture (HaRTES). Here, a hierarchical
switch architecture is used to enable a dynamic bandwidth
reservation for certain message streams. As a proof of concept,
the approach was implemented in specialized switches as a
hardware-software co-design. [20] extends HaRTES with the
ability of multi-hop communication over multiple HaRTES
switches. To achieve this, a distributed scheduling algorithm
called DGS is presented. However, the utilization of specialized
switches degrades the interoperability and leads to higher
deployment costs. In [21], Schmidt et al. present a real-time
Ethernet approach called DRTP, that avoids the disadvantage
of a central instance. In the described concept, the network
access is controlled through two proprietary layers that are
introduced directly above the Ethernet layer. The medium
access scheme is based on a TDMA approach with defined
time slots. Nevertheless, the missing support of TCP/UDP and
IP degrades the interoperability and prohibits the seamless
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Fig. 1. Development status of CoAP and the proposed real-time extension

integration in already existing infrastructures. Total horizontal
and vertical integration of industrial automation systems is
a vital goal of the IIoT. In [22], Skodzik et al. present a
hard real-time P2P approach called HaRTKad. HaRTKad also
employs a TDMA mechanism to control the network access.
But in contrast to [21], it uses unchanged versions of Ethernet
and IP/UDP. However, HaRTKad still needs protocols on
top to provide vital M2M features, like service discovery
and publish/subscribe mechanisms. In [23], the use of CoAP
on top of HaRTKad to enable the transmission of larger
data amounts was evaluated. The resulting system is called
CoHaRT. However, CoHaRT only makes use of the blockwise
communication feature of CoAP. Hence, no statement about
the general feasibility of this approach could be given.

III. THE CONSTRAINED APPLICATION PROTOCOL

The Constrained Application Protocol is a specialized
web transfer protocol. It was designed by the IETF CoRE
working group specifically to meet the requirements of resource
constrained environments [24]. CoAP is based on the client-
server scheme, where a client sends a request to a server
to invoke a service or store or retrieve data. Furthermore, it
was designed after the REST principle. Here, every request
can be interpreted on its own without further information.
The main advantage of the REST principle is that the server
does not have to keep track of any session data [25]. As this
task is delegated to the client side, the server can be much
more lightweight. In CoAP, all data objects or services are
represented by resources that are addressed through a Uniform
Resource Identifier (URI). The CoAP standard consists of a
main specification, that defines the header structure as well as
the general communication flow and several extensions that
describe useful but not mandatory features. These extensions
include important M2M features like a publish/subscribe
mechanism (CoAP Observe) or group communication. Vital
features, e.g., the resource discovery through the mandatory

”/.well-known/core” resource that must be provided by all
servers, are described in the main specification. As shown
in Fig. 1 many parts of the CoAP specification are still under
development. The modular structure of CoAP allows for an
easy extension without the loss of standard compliance.

CoAP is based on UDP, which is a good prerequisite for the
use in real-time systems. UDP omits the expensive handshaking
process, non-deterministic rate adaptations, and retransmissions
of TCP. Retransmissions are not necessarily desired in real-time

Ver T TKL Code Message ID

Token (if any, TKL bytes)

Options (if any)

11111111 Payload (if any)

Byte 1 Byte 2 Byte 3 Byte 4

Fig. 2. Header structure of CoAP messages

systems, as the information value is zero after the deadline.
CoAP itself consists out of two sublayers. The messaging

layer defines the four message types: confirmable (CON), non-
confirmable (NON), acknowledge (ACK), and reset (RST).
CON messages enable a reliable communication between two
CoAP nodes. The definition of reliability mechanisms on higher
layers becomes necessary as UDP does not provide reliability
on the transport layer. CON messages must be acknowledged
by the receiver with an ACK. If no ACK is received after
a timeout, the message is resent. However, this may lead to
non-deterministic behavior. For non-reliable communication
NON messages are used, as they do not require an ACK.
RST messages are used when erroneous or unwanted CoAP
messages are received. The request/response layer is placed on
top of the messaging layer and defines the four basic operations
GET, PUT, POST, and DELETE that can be performed on any
resource. Thereby, GET is used to retrieve the current state
of a resource. The PUT operation is either used to update or
create a resource from the appended payload, whereas POST
is used to process the data contained in a request. A POST
can result in an update of a resource or the creation of a new
resource. Hereby, the result depends on the resource itself and
is implementation-specific. The DELETE operation can be
used to delete resources on a server. The header of a CoAP
message is binary coded to reduce the message size and the
parsing complexity. Fig. 2 shows the basic header structure of
a CoAP message.

The first byte of the header contains the protocol version
(Ver), the message type (T) and the length of an optional
message token (TKL). If the message contains no token, the
TKL field is zero. The second byte contains a message code.
In a request, the message code indicates the desired operation
(GET, PUT, POST, DELETE). In a response, the message
code represents a response code, that indicates the result of
the requested operation. The bytes three and four contain a
message ID that is used to match ACKs to the corresponding
CON messages. The message ID is followed by the optional
token and the header options. CoAP header options consist
of an option number, the length of the option, and the option
value. The same option can occur multiple times in a CoAP
header and the options are ordered by their option number.
Options can be used to trigger special behavior on the server
like the subscription to changes of a resource. If the message
contains any payload, the options are followed by a 1 byte
payload marker. The minimal header size of a CoAP message
is 4 byte. However, it is very likely to be larger as the URI
path of the target resource is represented by header options.
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IV. A REAL-TIME EXTENSION FOR COAP

In our previous work, we have already proposed a real-time
extension for CoAP. That extension enables a deterministic
communication between multiple CoAP nodes over common
Ethernet by applying a TDMA-based network access control. To
achieve this, we added mechanisms for time synchronization
and time slot management to the CoAP specification. Two
new resources are added to the ”/.well-known/” path, that
is mandatory for all CoAP servers. The ”/.well-known/time”
resource is used for the time synchronization among CoAP
nodes. Additionally to this resource, a new SYN CoAP header
option was added to the specification. The SYN option contains
the desired synchronization mode and a sequence number that
is used to map the server responses to the corresponding SYN
requests. The synchronization mode can be chosen by the
client device with regard to the desired accuracy. In our first
prototype, the only implemented mode was Cristian’s algorithm
as depicted in Fig. 3 [26].

The client sends a GET request for the ”/.well-known/time”
resource to the server. Hereby, the request must contain the
SYN option. The server responds with the time stamp ts.
During the transaction the client measures the round-trip time
(RTT) of the request and then estimates its new clock value
through Eq. (1). The RTT is the time span between t1 and t4.
The error of the time synchronization te is described by Eq.
(2), where Tmin is the minimal transmission time for a CoAP
message.

tnow = ts +
RTT

2
(1)

te = ±
(
RTT

2
− Tmin

)
(2)

It can be seen, that the synchronization error increases with
the RTT. Hence, the time server always responds immediately
to synchronization requests to keep the error low. However,
this corrupts the TDMA-based network access and emphasizes
the necessity of a refined time synchronization mechanism.

The ”/.well-known/timeslot” resource was added to allow
a client to obtain a time slot from the server in which it is
allowed to access the network. Our approach allows n clients
to share a time slot, when their desired communication period
tcomm fulfills the condition of Eq. (3), where tcycle is the
length of the time cycle. In this way, the maximum number of

network participants is increased and individual requirements
of the different devices are taken into account.

tcomm ≥ n ∗ tcycle (3)

To obtain a time slot, a client sends a POST request
with its desired communication period to the server’s ”/.well-
known/timeslot” resource. The server adds the client to a time
slot that is already in use if the communication period tperiod of
this time slot is smaller than the desired period of the new client
and the slot capacity K is not yet reached. The slot capacity
determines the maximum number of nodes that can share this
time slot. If a client can not be added to an already used time
slot, it is added to a new time slot. The server responds to the
client request with the time slot number nslot, the time slot
length tslot, the cycle length tcycle, the communication period
of the time slot tperiod, and the cycle offset within the time
slot Ocycle. Each client can then calculate the beginning of its
next time slot tstart via Eq. (4), (5), (6) and (7).

Cc = tnow/tcycle (4)

Oc = Cc mod K (5)

Cdist =

{
Ocycle +K −Oc, if Oc ≥ Ocycle

Ocycle −Oc, else
(6)

tstart = (Cc + Cdist) ∗ tcycle + tslot ∗ nslot (7)

Here, Cc is the current cycle, tnow the current time, Oc the
current offset within the communication period and Cdist the
number of cycles until the time slot belongs to the CoAP node
the next time. If a CoAP node could not be added to a time
slot and no unused time slots are available, the server must
respond with a ”5.03 Service Unavailable” error message.

V. BASIC CONCEPT

A main drawback of the approach described in Section
IV is the centralized time server that represents a SPoF.
Additionally, in our previous work, the time server always
responded immediately to synchronization requests instead of
in its own time slot. This section describes the basic concept
behind our approach to a distributed time server for CoAP. The
main improvements of our approach compared to a centralized
time server are the distribution of the synchronization load
among multiple servers, the balanced assignment of clients to
the time servers, and higher robustness due to the elimination
of the SPoF. Furthermore, a refined time synchronization is
presented that enables a slotted communication of the time
servers.

A. Refined Time Synchronization

The time synchronization between network participants is of
vital importance to establish a TDMA-based medium access
control. The devices need to have the same time base in order to
determine their network access time. As described in Section
IV, our previous work used Cristian’s algorithm. A major
disadvantage of this algorithm is, that the time span between
t1 and ts is assumed to be equal to the time span between



ts and t4 (compare Fig. 3). This is not necessarily the case,
especially when the server only responds in its own time slot.
Therefore, we added a second synchronization mode, which is
a modified NTP-like version of Cristian’s algorithm [27]. In
the new synchronization mode, the server measures the receive
time of the request t2. Furthermore, the actual send time of
the response t3 is estimated. In our prototype implementation,
we assume that the response will be sent within the next time
slot of the server. However, the actual send time may depend
on the number of messages in the server’s send queue. Besides
the time stamp, the server response also contains the overall
processing time tp on the server and the time span tdelay
between the time stamp is taken and the response is actually
sent. The client can then calculate its new clock value through
Eq. 10.

tp = t3 − t2 (8)

tdelay = t3 − ts (9)

tnow = ts +
t4 − t1 − tp

2
+ tdelay (10)

The additional knowledge about tp and tdelay enables a
more accurate estimation of the actual network latency as the
processing delay can be taken into account. The synchronization
error changes from Eq. 2 to Eq. 11.

te = ±
(
RTT − tp

2
− Tmin

)
(11)

In consequence, the time synchronization is much more
accurate, even when the time server only responds in its own
time slot.

B. Distributed Time Server

Our approach for a distributed time server is based on the
assumption that all services and data objects can be represented
as resources. In the first step an initial time server is chosen.
It can be defined either by the user at deployment time or
through a competition strategy at runtime. The initial server
starts a synchronization client as a resource, to enable the
sending of requests. The URI of the synchronization client
is ”/.well-known/synclient”. Through this client, it starts a
discovery process. The discovery is done with a GET request for
the ”/.well-known/core” resource to the ALL COAP NODES
multicast address. To ensure that only potential time servers
are found, the request contains the query string ”title=/.well-
known/time”. After n server responses were received or a
timeout has passed, the initial server starts and configures the
synchronization clients on the additionally acquired servers.
This is done via a POST request for the ”/.well-known/synclient”
resource. It contains time parameters like the cycle time and
slot length as well as a list of all time servers. Upon reception
of this request, the additional servers start their synchronization
clients and send a GET request for the ”/.well-known/timeslot”
resource of all other time servers. This request contains the
OBSERVE option, indicating that they want to be notified if the
resource value changes. The notifications include the client’s IP
address, the time slot number, the time slot’s communication
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Fig. 4. Area of responsibility partitioning for three time servers in a cycle
with ten time slots

period, and the offset of the client within the time slot. In
consequence, each time server always has a complete overview
of the network participants, their assigned time slots, and their
communication periods. Afterwards, the additional servers
obtain a time slot from the initial server through a POST
request for ”/.well-known/timeslot”. The initial time server
always occupies the first time slot in the cycle. When a time
slot was assigned, each additional time server synchronizes
its clock with the initial server as described in the previous
subsection. When a time server has obtained a time slot and
synchronized its clock with the initial server, it initializes the
slotted communication. All subsequent requests or responses
are only sent within the server’s own time slot. When the
initialization phase is over, each of the n time servers is
responsible for all clients in the nth part of the time cycle as
depicted in Fig. 4 for three time servers in a cycle with ten
time slots TS1 - TS10.

If a client contacts a time server to obtain a time slot,
the server will assign a time slot based on its knowledge
about the time cycle and the time requirements of the client.
The time server will inform all other time servers about the
new client and they will update their view of the time cycle
accordingly. The server response to the client contains the
address of the responsible time server additionally to the time
slot information described in Section IV. The client will send
all synchronization requests to its assigned time server. Fig.
5 illustrates the described communication flow for two time
servers and a single client that joins the network.

The following subsection describes how the time slots are
assigned so that an uniform distribution of the synchronization
load is achieved.

C. Balanced Time Slot Management

As described in Section IV, a client sends a POST request
containing its communication requirements tcomm to the

”/.well-known/timeslot” resource of a time server to obtain
a time slot. The assignment of a suitable time slot is done in
a two-staged approach. In the first stage, the server checks
whether a time slot with a communication period tperiod lower
or equal to tcomm exists. Furthermore, the number of nodes



Initial Server Additional Server Client

POST

„/.well‐known/synclient“

GET (observe)

„/.well‐known/timeslot“

POST

„/.well‐known/timeslot“

Time Slot

Cycle Update

GET

„/.well‐known/time“
ts, tp, tdelay

POST

„/.well‐known/timeslot“

Time Slot, Time Server

Cycle Update
GET

„/.well‐known/time“

ts, tp, tdelay

GET

„/.well‐known/core“

List of Resources
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assigned to this time slot must be lower than the slot capacity.
If such a time slot is available, the client is assigned to it.
The first stage ensures that the time cycle is used efficiently
as two clients with a high tcomm will share a single time
slot instead of occupying two time slots. The second stage
is invoked, when no suitable time slot can be found in the
first stage. Here, the server selects an unused time slot within
the area of responsibility of the time server with the least
number of used time slots. In this way a balanced distribution
of the synchronization load is achieved. If there are no time
slots available, the server must answer with an appropriate
error message. Henceforth, the client will not participate in the
network to avoid a corruption of the TDMA scheme.

D. Time Server Failure

In case of a failure of one of the time servers, two things
are of major importance. Firstly, the node failure must be
recognized by at least one of the other time servers. If the initial
server fails, this will happen automatically as the additional
servers will get no response to their SYN requests. The first
time server to notice the failure will become the new initial
server and communicate its new role to the other time servers.
If one of the additional time servers fails, the initial server may
notice it through the absence of SYN requests from this server.
Secondly, node failures must be handled by the remaining time
servers. Thereby, two different strategies can be pursued. On
the one hand, a new time server can be acquired and assigned
to the same area of responsibility as the failed time server.
Hereby, all nodes that are directly affected by the node failure
need to be informed about the new time server. On the other
hand, the areas of responsibility can be rescaled to fit the new
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Fig. 6. Test setup for the performance evaluation

TABLE I
TIME SLOT ASSIGNMENT IN BOTH OF THE TEST SCENARIOS

Scenario 1 Scenario 2
Initial Server 1 1
Additional Server - 6
Client 1 2 2
Client 2 3 7
Client 3 4 3
Client 4 5 8

number of time servers. This approach will cause potentially
high network overhead as a higher number of devices needs
to be informed about their new time servers. Hence, it should
only be used as fallback strategy when no new time server can
be acquired. However, the preferred strategy may be chosen
application-specific.

VI. PROTOTYPE EVALUATION

To evaluate the feasibility of our approach for a distributed
CoAP time server, we integrated the mechanisms described
in Section V into the platform-independent Java-based jCoAP
communication stack. Furthermore, we built up a real-world
test bed that comprised up to six devices. As hardware platform
we used the Intel Galileo Board Gen. 1. It is equipped with
a Quark X1000 SoC that has an x86 architecture und runs
with a clock frequency of 400 MHz. It additionally provides
256 MB of RAM and a 100/10 Mbit/s Fast Ethernet adapter.
As software platform a fully preemptable Linux Kernel ver. 3.8
in combination with the real-time Java Virtual Machine (JVM)
Aicas JamaicaVM was used. All devices were interconnected
through Fast Ethernet and a switch as depicted in Fig. 6.

For our experiments we evaluated two different scenarios. In
the first scenario four clients and a single time server were used.
For the second scenario an additional time server was added
to the ensemble. First, the servers were started and initialized.
Afterwards, the clients were added to the network, obtained
a time slot from the initial server, and started to synchronize
their clocks with their assigned time server. For all devices a
resynchronization period of 30 s was chosen to maintain the
clock synchronicity. The cycle time was 100 ms and a time
cycle consisted out of ten time slots with a length of 10 ms.
Table I shows the time slot assignment for both scenarios.

During the experiments the number of SYN requests, that
were sent by the clients and received by the servers, were
measured. Fig. 7 shows the obtained results for the first (a)
and the second (b) scenario. The y-axis shows the number of
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TABLE II
TIME DIFFERENCE BETWEEN TRANSMISSION AND RECEPTION OF SYN

REQUESTS AND OBSERVED LATENCY WITH STANDARD DEVIATION

Time Difference Latency
Average 2.2256 ms 2.1 ms
Median 2 ms 2 ms
Standard Deviation 0.3038 ms 0.2577 ms
Min 1 ms 2 ms
Max 4 ms 3 ms

sent and received requests over a duration of 120 minutes.
It can be seen that in the first scenario, all synchronization

requests were received and processed by the only time server
in the setup. In the second scenario, with two time servers, the
overall synchronization traffic was ca. 25.5 % higher. The main
reason for this increase is the additional traffic that is caused
by the synchronization between the two servers. However, the
maximum synchronization load per server is reduced by 25 %,
as client 2 and 4 send their SYN requests to the second time
server.

For the feasibility of our approach, the accurate time
synchronization between the time servers is vital. Large time
differences would lead to concurrent network access and
hence, lead to the same problems that can be observed for
uncontrolled communication over common Ethernet. To show
the accuracy of the refined time synchronization mechanism
described in Section V, we measured the send times of the
SYN requests on the additional server and the receive times
on the initial server. Furthermore, the observed latencies for
the synchronization requests were measured by the additional
server. The measurement was performed for an experiment
duration of 20 hours and 2,400 synchronization periods,
respectively. Fig. 8 shows the obtained results. Here, the x-axis
shows the overall time in hours and the y-axis shows a relative
time in milliseconds. The light blue dots show the observed
latency, while the dark blue dots represent the time difference
between the transmission on the additional server side and
the reception on the initial server side. Table II additionally
summarizes the average time difference and latency along with
their standard deviation and median.

It can be seen, that the time difference is nearly equal to the
observed latency. Furthermore, the standard deviation for both,
time difference and latency, are very small. That implies that
they only experience small fluctuations. It can be concluded,
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two time servers

that the time difference between transmission and reception is
almost entirely caused by the transition through the network
instead of clock drift between the two servers. Hence, the
refined time synchronization provides a sufficient accuracy.

In our final experiment, we measured the receive times of
all messages on both of the servers. In this way, the overall
performance of the system regarding the time slot compliance
of the communication can be assessed. Fig. 9 shows the
experimental results. Here, the x-axis shows the overall time
in minutes and the y-axis represents the relative time within a
cycle in milliseconds. The red lines mark the time slot borders
within the cycle.

It can be seen that all devices only communicate in their
assigned time slots. Furthermore, it can be seen that the clients
are equally distributed over the areas of responsibility of



both of the time servers. The experimental results emphasize
the practical feasibility, synchronization performance, and the
distribution benefits in terms of synchronization overhead
reduction and robustness of our approach.

VII. CONCLUSION

Real-time communication is an important issue for future
IoT and industrial applications. In our previous work, we have
already presented a real-time extension for the CoAP standard,
that allows TDMA-based deterministic communication over
common Ethernet. The presented mechanisms are purely
software-based and omit the need of non-standard conform
protocol adaptations on the lower layers. In this paper, we have
presented a new standard-compliant approach for a distributed
CoAP time server as amendment to the previously proposed
real-time extension for CoAP. Our approach enables an accurate
time synchronization among CoAP nodes, a fair distribution
of the synchronization load among multiple time servers,
and a higher robustness towards node failures. The proposed
mechanisms were integrated into the platform-independent
Java-based jCoAP communication stack and evaluated in a
real-world test bed with up to six devices. The experimental
results have clearly shown the feasibility and benefits of
our approach. The synchronization load of a single server
could be significantly reduced. Furthermore, the refined time
synchronization was proven to provide a sufficient accuracy. In
a final experiment, the overall performance of the system was
demonstrated. It has been shown, that our approach enables
a purely software-based network access control that enables
deterministic communication over common Ethernet without
a central instance. In our future work, we will compare our
approach to the P2P-based CoHaRT [23]. Both systems will
be evaluated in a real-world test bed with up to forty nodes
and in a larger simulation environment.
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