
Towards a TDMA-based Real-Time Extension for
the Constrained Application Protocol

Björn Konieczek, Martin Kasparick, Michael Rethfeldt, Frank Golatowski, Dirk Timmermann
Institute of Applied Microelectronics and Computer Engineering, University of Rostock

18051 Rostock, Germany, Tel./Fax: +49 381 498-7269
Email: bjoern.konieczek@uni-rostock.de

Abstract—Current IoT protocols, like the Constrained Appli-
cation Protocol (CoAP), do not yet provide real-time behavior
for the inter-device communication. In this paper, we propose a
real-time extension for the CoAP standard that defines interfaces
for the time synchronization among nodes and the time slot
management. These interfaces enable a controlled exclusive net-
work access based on a Time Division Multiple Access (TDMA)
approach. With this extension, it is possible to realize access
control on the application layer without the modification of
lower layer protocols. The described interfaces are prototypi-
cally implemented within the jCoAP communication stack and
evaluated in a multi-device real-world testbed. In our prototype,
we used established algorithms for the time synchronization.
The results, reveal the weaknesses of the chosen synchronization
algorithm. However, the interface definition allows the usage of
more accurate algorithms.

I. INTRODUCTION

In the past few years, great effort has been put into the
development of technologies for the Internet of Things (IoT),
pushing the boundaries of applications and services. A great
variety of protocols that enable interoperable device interaction
have emerged. A very promising candidate is the Constrained
Application Protocol (CoAP) [1]. It combines high interoper-
ability and low communication overhead and offers important
features for the machine-to-machine (M2M) communication.
Recently emerged efforts aim to adopt IoT technologies in
the realm of industrial automation. This development is also
referred to as Industrial Internet of Things (IIoT) or Industry
4.0. Industrial applications introduce new requirements to IoT
protocols. The real-time capability of the applications is an
essential part of these requirements, as delayed reactions can
cause serious danger for health and property. Currently, the
specifications and implementations of IoT protocols like CoAP
do not consider real-time constraints. In our previous work, we
have introduced the jCoAP communication stack, a lightweight
platform independent Java implementation of CoAP that can
be processed in real-time on the device level. However, due to
the distributed nature of IoT applications, the influence of the
actual network transmission on the overall timing behavior is
significant. Hence, it is necessary to enable real-time behavior
on the network level. In the past, this problem has been
addressed with lower layer approaches like fieldbus systems.
Yet, fieldbuses lack scalability as they are drastically limited
in address space. Furthermore, the different solutions are not
compatible with each other. To overcome these weaknesses,

several Ethernet-based solutions called Industrial Ethernet
(IE) have emerged [2]. Most IE solutions rely on proprietary
hardware or non-standard conform protocol adaptions. Hence,
the existing IE systems are neither compatible with each
other nor with common Ethernet. Widely used standards
like common Ethernet do not guarantee deterministic timing
behavior. A probabilistic network access scheme, buffering
within switches and the limited bandwidth of switches lead
to latency fluctuations. In this paper, we propose a real-time
extension for the CoAP standard, that defines CoAP interfaces
for time synchronization and access time management. These
interfaces were prototypically implemented within the jCoAP
communication stack utilizing established algorithms for the
time synchronization. It enables exclusive network access based
on a Time Division Multiple Access (TDMA) approach without
the adaption of lower layer protocols. The main contributions
of this paper are:

• Conception of a real-time extension for CoAP.
• Prototypical implementation within jCoAP.
• Evaluation in a real-world testbed.

The remainder of this paper is organized as follows. Section
II gives a brief overview of the related work. Section III
covers basic information about CoAP. In Section IV, the basic
concept of the proposed CoAP extension is described. Section
V discusses the performance evaluation in a real-world testbed.
Section VI draws conclusions from the experimental results
and gives an outlook on our future work.

II. RELATED WORK

The widely used fieldbus systems suffer from a very limited
address space and hence lack scalability. However, the number
of interconnected devices in real-time systems is steadily
increasing. Thus, fieldbus systems are gradually replaced by IE
solutions. Another goal is to increase the interoperability of real-
time systems with the remaining IT infrastructure [3]. In [2]
an overview of currently available IE solutions is given. Many
of these IE approaches like PROFINET IO/IRT, EtherCAT or
SERCOS III are based on the master-slave or client-server
principle, which implies the existence of a central instance
[4]–[6]. Furthermore, many solutions require special hardware,
which is typically proprietary. This leads to strong constraints
regarding the planning and deployment of such networks. E.g.,
PROFINET IO/IRT requires special switches as the network
frames are forwarded on a fixed route that is determined by the978-1-5090-2339-4/16/31.00 c© 2016 IEEE



transmission time [4]. Schlesinger et al. present an optimization
for PROFINET IRT to omit costly reconfiguration through an
automatic frame packing approach [7]. The approach is based
on the insertion of subframes with delimiters. However, it still
operates on layer 2 and hence, requires specialized hardware. In
[8], Schlesinger et al. propose a real-time Ethernet approach that
is based on the master-slave principle, where every node can act
as a master. Deterministic timing behavior is achieved through
a custom protocol on the data link layer. Thus, specialized
hardware is needed and compatibility with common Ethernet
is lost. In [9] Santos et al. present a concept called Hard
Real-Time Ethernet Switching Architecture (HaRTES). Here,
a hierarchical switch architecture is used to enable a dynamic
bandwidth reservation for message streams. The approach was
implemented in specialized switches as a hardware-software
co-design. [10] extends HaRTES with the ability of multi-
hop communication. To achieve this, a distributed scheduling
algorithm called DGS is presented. However, the utilization
of specialized switches degrades the interoperability and leads
to higher deployment costs. In [11], Skodzik et al. present a
hard real-time P2P approach called HaRTKad. It also employs
TDMA to control the network access, but uses unchanged
versions of Ethernet and IP/UDP. However, HaRTKad still
needs protocols on top to provide M2M features.

III. THE CONSTRAINED APPLICATION PROTOCOL

CoAP follows the REST (Representational State Transfer)
paradigm, where each request contains all necessary informa-
tion and can be processed without prior knowledge (stateless)
[12]. Furthermore, it applies the client-server principle, where
a client sends a request to a server to invoke a service on
or retrieve data from this server. All data objects or services
are represented as resources that can be addressed through
uniform resource identifiers (URI). CoAP comprises two sub-
layers. The messaging layer defines the four message types
confirmable (CON), non-confirmable (NON), acknowledgement
(ACK), and reset (RST). Since CoAP is based on UDP, it
can not rely on transport layer reliability. Therefore, it offers
optional reliability through CON messages. The receiver of
a CON message must respond with an ACK. When no ACK
is received within a certain amount of time, the message is
resent. However, retransmissions are not desired in real-time
systems as the information value of not timely transmitted
data is zero. Hence, it is preferable to use NON messages
which do not require confirmation. RST messages are used
to respond to invalid requests or requests that can not be
interpreted. The request/response layer is placed on top of the
message layer and performs the four basic methods GET, PUT,
POST and DELETE. The CoAP header is binary encoded to
reduce its size and parsing complexity. It consists of a 4 Byte
mandatory part, an optional token and header options. An option
comprises an option number, the option length and the option
value. The CoAP standard consists of a basic specification
and multiple extensions. The basic specification defines the
communication model and the packet structure. Moreover, it
describes the resource discovery through the mandatory ”/.well-

CoAP Observe
RFC 7641

CoAP Group Comm.
RFC 7390

CoAP HTTP Mapping
Draft 07

CoAP Resource Dir.
Draft 05

CoRE Link Format ‐ RFC 6690

CoAP Basic 
Specification
RFC 7252

CoAP Blockwise Tr.
Draft 18

CoRE Interfaces
Draft 05

CoRE LinkCollection 
in JSON | Draft 04

CoAP Real‐Time

Fig. 1. Development status of CoAP and the proposed real-time extension

known/core” resource. The extensions introduce special features
like a publish/subscribe mechanism (CoAP Observe). CoAP
extensions may also define new options or response codes. Fig.
1 shows the available CoAP extensions and how our proposed
real-time extension would fit into the CoAP specification.

IV. INTERFACE DEFINITION FOR COAP REAL-TIME

The extension introduces CoAP interfaces for time synchro-
nization and time slot management.These interfaces enable the
use of a TDMA scheme to control the access to the physical
network. In consequence, only one device at a time will access
the network and hence, collisions as well as increased buffering
times in switches and thereby non-deterministic timing behavior
of the network will be avoided. Our approach is divided into
two phases. In the initialization phase, all devices synchronize
their clocks to establish a common time base and obtain a
time slot. Then, every CoAP node is able to calculate the time
span in which it can access the network exclusively. In the
communication phase, all devices use only their assigned time
slots to send data. The following sections describe the proposed
time synchronization and time slot management approach.

A. Time Synchronization

Time synchronization can either be done in a distributed or
centralized way. Centralized approaches have the advantage of
being more straightforward to implement and typically require
less resources on the client device. Nevertheless, a centralized
time server poses a bottleneck and SPoF. Hence, centralized
mechanisms lack scalability and robustness. Distributed syn-
chronization techniques provide much better scalability and
avoid a SPoF. However, they are much more complex in
terms of implementation, maintenance and execution. The
disadvantages of centralized mechanisms can be compensated
when multiple synchronized time servers are used. Therefore,
we propose a centralized approach, where any CoAP server
can act as time server. For the time synchronization, we
introduce a new ”/.well-known/time” resource that every real-
time capable CoAP server must provide. Additionally, we add a
new CoAP SYN header option. The SYN option value contains
a sequence number and the requested synchronization mode.
The sequence number is used to match synchronization requests
and responses. The synchronization mode can be chosen by the
client with regard to the required synchronization accuracy. If
a server does not offer the requested synchronization mode, it
must respond with a RST message. For our practical evaluation
and to show the feasibility of the interface mechanisms, only a
single synchronization mode was implemented. We have chosen
Cristian’s algorithm [13] because of its simplicity. However,



more synchronization modes can be defined. The client sends
a GET request for the server’s ”/.well-known/time” resource
and measures the round trip time (RTT) of this request.The
request must include a SYN option. If no SYN option is present,
the server must respond with an appropriate error message.
Otherwise the server sends a response with the response code

”2.05 Content”. It must contain a time stamp ts and may contain
additional information dependent on the synchronization mode.
The new clock value tnow is calculated through Eq. (1).

tnow = ts +RTT/2 (1)

Cristian’s algorithm only provides limited synchronization
accuracy, as it assumes that the request and response latency
are equal. Furthermore, it assumes that the computation time
between the reception of a request and the creation of the
time stamp ts equals the time span between ts and the actual
sending of the response. These assumptions seldom prove to be
true. However, Cristian’s algorithm is easy to implement and
our experimental results show that the accuracy is sufficient
for a proof of concept implementation. Additional and more
accurate synchronization modes will be added in the future.
A node must repeat the time synchronization periodically to
counteract clock drift. All subsequent SYN requests are send
in the node’s time slot to avoid interference with other nodes.
The period of the resynchronization is chosen by the client.

B. Time Slot Management

To enable the time slot assignment by the time server, we
added a ”/.well-known/timeslot” resource. Typically, in TDMA
systems a unique time slot is assigned to every device. This
does not take their respective communication requirements
into account. Automation systems consist of heterogeneous
devices with different communication behavior. Some devices
may need to communicate every 50 ms whereas others have
communication periods of up to 250 ms. Such significant
differences in the communication requirements are very typical,
e.g., in the medical domain. The cycle time (the time span in
which every device is allowed to communicate at least once)
is chosen with regard to the highest requirement. This may
result in a low network utilization as time slots may remain
unused for multiple cycles. Our approach allows multiple nodes
to share a single slot to increase the network utilization and
capacity. n network participants can share a time slot, when
the condition of Eq. (2) is fulfilled. Here, tcycle is the cycle
time and tperiod is the communication period of the nodes.

tperiod ≥ n ∗ tcycle (2)

Fig. 2 illustrates the benefits in a scenario with five nodes,
a cycle time of 50 ms and five time slots T1-T5. The
nodes N1 and N2 want to access the network every 100 ms
whereas the nodes N3, N4 and N5 need to communicate
every 50 ms. Without shared time slots, the highest possible
network utilization is 80% as the time slots T1 and T2 remain
unused every two cycles. Furthermore, all available time slots
are assigned. Thus, the network capacity is exhausted. The
network utilization seems to remain unchanged when N1 and

Time

T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 T1 T2 T3 T4 T5

Cycle 1 Cycle 2 Cycle 3

N1 N2 N3 N4 N5 N3 N4 N5 N1 N2 N3 N4 N5

T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 T1 T2 T3 T4 T5

Cycle 1 Cycle 2 Cycle 3

N1 N3 N4 N3 N4 N5 N1 N3 N4 N5N2N5

a) Network access for each node without shared time slots

b) Network access for each node with shared time slots

Fig. 2. Network access patterns for five nodes with different communication
requirements with (b) and without (a) shared time slots

N2 share a time slot. However, a sixth device could join the
network as the time slot T5 is unassigned. In the proposed
CoAP extension, a client sends a POST request to the ”/.well-
known/timeslot” resource of the time server to obtain a time
slot. This request must include its desired communication
period as payload. In our proof of concept implementation,
the period was transmitted as plain 32 bit signed integer value
that indicates the communication period in milliseconds. In
the future, a JSON format will be described for all messages.
The server must check whether a time slot with the same
communication period already exists. In this case, the server
can assign the same time slot to the requesting node if the
capacity K of this slot is not yet reached.

K = tperiod/tcycle (3)

If the node can be added to the time slot, the server responds
with a message containing the time slot number nslot, the time
slot length tslot, the cycle length tcycle as well as a cycle offset
Ocycle, and the slot capacity K. The cycle offset determines
for which cycle number within the communication period the
slot assignment is valid. If the slot capacity is reached or
there is no time slot with the same communication period, the
client is added to an unused slot. Here, the cycle offset is zero.
Afterwards, the client can calculate the beginning tstart of its
next time slot via Eq. (4)-(7).

Cc = tnow/tcycle (4)

Oc = Cc mod K (5)

Cdist =

{
Ocycle +K −Oc, if Oc ≥ Ocycle

Ocycle −Oc, else
(6)

tstart = (Cc + Cdist) ∗ tcycle + tslot ∗ nslot (7)

Here, Cc is the number of the current cycle, tnow is the current
time, Oc is the current offset within the communication period
of the time slot, and Cdist is the number of cycles until the
time slot belongs to the CoAP node again. During its time slot,
a node may send multiple messages as long as it can finish the
transmission before the next time slot starts. If a node could
not be added to a time slot and no free slots are available, the
server must respond with a ”5.03 Service Unavailable” error
message. The cycle time in the system is still chosen with
regard to the highest communication requirement but the low
network utilization is avoided through the shared time slots. If
the desired communication period of a device is lower than the
cycle time, it should not be added to the cycle, as the desired
communication behaviour can not be guaranteed. The time slot



 

0

5

10

15

20

25

0 50 100 150 200 250 300 350 400 450

Re
la

tiv
e 

tim
e 

w
ith

in
 a

 c
yc

le
 in

 
M

ill
ise

co
nd

s

Overall time in Minutes

Client 500ms
Client 200ms

Sl
ot

 1
 

Sl
ot

 2
 

Fig. 3. Receive times measured on the server in a dual client scenario

assignment of a node persists for its life time. The node’s life
time ends, when it signals its disappearance or crashes. It can
indicate that it leaves the network through a POST request to
the ”./well-known/timeslot” resource of the time server with a
negative value for the communication period. The server may
notice a crashed node through the absence of synchronization
requests from that node. If a client is re-introduced to the
network, it must obtain a new time slot.

V. PROTOTYPE EVALUATION

To evaluate the feasibility of the proposed standard extension,
we implemented the presented mechanisms within jCoAP
and set up a real-world testbed with three devices. The used
hardware platform was the Intel Galileo Board Gen. 1. It
is equipped with an Intel Quark X1000 SoC with a clock
frequency of 400 MHz, 256 MB of RAM, and a 10/100 MBit/s
Fast Ethernet adapter. As operating system a customized Linux
with a fully preemptable Kernel version 3.8 was used. All
devices used the Aicas JamaicaVM 6.3 as Real-Time Java
Virtual Machine. The boards were interconnected through
10/100 MBit/s Fast Ethernet and a switch. For our experiment,
we used a single server and two clients with a desired
communication period of 500 ms and 200 ms, respectively. A
cycle time of 100 ms split into ten time slots with a length
of 10 ms and a resynchronization period of 30 s were used.
At first, the clients performed an initial time synchronization
and obtained a time slot. Then, the slotted sending mode was
initiated and the client application was started. The clients
retrieved a 16 byte payload from an ”/echo” resource on
the server via a GET request. This request was performed
50,000 times. The server measured the receive time of all
incoming messages. Fig. 3 shows the obtained results. The
y-axis shows the relative time within a time slot and the x-
axis shows the overall time of the test run. The red lines
represent the time slot borders within a cycle, while the points
show the measured time stamps. As expected, the clients do
not share a time slot, as they have different communication
requirements. The second client has finished its application
2.5 times faster than the first because of the fixed number
of requests. Moreover, it can be seen that no obvious time
slot violations occur. In a single synchronization period, the
messages of the second client arrived very early within the time
slot. This indicates that the medium has been already accessed
during the first time slot. This erroneous behavior originates
from the time synchronization, as Cristian’s algorithm has
very limited accuracy. However, the results show the overall
feasibility of the proposed extensions.

VI. CONCLUSION

In this paper, we have presented a basic concept for a real-
time extension for the Constrained Application Protocol. The
proposed extension is based on a TDMA scheme and includes
mechanisms for time synchronization among CoAP nodes and
the management of time slots. These mechanisms are purely
software based and, in contrast to other approaches, require
neither special hardware nor modifications of lower layer pro-
tocols. Furthermore, the proposed TDMA approach allows the
sharing of time slots between multiple nodes and hence, enables
higher network utilization and a higher number of network
participants. An evaluation of the prototype implementation
has shown the general feasibility of the proposed extension. We
have shown that a purely software based TDMA mechanism can
be effectively applied to achieve deterministic network access
over common Ethernet. However, the performance evaluation
has revealed the time synchronization as a potential source
of erroneous behavior. In our future work, we will evaluate a
refined synchronization approach, where the server response
also includes the receive time of the SYN request and the
approximate send time of the response. Thus, the client can take
the processing time on the server into account. Additionally,
we will develop strategies to share information about time slot
assignments among multiple servers to increase the scalability
of the system. Furthermore, we will evaluate the described
extension in a larger testbed and a simulation environment.

REFERENCES

[1] Z. Shelby, K. Hartke, and C. Bormann, RFC 7252: The Constrained
Application Protocol, online, IETF Std.

[2] P. Danielis et al., “Survey on Real-Time Communication Via Ethernet
in Industrial Automation Environments,” in 19th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA),
Barcelona, Spain, September 2014, pp. 1–8.

[3] T. Sauter, “Integration Aspects in Automation - A Technology Survey,”
in Emerging Technologies and Factory Automation, 2005. ETFA 2005.
10th IEEE Conference on, vol. 2. IEEE, 2005, pp. 9–pp.

[4] R. Pigan and M. Metter, Automating with PROFINET: Industrial
Communication Based on Industrial Ethernet. Publicis Publishing,
2008.

[5] G. Cena et al., “Evaluation of EtherCAT distributed clock performance,”
IEEE Transactions on Industrial Informatics, vol. 8, no. 1, pp. 20–29,
2012.

[6] F. Klasen, V. Oestreich, and M. Volz, Industrial Communication with
Fieldbus and Ethernet. VDE-Verlag, 2011.

[7] R. Schlesinger, A. Springer, and T. Sauter, “Improving profinet irt frame
packing using ethernet control characters,” in Factory Communication
Systems (WFCS), 2015 IEEE World Conference on. IEEE, 2015, pp.
1–4.

[8] R. Schlesinger and A. Springer, “VABS - A new approach for Real
Time Ethernet,” in Industrial Electronics Society, IECON - 39th Annual
Conference of the IEEE. IEEE, 2013, pp. 4506–4511.

[9] R. Santos et al., “Multi-level hierarchical scheduling in ethernet switches,”
in Proceedings of the ninth ACM international conference on Embedded
software, 2011, pp. 185–194.

[10] M. Ashjaei et al., “Response time analysis of multi-hop HaRTES ethernet
switch networks,” in 10th IEEE Workshop on Factory Communication
Systems (WFCS), 2014, pp. 1–10.

[11] J. Skodzik, P. Danielis, V. Altmann, and D. Timmermann, “Hartkad: A
hard real-time kademlia approach,” in 11th IEEE Consumer Communi-
cations & Networking Conference (CCNC), 2014, pp. 566–571.

[12] R. T. Fielding, “Architectural styles and the design of network-based
software architectures,” Ph.D. dissertation, University of California, 2000.

[13] F. Cristian, “Probabilistic clock synchronization,” Distributed computing,
vol. 3, no. 3, pp. 146–158, 1989.


