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Abstract—Recently, there has been the arise of latency-sensitive
IoT applications, e.g., in the field of telemedicine or Industrial
Internet. Such applications have stringent latency requirements.
The entire end-to-end latency between two devices is composed of
several individual latencies: the software latency of the applica-
tion, the software latency in the networking stack, the hardware
latency on wire, and the hardware latency in switches. The
hardware latencies are relatively invariant (constant). Contrary,
the software latency is highly variant and thus hard to determine.
However, the software-introduced latency is crucial for latency-
sensitive applications, since the end-to-end latency equals the sum
of all latencies between two devices. In the literature, different
investigations based on simulations as well as practical test-beds
using specialized hardware are proposed. In contrast, we propose
a novel method using no specialized hardware that precisely
estimates the latency in the networking software (precision:
approx. 144µs). Our approach bases on the measurement of
round-trip times between several devices and solving the resulting
system of equations to estimate the latency of every individual
device. Compared to the state-of-the-art the proposed method
has also several advantages regarding scalability and resiliency.

Index Terms—Internet of Things, Industrial Internet, Real-
Time Systems, Software Latency, Network Latency

I. INTRODUCTION

In future networks, there will be new application require-
ments like latency-awareness. This leads to the current interest
in latency-sensitive networking. The digitalization of industrial
facilities [1] as well as other latency-sensitive applications
(e.g., in the field of telemedicine and driving assistance)
contribute to this interest.

Partly, these applications have latency requirements, which
have to be met in most cases but do not always have to
be fulfilled (soft real-time requirements). Typical examples
for soft real-time applications are video streaming and Voice
over IP communication. Contrary, for several applications a
deterministic latency must be guaranteed (hard real-time) like
in industry automation scenarios [2].

To be able to guarantee hard real-time, it is essential to have
knowledge about the worst case end-to-end latency between
the devices. The latency between two devices has variant and

invariant (constant) components. Figure 1 depicts a schematic
overview of the communication between two devices and the
introduced latencies. The constant components arise from the
hardware latency inside switches and on wires. The hardware
latency can be easily determined from the specification of the
switches, the length of the wires, and the maximal transmission
data rates.

Contrary, the software latency imposed by the processing
of a packet in the software stack is harder to determine.
Many parameters such as the operating system, the workload
of the system, and the executed application influence the
software latency. However, the software latency is important
for latency-sensitive applications, as the software latency has
to be known to determine the worst case latency. Hence, the
determination of the software latency is essential for enabling
latency-sensitive applications.

In the literature, different simulation evaluations as well as
practical test-beds using specialized hardware are proposed.
In order to measure the latency between two devices, most
approaches use the round-trip-time (RTT). However, using one
RTT it is only possible to determine the sum ta + tb, where
ta is the software latency of device A and tb is the software
latency of device B.

Instead, we propose a conceptually different approach that
estimates the software latency as a probability distribution
measuring multiple RTTs. Therefore, we can precisely state
the mean latency as well as the minimum latency and maxi-
mum latency. Moreover, we can state the statistical accuracy
of the estimated probability distribution and the accuracy of
the estimated worst cast delay. Furthermore, we are able to
determine the software latency of a particular device (ta,tb)
and not only the sum of the latency of two devices (ta + tb) .

The contributions of the proposed approach are as follows:
1) As our algorithmic approach is software-based there is

no need for specialized hardware. Therefore, we are able
to estimate the latencies of several devices in a network
in situ (in the actual application area) at any time without
preparation.

2) It is robust as there is no single point of failure and978-1-5090-0996-1/16/$31.00 2016 IEEE



hence also suited for industrial scenarios.
3) It is scalable as we need n estimations for n different de-

vices having unknown latencies. Furthermore, we need
to estimate every latency distribution only once if the
latency distribution is time-invariant.

4) It is precise as we estimate the latency of every device
separately. This is easier and more accurate than the
estimation of the sum of two latency distributions. In
addition to the distribution of the software latency, we
can state the worst case latency as well as the statistical
accuracy.

The remainder of this paper is organized as follows: Sec-
tion II explains the concept of the proposed method and con-
siderations concerning scalbility, resiliency and uncertainty. In
Section IV, we describe and evaluate the experimental results.
Section V gives an overview of the related work and compares
our approach to the literature. Finally, Section VI concludes
this paper.
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Fig. 1. latency between two devices in a network

II. CONCEPT: ESTIMATION OF VARIANT SOFTWARE
LATENCIES

In this chapter we will present our approach. First, we
will give the mathematical background of the algorithm and
afterwards explain the procedure of the algorithm.

A. Algorithm of Latency Estimation

Firstly, we want to determine the latency ta of the device
A and the latency tb of device B (Figure 2). As there are two
devices in the network, we can measure one RTT between A
and B. As a result, we get the following equation:

RTT = 2 · ta + 2 · th + 2 · tb (1)

th denotes the hardware latency of wires and switches con-
necting the devices A and B. As we have one equation and
two unknown parameters ta and tb, the system of equations
is underconstrained and it is mathematically impossible to
determine ta and tb. We have to state that it is possible to
measure the RTT between A and B multiple times. However,
if we assume that ta and tb are constant the resulting system
of equations will always have rank 1. If we assume ta and tb
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Fig. 2. The RTTs between three or more devices must be estimated to obtain
a solvable system of equations.

to be variant we can estimate the sum of both. Nevertheless,
it is impossible to estimate ta and tb separately as multiple
measurements of the same RTT do not lead to independent
equations.

Secondly, we assume that we want to determine the latencies
ta, tb, and tc of three devices: A, B, and C. As there are three
devices in the network, we can measure three RTTs between
A, B, and C. As a result, we obtain the following system of
equations:

RTT1 = 2 · ta + 2 · th1 + 2 · tb (2)

RTT2 = 2 · ta + 2 · th2 + 2 · tc (3)

RTT3 = 2 · tb + 2 · th3 + 2 · tc (4)

Again, thx is the hardware latency of wires and switches
between these devices. As we have three equations and three
unknown parameters, the system of equations is solvable. We
can also write this system of equations in matrix form:RTT1RTT2

RTT3

 =

2 2 0
2 0 2
0 2 2

 ·
tatb
tc

+ 2 ·

h1h2
h3

 . (5)

Finally, we assume that we want to determine the latencies
of n devices in a network. As there are n devices in the
network, we can measure n independent RTTs. As a result,
we get the following system of equations:


RTT0
RTT1

...
RTTn

 =


2 2 0 . . . 0

2 0 2
...

...
...

. . . 0
2 0 . . . 0 2
0 2 2 0 . . .

 ·

ta
tb
...
tn

+2 ·


h1
h2
...
hn

 . (6)



Again, thx is the hardware latency of wires and switches
between the devices. As we have n equations and n unknown
parameters, the system of equations is still solvable.
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Fig. 3. Steps 2 to 5 of the proposed concept

B. Procedure of Latency Estimation
The basic idea of our approach is the estimation of the

RTT as distribution as well as the estimation of several RTTs
between different devices, which results into a solvable system
of equations. The procedure executes several steps that are
partly illustrated in Figure 3:

1) The hardware latency of the wires and switches have to
be determined. We can calculate the latency from the
network topology and the specifications of the network
infrastructure devices (switches, wires) or introduce
measurements as presented in [3].

2) An inception device (A) is selected. One way to select
the inception device is introducing a sleep time of a
random duration initially. The device, which awakes
first, is the inception device. A second way to select the
inception device is to use a best master clock algorithm
similar to PTP. This algorithm determines the device
whose clock has the highest precision.

3) The inception device (A) estimates the RTTs to all
devices of interest (B, C) as a distribution. We denote
every device whose software latency shell be estimated
as device of interest.

4) The inception device (A) sends the token to one other
device (e.g., B).

5) The token receiver (B) estimates yet another RTT to one
arbitrary device of interest (e.g., C) as distribution, and
sends this distribution back to the inception device (A).

6) The inception device (A) uses the estimated RTTs of
all devices of interest, the previously calculated hard-
ware latency, and the presented system of equations to

calculate the average as well as the maximum and the
minimum of every latency distribution for every device
of interest.

To solve the system of equations, it is assumed that the
transmission latency of a device equals the receive latency
of this device. Without this simplification, it is impossible
to determine all unknown variables of the latency according
to [4]. However, this simplification solely introduces a minor
conceptual error that can be precisely stated.

C. Consideration of the Conceptual Error

We assume the receive software latency and the transmission
software latency to be equal. This leads to a conceptual error.
However, we can determine the maximal conceptual error:

Errormax = (latencyt + latencyr)/2. (7)

Thereby, latencyt is the transmission software latency and
latencyr is the receive software latency. Furthermore, we can
quantify an upper bound for the maximum (worst case) latency
latencyworst of a device. The transmission latency and the
receive latency have the same upper bound:

latencyworst ≤ (latencyt + latencyr). (8)

In addition to this conceptual error, which results from our as-
sumptions, there are several errors introduced by measurement
uncertainties. These errors depend on the implementation as
well as the measurement setup and will be considered later.

D. Conceptual Consideration of Resiliency

As a dynamic selection of the inception device is possible,
our approach does not have a single point of failure. The
dynamic selection of the inception device can be done by
waiting for a random time. Alternatively, a best master clock
algorithm can be utilized similar to PTP. Furthermore, there
are no special requirements to hardware or software of the
inception device.

E. Conceptual Consideration of Scalability

As we focus on latency-sensitive IoT scenarios of the future,
scalability is an significant issue. Prospectively, there will
be networks of thousands of connected devices. Concerning
scalability, our approach exhibits advantages compared to the
state-of-the-art. We define the execution time T that is required
for the estimation of the software latencies of n devices.
Therefore, in a network of n devices, we can formulate the
following equation:

T ∼ n. (9)

As we always need n independent measurements for a system
of equations of rank n composed of n independent equations,
we have to measure n RTTs. Consequently, we need to
measure one RTT for every unknown parameter. Nevertheless,
our approach allows a reduction of the number of unknown
parameters. The number of unknown parameters is not equal
to n (the number of devices in the network) but it is equal to
the number of differing devices in the network. A device Dx



is defined as a pair of a hardware setup HWy and a software
setup SWz:

Dx = (HWy, SWz). (10)

Moreover, the hardware setup is defined as the set of all
hardware elements of this device and the software setup is
defined as the set of all software elements of this device.

HWy = {Processor,NIC,Memory, ...} (11)

SWz = {OS,Application,Drivers, ...} (12)

If two devices Dx1 and Dx2 have a different hardware setup
and/or hardware setup they may introduce a different latency
distribution. We denote Dx1 and Dx2 as differing devices.
Instead, if Dx1 and Dx2 have the same software setup and
the same hardware setup they introduce the same latency dis-
tribution. Consequently, it is sufficient to estimate the latency
distribution of Dx1 or Dx2. Even in IoT scenarios connecting
thousands of devices, it is assumable that the number of
differing devices is greatly lower compared the total number
of devices. Many devices of the same model from a particular
manufacturer executing identical tasks (e.g., sensors, actors,
controllers) will have the same software setup and hardware
setup. Therefore, they introduce the same software latency.
Furthermore, if we assume that software setup and hardware
setup are relatively time-invariant only one estimation for
every unique pair Dx = (HWy, SWz) is needed.

III. IMPLEMENTATION AND EXPERIMENTAL SETUP

To evaluate our approach, we developed a prototype imple-
mentation. A simulation would not be useful as the first step as
many parameters contribute to the latency in a complex way.
As these parameters are unknown we have to determine them
in a real test-bed. We implemented our approach in Java to
achieve high platform independence. Java is not widely used
in latency-sensitive and real-time scenarios. Nonetheless, the
authors of [5] show that Java implementations can even meet
hard real-time requirements. Therefore, we used the Jamaica
VM [6], which is a real-time-capable Java Virtual Machine.
Furthermore, our approach estimates the latency as distribution
and thus we do not assume the software latency to be constant.
Our implementation is flexible and generic. We can change the
number of examined devices, the size of the packets as well
as the number of packets to estimate every RTT. Especially,
the size and the number of packets are important parameters.
We assume that the software latency as processing latency
is dependent on the packet size. Moreover, the number of
packets to estimate each RTT is important to ensure a sufficient
statistical accuracy of the distribution.

As experimental setup, we used three Intel Galileo Boards
[7] and a 1 GBit/s switch to connect these devices.

IV. MEASUREMENTS AND EVALUATION

First, we conducted a measurement, which is independent
of our implementation (see Figure 4). Afterwards, we can
use this independent measurement for comparison with our
implementation. We used the ping tool to measure the RTT

Fig. 4. Histogram of the RTT between 2 PCs: 10,000 packets
(PCs: Windows7/i7-2670QM and Archlinux/i3-6100U)

between two PCs. The difference between our implementation
and the ping measurements is that ping uses the ICMP protocol
and thus there is no overhead introduced by UDP. Furthermore,
as we executed ping natively there is no overhead introduced
by the Java Virtual Machine in this measurement. The mean
of the RTT varies between 3 ms and 4 ms. Furthermore, there
are many outliers.

Fig. 5. Histogram of the RTT between 2 Galileo Boards: 3,000 packets

Secondly, we used ping to measure the RTT between
two Galileo boards (see Figure 5). The mean of this RTT
distribution lays between 1.5 ms and 2 ms, the RTT is normally
distributed, and there are no outliers. In this measurement,
we observed the RTT between two platforms running a real-
time OS. Thus, we can assume a predictable execution time
and hence measured no outliers. From the first two measured
distributions, we can conclude that the RTT as well as the
software latency is a distribution and thus should not be
assumed to be constant. We have to state that even on a real-
time platform where the software latency has a predictable
maximum value the latency is still variant and not constant.

Thirdly, we measured the RTT using our Java implementa-
tion (see Figure 6) using the Oracle JVM. We see that the
distribution has a mean value of 2.30 ms. This additional
latency compared to the ping measurement was introduced
by the overhead of UDP as well the processing overhead of
the JVM. Again, we observed a few outliers.



Fig. 6. Histogram of the RTT between 2 Galileo Boards measured with our
Java Implementation using the Oracle JVM (10,000 packets; min = 1.69ms;
mean = 2.30ms; max = 9.56ms)

Fig. 7. Histogram of the RTT between 2 Galileo Boards measured with our
Java Implementation using the Jamaica VM (10,000 packets; min = 5.76ms;
mean = 6.38ms; max = 7.08ms)

Additionally, we investigate our Java prototype implemen-
tation using the Jamaica real-time JVM and the correspond-
ing Java real-time threads (see Figure 7). We see that the
distribution has a mean value of 6.38 m. The additional
latency compared to the Oracle JVM is introduced by the large
processing overhead of the real-time JVM. Nevertheless, the
behavior of the implementation is much more predictable. All
observed RTTs lay within a range of 1.38 ms whereas the
RTTs exhibit a range of 7.87 ms using the Oracle JVM.

Next, we tested whether our implementation is able to
determine software latencies. First, we estimate the latencies
of all devices as described in Section II and stated the latency
in ns:

Latencynormal =

15991301585960
1604775

 . (13)

In a second measurement, we introduced an additional
latency of 2 ms to the sending and receiving latency of one
device. Finally, we executed the complete estimation again.
As the result, we got the vector of the software latencies in
ns:

Latencydelayed =

16026461580520
3724501

 . (14)

We can see that the implementation can detect the intro-
duced latency. Thus, we assume the measured latency of the
modified device to be 2 ms higher than the latency of the un-
modified devices. Actually, the latency of the modified device
is 2.144 ms higher than the latency of the unmodified device,
which amounts to 1.605 ms. Therefore, we can conclude that
our approach can state the software latency with an precision
of approx. 144µs.

Concerning the error, we have not subtracted the hardware
latency introduced by wires and the switch. However, the focus
of our prototype implementation was the functional validation
of our concept. Furthermore, Schweissguth et al. proposed an
easy method to measure the latency of a switch in [3], where
the author state that the hardware latency of layer 2 switches
is approx. 30µs. The half of this hardware latency is added
to every measured latency value. Therefore, we can state the
error considering the mean of the measured software latency
of 1.595 ms:

15µs

1.595ms
≈ 0.0094. (15)

Thus, the error introduced by not considering the hardware
latency is approximately 1 %.

V. STATE OF THE ART AND RELATED WORK

NTP and PTP are the established standard synchronization
protocols. Both use the RTT between two devices to determine
the software latency. Nevertheless, only the sum ta + tb can
be determined in this way, where ta is the software latency of
device A and tb is the software latency of device B.

The standard for the conduction of latency measurements is
defined in RFC 2544 [8]. The authors state that measurements
should be carried out using a device under test and a tester.
The latency l is defined as l = tt − tr where the tester takes
the timestamp tt after the data is fully transmitted and the
timestamp tr after the data was fully received again. Basically,
this latency definition equals the RTT and thus it is impossible
to distinguish between hardware latency and software latency
as well as between the latency ta introduced by the tester and
the latency tb introduced by the unit under test. Furthermore,
they utilized a specific testing device.

In [9], the authors present an NS3-based simulation as well
as practical measurements of the software latency. Especially,
the network interface controller (NIC) and the New API
(NAPI) are examined. The measurements are done using a
specialized load generator and the device under test.

Emmerich et al. examine the network latency of game
servers in [10]. They state that the main part of the latency
is introduced by the communication over the Internet and
that buffer bloat can lead to latencies in this scenario. They
consider the latencies of the network stack and propose user
space stacks to optimize latency and throughput. The authors



conducted the measurements using a 10 GBit/s load generator
and a game server. Moreover, they used PTP timestamps of
incoming and outgoing packets.

Rotsos et al. present a framework for the evaluation of
switching hardware in [11]. They focus on latency measure-
ments of OpenFlow-enabled switches for software-defined
networks. They present a generic software framework but
use dedicated FPGA-based hardware implementations for the
measurements rather than a measurement based on standard
hardware.

In [12], Inoue et al. examine software latencies and present
a hardware/software implementation of a low-latency network
stack. They state that context switches and buffer copies
introduce latency and co-processing can reduce this latency.
Furthermore, they state that multi-core processing and par-
allelization has a positive impact on the throughput but a
negative impact on the latency. This confirms that many
parameters contribute to the the software latency. Thus, it
can not be assumed to be constant. Their system achieves
high performance through direct access to the hardware from
the user space as well as specialized software. Hence, their
approach is very platform dependent.

In [13], the end-to-end latency in TCP/IP networks is
analyzed. The authors state interrupt management, head-of-
queue effects, system resource contention, context switches,
high processor load, and high traffic load as sources of latency
variations. For latency-sensitive scenarios the authors propose
core affinity as well as an adaptive change between interrupts
form the NIC and active polling by the kernel of the operating
system. Moreover, they propose adaptive interrupts: for low-
latency requirements the interrupt shall be triggered instantly.
Contrary, there shall be one interrupt for many packets to
achieve a high throughput. This confirms that the software
latency is highly depended on the application and implemen-
tation.

The authors in [14] present an analysis of the current
Linux network stack. Especially, they focus on investigating
latency and throughput. They state that the NAPI offers a
trade-off between latency and throughput. Nevertheless, a
joint optimization towards low latency and high throughput
is not supported. However, low-latency polling can be used,
e.g. utilizing the Intel ixgbe-Driver, which leads to a latency
improvement of 30% according to Intel.

Compared to the state-of-the-art, our proposed method has
several enhancements:

• It provides the possibility to distinguish between the
latencies ta and tb. Therefore the software latency of a
single device can be estimated, which is impossible if we
use only one RTT.

• The latency is not assumed to be constant. Instead, a
probability distribution is measured. As a result, we can
state statistical parameters like mean, standard deviation
and statistical accuracy.

• Furthermore, we can investigate the worst case latency
and thus evaluate the real-time capability of a device.

• Our algorithmic approach introduces a software-based

estimation. Thus, it is platform independent and no spe-
cialized hardware is needed. Moreover, measurements are
possible in the real field of application.

• The proposed approach offers a good scalability: if time-
invariance of the latency distribution can be assumed, we
only need one estimation for every device. We note that
if time-invariance cannot be assumed, a determination of
the latency is impossible.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present a novel method to estimate the
latency of networking software. The proposed method is plat-
form independent and hence, there is no need for specialized
hardware. Therefore, the proposed method can be used to
determine the software latency for a clock synchronization
algorithm or to automatically evaluate the real-time capability
of a device in its real field of application.

Furthermore, the approach has a good scalability. In a
network with n nodes having m different platforms (platform
= hardware + software) the formula T ∼ m applies where T is
the time needed to determine all software latencies. We need
only m measurements to determine the m unknown latencies,
which is the mathematical minimum. We always need m
different measurements to get m independent equations, which
compose a system of equations of rank m.

Prospectively, we will examine the utilization of our ap-
proach for a clock synchronization algorithm.
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