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Abstract—The new standard IEEE 802.11s enables vendor-
independent wireless mesh networks based on the 802.11 WLAN
technology. Transmission Control Protocol (TCP) is the most
widespread transport protocol for reliable data delivery and
still the basis for many network applications. TCP supports
different mechanisms for flow and congestion control. However,
designed for wired networks, it does not consider the dynamics
of wireless networks and especially multi-hop wireless mesh
networks. In addition, 802.11s provides own mechanisms such
as Automatic Repeat Request (ARQ) for frame retransmissions
to hide wireless loss from the upper layers. Being transparent to
each other, retransmission schemes on both layers may interfere
and operate redundantly, if not properly adjusted. We study the
effects of ARQ retry limit variation on TCP throughput in a real-
world multi-hop 802.11s test bed. As a result, we suggest ARQ
adaptation based on the 802.11s standard’s Airtime Link Metric
(ALM) for path selection, serving as indicator for overall frame
travel time. Our proposed approach solely relies on standard
features and imposes no modifications to 802.11s or TCP.

I. INTRODUCTION

Envisaged to realize future community networks, information
services in public facilities, wireless last-mile internet access,
or spontaneous communication in disaster scenarios, WLAN
mesh networks have emerged as an attractive technology [1].
Ratified in 2011 as first industry WLAN mesh standard, IEEE
802.11s introduces mesh extensions to the existing 802.11
MAC layer specification [2]. By that, it inherits and integrates
most existing MAC layer mechanisms, such as Automatic
Repeat Request (ARQ) for flow control and shielding of frame
transmission errors to upper layers. Frames are retransmitted
for a certain number of retries until successful reception is
confirmed by an ACK.
Above the WLAN MAC layer, Transmission Control Protocol

(TCP) is still the de facto standard transport protocol to
enable reliable data delivery for an abundance of network
applications. Originally designed for wired networks, its flow
and congestion control mechanisms expect low bit error rates
and small delays, contrary to the indeterministic behavior of
wireless environments [3]. Over time, a variety of different
TCP congestion control algorithms have been proposed, ex-
tending or modifying standard TCP [4]–[9]. Some of them
even focus on lossy network conditions [4]–[6].
Nevertheless, corresponding mechanisms for flow control at

both TCP and 802.11 level need to be tuned carefully to
prevent interference [10], [11]. On the one hand, ARQ is

beneficial to hide wireless loss from TCP and avoid unneces-
sary segment retransmissions, which are costly due to inherent
reduction of the sending window. On the other hand, TCP
congestion control is tightly coupled with flow control timing
parameters, such as round trip time (RTT) and retransmission
timeout (RTO). These are affected by channel contention and
delays imposed by ARQ frame retransmissions and do not
consider the underlying MAC layer parameters. Especially in
WLAN mesh networks, ARQ is active at all hops along a
multi-hop TCP flow. On the occurrence of transient errors and
wireless contention, the number of ARQ frame retransmissions
may touch a defined retry limit per hop, considerably increas-
ing overall delay and causing TCP timeouts.
Consequently, solutions must be pursued that improve cross-

layer cooperation between 802.11 and TCP flow and conges-
tion control. Therefore, we have evaluated TCP performance
in a real-world 802.11s mesh test bed by varying path length,
ARQ retry limit, and TCP variant. Further, we have identified
the 802.11s standard’s path cost metric as suitable indicator to
improve cross-layer cooperation.
The remainder of this paper is organized as follows: Section II

outlines the basic principles of IEEE 802.11s and TCP. Section
III illustrates the layer mismatch between both protocols. In
Section IV, we describe several measurements conducted in a
real-world test bed to explore the cooperation between 802.11s
and TCP. Discussing our results, we introduce a cross-layer
approach to improve MAC-layer ARQ when applying TCP
over 802.11s networks. In Section V, we give an overview
of related work in optimizing TCP performance over WLAN
and WLAN mesh networks. Finally, we conclude our results
in Section VI and briefly state next steps for future research.

II. TECHNOLOGICAL BASIS

A. IEEE 802.11s WLAN Mesh Networks

The WLAN mesh standard IEEE 802.11s comes as
amendment to the 802.11 MAC-layer specification and thus
inherits most of its mechanisms. Additionally, it introduces
mesh extensions, such as automatic link establishment
(peering), frame forwarding, and path selection [2].

Channel Access and ARQ: The majority of 802.11 deploy-
ments today relies on the Distributed Coordination Function



(DCF) to perform CSMA/CA-based channel access. How-
ever, the Hybrid Coordination Function (HCF) with Enhanced
Distributed Channel Access (EDCA), originating from QoS
amendment 802.11e, is defined as default mechanism for
802.11s mesh networks [2]. EDCA extends the common DCF
mainly by the use of Access Categories (AC) for traffic
prioritization. If not specified otherwise, the default ”Best
Effort“ (ACBE) category is assumed. Like in DCF, channel
access is regulated based on inter frame spaces (IFS) and an
exponential back-off procedure. The latter is determined by a
contention window (CW) that gives the number of slot times
to wait before a WLAN station attempts medium access [12].
The CW value is chosen from an uniformly distributed integer
interval that ranges from 0 to an upper limit. For the initial
CW, this upper limit is CWinit. Otherwise, the upper limit
CWcur of the interval is doubled on consecutive transmission
retries until a maximum value CWmax. Values for CWinit

and CWmax depend on the applied 802.11 PHY layer.
The slot time (ST) and short inter frame space (SIFS) are

likewise technology dependent parameters. Based on both, the
other IFS are calculated [12]. The distributed IFS (DIFS) is
only used in DCF and given as SIFS+2 ·ST . In EDCA, the
access category dependent arbitrary IFS (AIFS[AC]) replaces
DIFS and results from SIFS + AIFSN [AC] · ST , where
AIFSN for default category ACBE is 3. All stations in radio
range wait for an access category dependent extended IFS
(EIFS[AC]) instead of AIFS[AC] after reception of an erro-
neous frame to not interfere with subsequent retransmissions
and ACKs. EIFS[AC] is given as SIFS + AIFS[AC] +
TtxACK

. The retransmission of frames after ACK timeouts is
controlled by stop-and-wait Automatic Repeat Request (ARQ).
To have an administrative control over ARQ, an upper retry
limit can be set for a WLAN network interface.
Based on the parameters described, maximum duration of a

successful EDCA-based single-hop single-frame transmission,
needing a certain number of ARQ retries R, can be approx-
imated as the sum off time (TSum) needed for successful
transmission of the frame (TF ) and its ACK (TACK), and
the delay imposed by ARQ retransmissions (TARQ) [12]:

TF = AIFS[AC] + CWinit · ST + TtxF

TACK = SIFS + TtxACK

TARQ[i] = TACK +AIFS[AC] + CW [i] · ST + TtxF

TARQ =

R−1∑
i=0

TARQ[i]

TSum = TF + TACK + TARQ

(1)

TtxACK
denotes the time needed for ACK transmission at the

lowest mandatory rate defined by the 802.11 PHY mode. TtxF

denotes the time needed for frame transmission at a rate given
by automatic rate control or a fixed setting. CW [i] is the back-
off value chosen from the current CW interval depending on
i, the number of ARQ retransmissions already needed. TARQ

describes the worst case where all R retransmissions are
caused by errors during data frame delivery and not during
ACK delivery. Here, a frame with lost ACK would still be

forwarded along the path, leading to a smaller overall latency
in spite of higher redundant MAC-layer traffic.

Mesh Path Selection: The most important 802.11s mesh
extension is path selection using the Hybrid Wireless Mesh
Protocol (HWMP) and Airtime Link Metric (ALM). HWMP
is based on the reactive distance vector routing protocol AODV
that determines a path as soon as it is needed (on-demand).
ALM allows for path cost estimation, as it represents the
cumulative frame transmission time over all peer links forming
a mesh path in µs [13]. The so-called airtime cost (ca) for a
certain peer link is calculated by each node as follows:

ca =

[
Oca +Op +

Bt

r

]
· 1

1− efr
(2)

Oca and Op are constants for the channel access and MAC
protocol overhead. Bt is the test frame size and given as
8182 bits (1 kB) by default. r denotes the test frame data
rate, given in Mbit/s, whereas efr denotes the expected frame
error rate. The estimation of efr as well as the values of the
overhead constants are left open to vendor implementations.
The 802.11s reference implementation open80211s for Linux
systems provides own parameter variants [14], [15]. While
Oca and Op are summarized to 1, data rate r of the last
unicast frame transmission depends on the rate control algo-
rithm (RCA). In current Linux kernels, minstrel is used as
default RCA [16]. Error rate ef is updated on every frame
transmission and calculated by a moving average filter in
current versions of Linux [15].
During HWMP path selection, e.g., being triggered at the

application level, the airtime costs calculated by each node
are accumulated and disseminated within path request (PREQ)
and response (PREP) frames. Thus, a requesting node is made
aware of the overall cost associated with a path towards a target
node via a certain neighbor (”next hop“ peer). Aside from link
information and path costs to certain targets, nodes only have a
limited network view, which is typical when applying distance
vector routing protocols like HWMP.

B. Transmission Control Protocol (TCP)

TCP provides a reliable connection oriented full duplex
service between two hosts that exchange data in the form of
segments. Two of the most important fields in the header of
TCP segments are the sequence number and acknowledgment
(ACK) number fields. TCP considers data as an unstructured
but ordered stream of bytes. The sequence number points
to the first byte of a segment in the byte stream. The ACK
number indicates the sequence number of the next byte, which
is expected. With the help of these numbers, missing and out-
of-order segments can be identified.

Round trip time and timeout: TCP retransmits lost seg-
ments after a timeout. In order to avoid unnecessary retrans-
missions, the timeout is greater than the round trip time (RTT)
of the connection. For this purpose, the sender stores the so-
called SampleRTT (SRTT) of a segment. This is the period
between the transmission of the segment and the receipt of



its ACK. Due to changing network load situations, the SRTT
values can vary from segment to segment. Therefore, the
average of the SRTT values called EstimatedRTT (ERTT) is
determined. In addition, the deviation DRTT indicates how
much the SRTT typically differs from the ERTT. Finally, the
retransmission timeout (RTO) denotes the time interval after
which a TCP retransmission is triggered. Equation 3 shows
RTT estimation and RTO calculation. Choice of α = 0.125
and β = 0.25 is recommended according to [17].

ERTT = (1− α) · ERTT + α · SRTT
DRTT = (1− β) ·DRTT + β · |SRTT − ERTT |
RTO = ERTT + 4 ·DRTT

(3)

When a timeout occurs, the RTO is doubled. An initial
RTO of 1 s with a fallback to 3 s is recommended in theory
[17]. Practical implementations, such as current Linux TCP,
set the initial RTO to 3 s. Further, a fixed minimum RTO of
200 ms and maximum RTO of 120 s is hard-coded [18]. Recent
practical studies using Linux and WLAN environments have
shown that RTO calculation mostly results in values between
500 ms and minimum RTO [19].

Duplicate ACKs and fast retransmit: If a segment is
received out of order the receiver immediately sends a du-
plicate ACK (DupACK) to the sender, in which it indicates
the sequence number of the next expected byte again. After
the sender has received three DupACKs, it performs a fast
retransmit, immediately sending the missing segment again.
Flow control: Hosts on each side of a TCP connection

reserve an input buffer for the connection. If a host receives
data that is accurate and in the right order it puts it in the
input buffer. Thereby, TCP provides flow control as the sender
is notified by the receiver how much free buffer space the
receiver has available. This variable stored at the sender is
denoted as receive window rwnd. Thus, the flow control
ensures that the input buffer of a receiver does not overflow
by restricting the transmission rate of the sender.
Basic congestion control: In addition, the sender adapts

its transmission rate to the traffic load situation in order
to avoid congestion. For this purpose, the sender maintains
another variable called congestion window cwnd. Overall,
the effective window size of unacknowledged data in flight
may not exceed min(cwnd, rwnd). For the congestion control
(CC), an algorithm is used comprising three main phases: (1)
slow start (SS), (2) congestion avoidance (CA), and (3) fast
recovery (FR) [20], [21].
(1) Slow start (SS): At the beginning of a TCP connection,
cwnd is usually set to the maximum segment size (MSS),
which severely limits the transmission rate. Therefore, the
transmission rate is doubled per RTT if the transmitted seg-
ments were confirmed. If an RTO occurs, another variable
called ssthresh is set to cwnd/2. Subsequently, cwnd is reset
to 1 MSS and slow start begins again. If three DupACKs are
received, a fast retransmit is performed and cwnd is set to
ssthresh. If the value of cwnd equals ssthresh, SS ends
and the CA phase begins.

(2) Congestion avoidance (CA): If cwnd = ssthresh, TCP
only increases the value of cwnd by 1 MSS per RTT (called
additive-increase) [20]. If three DupACKs are received, cwnd
is halved (called multiplicative-decrease), fast retransmit is
performed as described above, and the FR phase begins.
Otherwise, the termination conditions are the same as in the
SS phase.
(3) Fast recovery (FR): For each received DupACK, the value

of cwnd is increased by 1 MSS. If the ACK for the missing
segment finally arrives, TCP enters the CA phase. In case of
an RTO, TCP changes to the SS phase as described previously.
As TCP CC basically adapts cwnd by additive-increase (AI)
and multiplicative-decrease (MD), it is often referred to as
AIMD algorithm.

Congestion Control (CC) algorithms: FR is an optional
TCP mechanism [20]. It was introduced in the CC algorithm
Reno. It is the theoretical standard, superseding Tahoe, and
implements the behavior as described above. Meanwhile, sev-
eral variations like NewReno exist [22], [23]. In the following,
some recent TCP CC algorithms, also available in current
Linux kernels, are described.
BIC is a complex algorithm and a detailed description can

be found in [7]. If cwnd is greater than a constant threshold
then BIC is used. Otherwise, Reno variants are used. After
a segment loss, BIC enters the CA phase and adapts cwnd
by a binary search between a dynamic upper and lower limit.
Linux used BIC as default in kernel versions 2.6.8 to 2.6.19,
superseding NewReno [24].
CUBIC represents an enhanced version of BIC [8]. It sim-

plifies the cwnd adaptation of BIC by using a single cubic
function in terms of the elapsed time since the last lost
segment, so it does not require different phases. Linux uses
CUBIC as default since kernel version 2.6.19 [24].
Vegas emphasizes packet delay rather than packet loss as a

signal to determine the transmission rate [4]. cwnd is adapted
depending on the difference D between expected and current
transmission rates during the CA phase. Thereby, RTTmin is
the lowest RTT of the connection. Vegas further defines two
thresholds a and b, for linearly increasing or decreasing cwnd
during the next RTT. Vegas’ SS and FR phases are similar to
that of Reno variants.
Veno integrates the proactive congestion detection of Vegas

into the CA and FR phases of Reno [6]. To proactively
avoid congestion, Veno adapts cwnd less aggressively, if RTT
difference exceeds a certain threshold.
Westwood introduces a “faster” recovery mechanism to avoid

excessive reduction of cwnd after three DupACKs [5]. It
does so by adapting cwnd according to an estimated available
bandwidth BWE .
Illinois implements all functions of the Reno variant

NewReno but complements it by a Concave-AIMD (C-AIMD)
algorithm [9]. C-AIMD uses segment loss as primary and
queuing delay as secondary congestion signal to adapt cwnd.
See Table I for an overview of the different TCP congestion

control algorithms and their cwnd adaptation.



TABLE I: Comparison of TCP congestion control algorithms
(CA=congestion avoidance, FR=fast recovery)

NAME NETWORK MOST IMPORTANT CWND
CONDITIONS ADAPTATION MECHANISM

BIC high bandwidth Binary search increase algorithm
CUBIC high bandwidth cwnd = C (t−K)3 + cwndmax

K = (cwndmax · b/C)1/3

Vegas lossy medium CA: (D < a) ? cwnd++,
(D > b) ? cwnd--
D = (exp− cur)RTTmin

exp = cwnd/RTTmin

cur = cwnd/RTTcur
Veno lossy medium CA: (D < b) ? cwnd++ every RTT

: cwnd++ every second RTT
FR: (D < b) ? ssthresh = cwnd · 4

5
: sstresh = cwnd/2

Westwood lossy medium FR: (DupACKs received) ?
ssthresh = BWE ·RTTmin/MSS
(cwnd > sstresh) ? cwnd = ssthresh

Illinois high bandwidth FR: cwnd -= β · cwnd
low latency CA: cwnd += α · cwnd

α ∝ RTT and β ∝ RTT

III. MISMATCH BETWEEN 802.11S MAC LAYER AND TCP

The 802.11 ARQ mechanism for automatic frame retransmis-
sions after ACK timeout is used to effectively hide link-layer
loss from TCP, as it operates invisible to the transport layer
[10]. In an 802.11s network, ARQ is performed on a per-hop
basis along a multi-hop mesh path. Figure 1 shows a TCP
transmission with sender and receiver being connected by a
multi-hop 802.11s network, i.e., intermediary nodes that each
perform frame forwarding and ARQ at the MAC layer.

802.11s 802.11s 802.11sFrame Frame...
IP

TCP

APP

SND FWD FWD

802.11s

IP

TCP

APP

RCV

Segment

Packet

Fig. 1: TCP connection over multi-hop 802.11s path

TCP retransmissions are costly due to inherent cwnd re-
duction (see Section II-B). Thus, transient link loss should
be hidden as best as possible by 802.11 ARQ. However, if
overall frame travel time along a mesh path exceeds the TCP
connection’s RTO, the current segment is retransmitted by
the TCP sender at the transport layer and, again, needs to
be forwarded along the whole path at the MAC layer. Now
assume that the initial segment transmission arrives late at the
TCP receiver due to per-hop ARQ and RTO occurs although
the frame has not been dropped at the MAC layer yet. Then,
ARQ induced by the TCP segment retransmission adds up
to ARQ still performed for the initial transmission attempt.
Moreover, this also accounts for the flow from receiver to
sender in opposite direction, where ACK segments likewise
cause ARQ and may contribute to exceeding RTO.
As described in Section II-B, RTT estimation and RTO

calculation are updated only after TCP ACK reception or
timeouts. Thus, a new RTO value will apply only for an
upcoming segment transmission while ARQ of the previous
attempt is still active in the path. In this scenario, ARQ of

TABLE II: EDCA parameters for 802.11b/g mixed mode PHY

Parameter Value

Slot T ime (ST ) 20 µs

SIFS 10 µs

AIFS[ACBE ] 70 µs

CWmin 15 · ST
CWmax 1023 · ST

TABLE III: Parameters of thought experiment

Parameter Best Case Worst Case Normal Case

ACK Rate [Mbit/s] 6 6 6

TtxACK [µs] 50 50 50

DataFrameRate [Mbit/s] 54 6 24

TtxF [µs] 250 2070 530

CW 0 CWcur CWcur/2

the segment transmission is not capable to achieve successful
frame transmission within TCP RTO. It is performed redun-
dantly to the TCP retransmission and, moreover, leads to
additional contention on the wireless channel.
As a consequence, duration of consecutive ARQ retrans-

missions along a mesh path must not exceed the RTO of a
TCP connection. Since RTO is dynamically calculated and
not known on intermediary nodes in a mesh path, a first
approach to adapt ARQ retry limits is to consider the fixed
RTOmin of TCP implementations. RTOmin is the smallest
possible RTO calculated for a TCP connection and represents
the upper bound for link-layer frame travel time between a
TCP sender and receiver before a TCP retransmission of the
same segment can be triggered. Practical TCP implementations
allow RTO values as low as 200 ms [18]. Recent studies with
Linux TCP in WLAN setups have shown that RTO calculation
mostly results in values between 500 ms and RTOmin [19].
By limiting the time of overall ARQ retries to stay within
RTOmin, retransmissions will not be performed redundantly
for the same segment even in a worst case. Nevertheless,
following this constraint, ARQ retry limit should be kept as
high as possible to hide link-layer loss from TCP and avoid
unnecessary cwnd reduction.
By an introductory thought experiment, we want to illustrate

the effects of path length and ARQ retry limit on overall
frame travel time in a simplified scenario. To approximate
frame travel time along a multi-hop mesh path, including
all forwarding steps by intermediary nodes, we multiply the
duration of a single frame transmission (see Equation 1) by
the hop count between TCP sender and receiver:

TMultiHop = Hops · (TF + TACK + TARQ) (4)

Table II lists the EDCA parameters for default access cate-
gory ACBE and 802.11b/g mixed mode PHY [12], complying
to the hardware we used to conduct real-world measurements,
as described later in Section IV.
We distinguish three cases with different data frame sending

rate and choice of the contention window CW, implying
different channel conditions. Table III lists the parameters



for a “best”, “worst” ,and “normal” case. For all cases, we
assume an 802.11 ACK frame size of 20 bytes and a data
frame size of 1500 bytes. The given transmission rates result
in different frame travel times (TtxACK

and TtxF
), according

to [25]. In the “best” case, a transmitting node is instantly
granted channel access. In the “worst” and “normal” case, CW
is set to CWcur and CWcur/2, respectively, which depends on
the ARQ retry count, as described in Section II-A. Although
practically impossible, best and worst case denote lower and
upper limits for overall frame travel time. With the “normal”
case we want to approximate more realistic scenarios in
between these limits.
We assume successful forwarding of a single frame belonging

to a TCP data segment along a mesh path where a certain
number of ARQ retries is required and performed equally
per hop. Because of a lower probability for errors in TCP
ACK transmission caused by their smaller size, and due to
the existence of different TCP ACK transmission strategies,
e.g., cumulative ACKs, we do not model the proportion of
time needed for ACK delivery from TCP receiver to sender.
Moreover, our simplified scenario does not yet account for
interference, node mobility, 802.11 control messages, or com-
peting application traffic. However, these effects only amplify
the problem we want to illustrate.
Based on the assumptions described and using equations 1

and 4, we calculate overall frame travel time depending on
hop count (1 to 5 hops) and ARQ retries (1 to 31, like the
range configurable under Linux) for the three cases introduced,
as shown in Figure 2. In all three diagrams, RTOmin is
highlighted by a red line. Only an extract of the calculated
results for 5 to 15 ARQ retransmissions is shown, as RTOmin

is exceeded in cases (b) and (c) for all multi-hop paths within
this retry span.
As shown in Figure 2 (c), a path length of 5 hops with 9

ARQ retries needed per hop already leads to an overall frame
travel time of 236 ms in the “normal” case, exceeding TCP’s
RTOmin (200 ms). In the best case (Figure 2 (a)), an overall
frame travel time of only 60 ms is needed even on a 5-hop
path with 31 retries per hop (upper practical limit), still far
below RTOmin. However, here we assume the highest frame
sending rate and neglect exponential back-off completely. It
becomes obvious that rate control and random CW selection
have a major impact on overall frame transmission time. In
reality, upper CW is doubled on ARQ retries until CWmax,
increasing probability for selecting higher back-off times.
Always selecting a CW of 0 is as unlikely as always taking
the current upper limit like in the worst case, where RTOmin

is exceeded already for 7 retries per hop after 4- and 5-hops.
Nevertheless, note that the difference between the worst case

(6 Mbit/s, always CWcur) and the normal case (24 Mbit/s,
always CWcur/2) is rather small, especially for paths with
3 and more hops. Here, only 2 to 3 additional retransmissions
per hop are sufficient to exceed RTOmin in the normal case.
TCP tightly couples its flow and congestion control (CC),

adapting its sending rate upon flow control events (RTO,
DupACKs). Although many different TCP congestion control

variants exist (see Section II-B), all are affected by underlying
802.11 flow control. We identified ARQ to have an important
influence on overall TCP performance, even if CC variants de-
signed for wireless environments are used. If executed within
TCP RTO, ARQ effectively hides transient loss on the wireless
channel. Otherwise, it involves the risk to interfere with TCP
retransmissions especially in multi-hop flows, while being
performed redundantly. This illustrates that careful TCP-aware
tuning of ARQ retry limits should be pursued in practical
WLAN mesh networks.

IV. REAL-WORLD TEST BED MEASUREMENTS

A. Experimental Setup

To validate our assumptions, we conducted TCP through-
put measurements in a real-world 802.11s mesh test bed
for path lengths of 3 and 5 hops and different ARQ retry
limits. To show that the problem described can be observed
independently of the TCP congestion control (CC) variant in
use, we compared multiple algorithms. For the different path
lengths, we used 4 to 6 Raspberry Pi model B single-board
computers [26] with (700 MHz ARMv6 CPU, 512 MB RAM,
and Linux Kernel v3.12.43), integrating 802.11s reference
implementation open80211s [14]. Every node was equipped
with a WLAN USB adapter (Buffalo WLI-UC-GNM, Ralink
chipset driver rt2800usb) configured to operate as 802.11s
mesh point in 802.11g mode (54 Mbit/s PHY rate). We used
default 802.11s parameters for peering and path selection.
Further, 802.11 automatic rate control (ARC) was activated
using the default algorithm minstrel [16]. We varied ARQ
retry limit per node via user space tool iw. The Linux default
setting allows for 7 frame retransmissions. Additionally, we
evaluated retry limits 1 (practical minimum), 3, 5, 9, 16, and
31 (practical maximum). Considering the “normal” case of
our thought experiment (see Section III), we chose a finer
granularity for lower values of the retry limit to approach
the theoretical threshold from which on ARQ may not be
beneficial anymore. All nodes were located in the same room
within radio range. Thus, RTS/CTS was left deactivated. We
chose a channel not overlapping with other networks in our
institute building.
As the applied WLAN adapters did not support transmission

power reduction and a deployment range leading to a path
length of 5 hops was not feasible, path enforcement was
used to create a reproducible multi-hop environment. For this,
userspace tool iw enables manual setup of multi-hop paths via
peer link block functionality. On each node, we forbid link
establishment to all peers except predecessor and successor
in the desired multi-hop chain. An enforced path represents
a worst case scenario, as the possibility for frame collisions
is increased if all nodes operate within interference range.
Furthermore, no parallel transmissions by non-adjacent nodes
are possible, compared to a multi-hop topology caused by
distance. However, this complies to our introductory scenario
described in Section III more closely, as it leverages the chance
that the allowed number of ARQ retries is actually performed.
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Fig. 2: Frame travel time depending on path length and ARQ retry limit

In both the 3- and 5-hop chain we generated a single TCP
flow consisting of random data (1500 bytes MTU, 1460 bytes
MSS) using performance measurement tool iperf (v2.0.5) [27].
For client and server, i.e., TCP source and destination, we
always chose the nodes at both ends of the mesh path. In
addition to CUBIC, being the default TCP CC algorithm,
we evaluated BIC, Vegas, Veno, Westwood, and Illinois, as
presented in Section II-B. We used default settings for iperf
and Linux TCP.
For each combination of path length, ARQ retry limit, and

CC algorithm, we conducted 10 consecutive measurement
runs with a duration of 100 s each. The instantaneous TCP
throughput measured by the iperf client was sampled every
5 s, resulting in 20 samples per run and 200 samples in total
for each parameter set.

B. Results

Figure 3 shows the average throughput for each TCP variant
in Mbit/s, depending on mesh path length and ARQ retry limit.
In contrast to AP-based infrastructure 802.11g networks,

achieved data rates in the mesh test bed were considerably
lower due to required frame forwarding, a common effect
in wireless multi-hop networks. Since all nodes were within
radio range and paths were enforced manually in our setup, as
described in Section IV-A, channel contention increased with
node count and path length. More specifically, in deployments
with high contention it is likely that the number of ARQ frame
retransmissions actually performed comes close or equal to the
configured retry limit, like in our scenario given in Section III.
For both the 3- and 5-hop case, as shown in Figure 3, the

TCP throughput curves exhibit a concave shape and thus a
similar dependence on the configured ARQ retry limit. All
TCP variants achieved highest average throughput for retry
limits between 5 and 9, which includes the Linux default
setting of 7 allowed retransmissions. When setting retry limits
to less than 5 in both multi-hop setups, transient frame loss
could not be hidden effectively from TCP and led to a higher
number of TCP retransmissions and reduced sending window
size caused by congestion control.
For retry limits higher than 9, the 3-hop flow throughput

dropped below its peak for all TCP variants. In the 5-hop
flow, the drop in TCP throughput caused by a too high retry
limit per node could be observed earlier, i.e., after 5 to 7
allowed frame retransmissions. In our suggested adjustment

range of 5 to 9 allowed ARQ retransmissions, throughput
improvement for the best algorithm in the 3-hop setup was
11 % (Veno). The highest throughput difference amounted to
38 % (Westwood). For the 5-hop setup, the best algorithm
revealed a throughput improvement of 8 % (CUBIC), whereas
the highest difference was measured with 35 % (Vegas). Thus,
the expected dependence between path length and ARQ retry
limit can be demonstrated, as described in Section III.
In the 5-hop case, the observed throughput for CUBIC devi-

ates considerably from the other TCP variants. We checked,
that these results were neither caused by a faulty mesh path
setup nor significant differences in effective TCP window size
or wireless channel conditions. For that, we compared TCP
traffic captures and 802.11s log files, including physical link
rates and mesh path metrics. Nevertheless, the same depen-
dence on ARQ retry limit as for the other TCP algorithms is
clearly visible.

C. Discussion

Regarding our results, limiting retries below a certain number
is not beneficial. As a general conclusion, ARQ should be
adapted considering a mandatory minimum of retransmissions
to be allowed. Since 802.11 back-off for channel access in-
creases exponentially on retries, a small frame retransmission
number still imposes a tolerable delay but already contributes
considerably to hiding transient errors. Summarized, a too
small retry limit per node leads to frame loss not being hidden
effectively from TCP whereas too high limits lead to overhead,
depending on path length, which reduces overall throughput.
Thus, ARQ retry limit should be tuned at run-time, keeping
it as high as possible without exceeding the retransmission
timeout (RTO) of possible TCP flows in the network.
A mesh node can be either TCP end point or serve as for-

warding node for other TCP flows. While the first case can be
determined easily by accessing local socket information (i.e.,
using tool ss under Linux), identifying the latter would require
deep packet inspection, as frames are directly forwarded at the
MAC layer. Instead, we want to use existing user interfaces to
local mesh information and adapt the retry limit for the worst
case TCP flow possibly passing a node.
The 802.11s standard’s path selection metric ALM expresses

the cumulative airtime cost for frame delivery over a mesh
path when choosing a certain next hop node (see Equation
2). Due to its cumulative nature, ALM is proportional to the
theoretical multi-hop frame travel time, as given by Equations
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Fig. 3: TCP throughput depending on path length, congestion control variant, and ARQ retry limit

4 and 1, respectively. Thus, it provides a suitable MAC layer
RTT estimation for our ARQ tuning approach.
Retrieval of ALM values and changing the global ARQ retry

limit on a node is possible by using existing interfaces of the
network stack, without modifying MAC or TCP implementa-
tions. Each 802.11s node maintains links to its direct neighbors
in a peer list and paths to certain target nodes in a path table.
Linux systems include userspace interfaces, such as netlink, to
provide easy access these data structures and other functions
of the MAC layer within the kernel [14].
For each mesh path, the address of the next hop neighbor and

the resulting cumulative ALM cost is stored. From a node’s
perspective, the highest frame travel duration will occur on the
most costly global path it is intermediary node of, effectively
representing the network diameter. Adapting ARQ retry limit
to this path will also prevent redundant frame retransmissions
on other possible TCP flows forwarded by the node. We
propose a heuristic to estimate the associated path cost, by
which a node combines the two highest ALM values towards
target nodes, that are not reached via the same next hop node.
To effectively prevent redundant retransmissions, duration

of frame forwarding along the assumed network diameter
should be kept smaller than RTOmin, which is as low as
200 ms in practical TCP implementations [18]. Based on the
associated multi-hop frame travel time TMultiHopdia

, being
proportional to its airtime cost ALMdia, and awareness of
practical RTOmin, the need for ARQ retry limit increase or
decrease can be derived, as shown in Equation 5:

RTOmin > TMultiHopdia
∝ ALMdia (5)

As next steps, we will evaluate the practical correlation
of cumulative airtime cost, represented by ALM, and actual
multi-hop frame travel time, measured in real-world setups.
Using these insights, we will implement our proposed TCP-
aware ARQ tuning approach that solely relies on standard
ALM as MAC-layer RTT indicator.

V. RELATED WORK

Numerous works exists in the field of optimizing TCP
for WLAN infrastructure and mesh networks. The survey
in [3] categorizes existing TCP optimizations into sender-
side, sender- and receiver-side, proxy-based and MAC/routing
protocol changes, with most being sender-side solutions. Con-
clusions are, that control traffic must be kept low and TCP

RTO events must be minimized in wireless environments.
Especially the latter is a main focus of our work.
Authors in [11] conduct model-based studies on the 802.11

DCF. They confirm that packet drop decreases with a higher
number of frame retransmissions whereas delay increases.
Thus, ARQ retry limits have to be tuned carefully.
In [10] authors alleviate the challenges of cross-layer collab-

oration between 802.11 ARQ link-layer retransmissions and
TCP congestion control. Simulations are performed for an AP-
based WLAN with different error rates, ARQ retry limits and
multiple TCP flows. They conclude that, on the one hand,
ARQ effectively shields wireless loss from TCP up to a certain
error degree. On the other hand, ARQ increases RTT and thus
may interfere with TCP congestion control variants that are
based on RTT estimates. Furthermore, ARQ may fail to shield
wireless losses in extreme network scenarios with congestion
and then imposes overhead. All in all, to prevent redundant
retransmissions on both layers and maximize ARQ efficiency,
cross-layer mechanisms should be pursued.
Subramanian et al. [28] propose a MAC-layer modification

and a loss-tolerant variant of TCP. Claiming that ARQ may
lead to delay variations and reduced TCP throughput, they
severely limit ARQ retries while introducing forward error
correction (FEC), leading to good results in combination
with their TCP variant. In contrast, we want to leave TCP
unmodified and instead tune ARQ retry limit to be as high as
possible without causing RTO of TCP flows.
In [29] authors investigate the effects of payload length and

ARQ retry limit variation on achievable TCP throughput. The
coexistence of voice and data traffic in a common infras-
tructure WLAN is evaluated for different noise levels via
Qualnet simulator. Authors conclude that loss shielding by
means of a higher ARQ retry limit comes at the expense of
reduced throughput. In case of lossy channels or networks
with high node count and contention, ARQ retransmissions
are vital for many loss-intolerant applications whereas multi-
media applications can often tolerate higher loss rates.
Research in [30] describes a phase type discrete time Markov

chain to derive a probability density function for the number
of ARQ retries required for successful TCP segment delivery
over multi-hop wireless networks. Authors investigate success
probability for different ARQ policies and link error rates.
Barman et al. [31] analyze the tuning of transmission power,

FEC, and ARQ retry limit. They conclude that all mechanisms
decrease loss rate but a compromise between their costs and
benefits must be found.



To the best of our knowledge, no work exists considering an
adaptive, TCP-aware tuning of ARQ retry limits in a multi-
hop WLAN mesh network. Especially, no solution has been
presented that utilizes IEEE 802.11s standard features.

VI. CONCLUSION

In this paper we illustrate the effects of 802.11 ARQ retry
limit variation on TCP performance in 802.11s multi-hop
WLAN mesh networks. To outline the mismatch between both
layers, we show in an introductory thought experiment that
redundant retransmissions may lead to undesirable overhead,
if ARQ and TCP flow control are not coordinated. To vali-
date our assumptions, we conduct several measurements in a
real-world test bed. Results show that there is a significant
dependence between mesh path length and ARQ retry limit,
regardless of the TCP congestion control variant in use. We
investigate throughput of different TCP variants using path
lengths of 3 and 5 hops and retry limits between 1 and 31.
When setting retry limits to less than 5 in both multi-hop

setups, transient frame loss could not be hidden effectively
from TCP and led to a higher number of TCP retransmissions
and reduced sending window size caused by congestion con-
trol. For retry limits higher than 9, the 3-hop flow throughput
dropped below its peak for all TCP variants. In the 5-hop
flow, a drop in TCP throughput could be observed already for
limits higher than 5. In our suggested adjustment range of 5 to
9 allowed ARQ retransmissions, throughput improvement for
the best algorithm in the 3-hop setup was 11 % (Veno). The
highest throughput difference amounted to 38 % (Westwood).
For the 5-hop setup, the best algorithm revealed a throughput
improvement of 8 % (CUBIC), whereas the highest difference
was measured with 35 % (Vegas).
Moreover, we suggest a distributed TCP-aware ARQ retry

limit adaptation, solely based on the 802.11s standard’s default
path selection metric ALM serving as MAC-layer RTT indi-
cator. To implement our approach, we will assess the practical
correlation of ALM and actual multi-hop frame travel time,
measured in an extended real-world setup.
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