
Dynamic Sets – A Programming Abstraction for
Ubiquitous Computing and the Internet of Things

Matthias Prellwitz, Helge Parzyjegla, Gero Mühl, Dirk Timmermann
University of Rostock, Germany

{matthias.prellwitz,helge.parzyjegla,gero.muehl,dirk.timmermann}@uni-rostock.de

ABSTRACT
Applications in the areas of Ubiquitous Computing and the
Internet of Things are often facing the problem that at de-
sign time it is not known what devices will be available
at runtime and what preferences the user will have. Due
to this gap between design time and runtime, mechanisms
are needed to postpone decisions until the application is de-
ployed and to adapt these decisions while it is running. Un-
fortunately, such mechanisms are currently mostly missing.

In this paper, we propose dynamic sets as a programming
abstraction that allows an application originally written for
using a single device to interact with a set of devices of the
same type instead. Using a dynamic set, an application can
transparently call a method on a set of devices using a local
proxy of the set that implements the very same interface
as a device the application was originally written to inter-
act with. Applications that are aware of dynamic sets can
change the criteria used to select the members of a set or de-
rive a new set from existing sets. Besides invocation mecha-
nisms, dynamic sets provide functionality for result aggrega-
tion, automatic member management, update notifications,
and derived business methods. Finally, applications can be
exported making it possible to combine existing applications
to flexible and dynamic mashups.

CCS Concepts
•Software and its engineering→Middleware; Abstrac-
tion, modeling and modularity;

Keywords
Programming abstractions, object grouping.

1. INTRODUCTION
Applications in the areas of Ubiquitous Computing (Ubi-

Comp) and the Internet of Things (IoT) often rely on dy-
namic device ensembles with a potentially large and vary-
ing number of devices that interact with users and that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MOTA ’16, December 12-16 2016, Trento, Italy
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4669-6/16/12. . . $15.00

DOI: http://dx.doi.org/10.1145/3007203.3007213

cooperate with each other by exchanging sensor data and
executing actor commands. This trend is driven by con-
tinuously decreasing hardware prices of sensors, actuators,
and mobile devices (e.g., smartphones) bringing scenarios
and corresponding applications to the mass market. How-
ever, with increasing opportunities and complexity, devel-
oping and maintaining systems leveraging dynamic device
ensembles becomes a difficult challenge. Since the number
and characteristics of the available devices as well as the
user preferences may change over time, it is not feasible to
make all decisions at design time. Therefore, mechanisms
are needed that allow to postpone as much of these deci-
sions as possible until applications are deployed and to adapt
these decisions based on the devices that are available to ap-
plications at runtime. Unfortunately, such mechanisms are
currently missing to a great extent.

In this paper, we present a programming abstraction called
dynamic sets that enables an application to interact with a
varying number of devices in the same way it interacts with
a single device. To achieve this, an interface for a set of
devices is automatically generated from the interface for a
single device of the respective type. The generated interface
has the same methods with the same signatures as the origi-
nal interface and a local proxy object enables the application
to issue method calls and to receive result values in return.
The default semantics is that a call to a method of a set is
sent to all individual devices currently in the set and that
the results coming back from the devices are aggregated to
a single result using one of the available result aggregation
policies. This way, it is also possible to hide the interac-
tion paradigm (e.g., pull via RMI or push using publish/
subscribe) and the underlying transport protocols used to
access services on remote devices (e.g., RMI, REST, CoAP)
from the applications. Additionally, it is possible to expose
the interface of a set or of an application to other applica-
tions. This allows application programmers and deployers
to realize mashups facilitating flexibility and extendability.

The remainder of the paper is structured as follows: The
basic idea of dynamic sets and how applications can trans-
parently use their default semantics is presented in Sect. 2.
Section 3 discusses the additional functionality that an ap-
plication can use if is aware of the fact that it is interacting
with a dynamic set. Section 4 introduces advanced concepts
enabling the programmer to customize the functionality of
a dynamic set and Sect. 5 discusses flexible mashups, an op-
timization switching between push and pull, and quality of
service aspects. Related work is discussed in Sect. 6 and our
conclusions and future work are presented in Sect. 7.

http://dx.doi.org/10.1145/3007203.3007213

Figure 1: Basic scenario.

1 interface ILight {
2 boolean isPowered ();
3 void setPowered(boolean pow);
4 boolean isDimmable ();
5 int getRoom (); ...
6 }

Listing 1: Plain business interface.

2. DYNAMIC SETS
We introduced dynamic sets in a previous work [8] as a

programming abstraction that allows applications to inter-
act with a variable number of remote objects in the same
way they usually interact with a single object of that type.
Therefore, it is fully transparent by default for the applica-
tion that is interacting with a set of objects and not with a
single object. Fig. 1 sketches the basic scenario of dynamic
sets. The application I calls a method at the local proxy
S that represents the current set of objects and that has
exactly the same business interface (i.e., the same methods
and method signatures) as a single object of that type. The
proxy determines the current members of the dynamic set
(i.e., O1, O4, and O6), replicates the method calls to all
members, and aggregates the three return values to a single
return value that is passed back to the calling application.

Listing 1 shows the business interface ILight with some
methods. This interface represents an electric light and is
used for our example application. For instance, the method
setPowered can be used to power a light either on or off.
Per default when calling a method on the local proxy of
a dynamic set of type ILight, the method is called on all
objects that are currently members of the set.

2.1 Declaration and Instantiation
An instance of a dynamic set is declared at design time by

the application programmer. She or he annotates the appli-
cation code and puts the annotation @DynamicSet in front
of a class member. To become a set member, objects must

1 class MyLightApp {
2 @DynamicSet
3 @SelectionConstraint(
4 "powered = true AND room = ’268’")
5 @Aggregation(
6 clazz = AllAggregation.class ,
7 method = "isPowered , isDimmable")
8 ILight light;
9 }

Listing 2: Exemplary dynamic set declaration.

1 class AllAggregation <T> {
2 @OnAggregate
3 boolean allValuesTrue(Object [] o) {...}
4 }

Listing 3: Exemplary aggregation method.

implement the interface of the class member, which is tested
automatically. Additionally, selection criteria, which must
be satisfied by an object to become a member of the set,
can declaratively be specified along with the set definition
using the @SelectionConstraint annotation. The selection
criteria consists of constraints that evaluate attributes of an
object or return values of corresponding getter methods. A
dynamic set, that has been declared at design time, is cre-
ated by the middleware runtime environment and supplied
to the application by using dependency injection. A dy-
namic proxy for the dynamic set is generated automatically
from the respective object interface using Java’s reflection
mechanism. According to the default semantics of dynamic
sets, calling a method on the local proxy triggers a corre-
sponding method call on all members currently in the set.

Listing 2 shows how the code of the example application
is annotated such that a dynamic set (whose members are of
type ILight) is injected into the class member light. This
happens when the instance of MyLightApp is created by the
runtime environment. The given selection criteria ensures
that only lights that are located in the specified room and
that are powered on become members of the set. After the
injection, the application can call methods on the set proxy.

2.2 Configuration
By choosing options and policies, dynamic sets can be con-

figured such that their semantics deviates from the default
semantics. Configuration can be done by the application de-
veloper at design time, by the local administrator at deploy-
ment time, and by the actual user at runtime. The resulting
semantics of the dynamic set, then, emerges from the com-
bined configurations, where a later configuration affecting
a certain aspect usually overwrites an earlier configuration
affecting the same aspect.

At design time, the application developer can declare dy-
namic sets using code annotations. She or he usually also
specifies the application-specific default semantics of the dy-
namic set overwriting or complementing the predefined fall-
back default semantics. At deployment time, middleware
maintainers can overwrite or complement the semantics with
deployment-specific configurations options or policies. This
is achieved by providing configuration files, such as a de-
ployment descriptor, together with the application to be de-
ployed. At runtime, configuration can be adapted using the
configuration API of dynamic sets. This API can, for ex-
ample, be used to implement runtime optimizations or to
enable the user to express her or his personal preferences.

2.3 Return Value Aggregation
Since the signatures of a method of a dynamic set and of

the same method of a corresponding individual object are
identical, it is necessary to aggregate the return values re-
sulting from calls to the former method to a single return
value if more than one call to the latter method has been
issued. To achieve this, the programmer can choose from a
number of predefined aggregation methods (e.g., minimum,

1 interface DynSet <T> extends Set {
2 // derivation from existing sets
3 DynSet subset(Constraint ... c);
4 DynSet union(DynSet ... s);
5 DynSet intersection(DynSet ... s);
6 DynSet complement(DynSet a, DynSet b);
7 DynSet difference(DynSet a, DynSet b);
8 // selection constraints
9 void select ();

10 void setConstraints(Constraint ... c);
11 Constraint [] getConstraints ();
12 // member updating
13 void setAutoUpdate(boolean b);
14 boolean isAutoUpdate ();
15 // set listener
16 void addListener(Object listener);
17 void removeListener(Object listener);
18 }

Listing 4: Set management interface.

maximum, average, majority, first). Depending on the se-
mantics of the aggregation method, a different number or
portion of the result values must be available before the
single return value can be determined and passed back to
the application. For example, returning the maximum re-
quires all return values to be available, while for returning
the first value, a single return value is sufficient. Besides
using predefined aggregation methods, it is also possible for
the developers to implement new aggregation methods.

Listing 3 shows an application-specific aggregation using
a separate class. The annotation @OnAggregate labels the
allValuesTrue method as aggregation method so that an
array of values is passed and that returns a single value. The
use of this new aggregation method is declared in Listing 2
using the @Aggregation annotation. Here, this annotation
specifies that the new aggregation method is implemented
in the class AllAggregation and that it should be applied
to the isPowered and isDimmable methods.

3. SET MANAGEMENT
The functionality of dynamic sets described so far is fully

transparent to the application. In particular, the developer
does not need to adapt the application code, because every
application that is able to deal with a single object can also
deal with a dynamic set. The deployer of an application,
however, can configure a dynamic set (e.g., provide a specific
aggregation method via a deployment descriptor) such that
it better fits the intended application functionality.

If the application itself is aware of the fact that it is in-
teracting with a dynamic set, additional possibilities arise
and the application can call methods of a dynamic set not
contained in the original business interface. This means that
the middleware enriches the set interface with methods that
can, for example, be used to derive new sets from existing
sets, to iterate over the set members, to request current set
statistics, or to change the selection criteria of a set. Next,
we discuss those methods that allow to manage a dynamic
set. We first describe the manual management interface and,
then, the automatic management interface.

3.1 Manual Management
The manual management interface is used by the pro-

grammer after the set has been created and injected by the

1 light.addListener(new Object (){
2 @OnMemberAdded
3 void foo(Object ... o) { ... };
4 @OnMemberRemoved
5 void bar(Object ... o) { ... };
6 });

Listing 5: Set listener implementation.

runtime environment. Listing 4 depicts the corresponding
interface DynSet that extends the Set interface of Java’s Col-
lection API. The programmer can use the inherited methods
to iterate over the individual members of the set (iterator),
to get the current number of set members (size), to test
whether an object is currently a set member (contains), and
to add and remove objects from the set. The first method
block allows to derive a new dynamic set from existing sets.
A subset can be created by adding further constraints to an
existing set and with methods corresponding to the usual set
operations, it is possible to create the union, intersection, or
relative complement of two (or more) sets. The second block
allows to set the select criteria of the dynamic set via the
setConstraints method. This triggers the middleware to
evaluate the new criteria and to update the set accordingly
such that after the call has returned, exactly those objects
are a member of the set that satisfy the new criteria. To trig-
ger the middleware to reevaluate the current select criteria
without changing it, the select method can be called.

3.2 Automatic Management
The automatic management interface is also depicted in

Listing 4. The methods of the next to last method block can
be used to turn on or off a functionality called auto update
using the setAutoUpdate method. When it is turned on,
the middleware autonomously reevaluates the selection cri-
teria of the dynamic set in order to update the set members
periodically as well as calling several methods of the man-
ual management interface raises a runtime exception. This
is to avoid unintended interference between manual method
calls and those triggered by the auto update functionality.
To let the application react on specified events, it is possi-
ble to add listeners to a dynamic set using the addListener
method, while existing listeners can be removed with the
removeListener method.

Listing 5 depicts a code snippet that shows how listeners
can be added using the addListener method. In this ex-
ample, the methods foo and bar are marked with the anno-
tations @OnMemberAdded and @OnMemberRemoved to get the
added or removed set members as parameters, respectively.
As an alternative, it is also possible to annotate application
methods of the object having a dynamic set as member (e.g.,
our example application class) with these two annotations.
In case an object has more than a single dynamic set as
member, the target dynamic set must be given as a param-
eter to the annotation, e.g., @OnMemberAdded(“light”).

4. CUSTOMIZATION
The previous sections discussed how to transparently exe-

cute business methods on all set members and how to man-
age dynamic sets. On the one hand, this significantly eases
controlling the devices represented by a dynamic set. On the
other hand, it also restricts usable features to those of a sin-
gle device wasting the potential of the many. For instance,

1 interface CustomLights
2 extends ILight , DynSet <ILight > {
3 // remix of existing functions
4 @Aggregation(
5 clazz=Average.class ,
6 method="isPowered")
7 float getBrightness ();
8 // mixin of additional functions
9 @Mixin(StepSwitch.class)

10 @Config(name="steps", value="10")
11 StepSwitch stepswitch ();
12 default void brighter () {
13 stepswitch ().forMore(
14 Invoke.method("setPowered")
15 .args(true));
16 stepswitch ().more();
17 } }

Listing 6: Custom interface with enriched business methods.

even if no lamp in a dynamic set is dimmable, the overall
brightness might be adjusted by switching on a smaller or
a larger fraction of the lamps. This way, applications gain
an added value that goes beyond the features and, thus, the
interface of a single device. To leverage this potential, we
enable developers to declare custom business methods com-
bining business logic with set semantics.

For this purpose, the developer can define a new interface
as depicted in Listing 6 for our exemplary lighting applica-
tion. The interface CustomLights extends the business inter-
face ILight and the management interface DynSet<ILight>
for dynamic sets (lines 1-2). Hence, a corresponding proxy
generated and injected by the middleware can, as before, be
used as simple lamp as well as managed as a dynamic set
of lamps. For the latter, however, it does not require an
additional typecast anymore. In addition, the developer can
declare further business methods that are also implemented
by the generated proxy later. The actual implementation
logic to be used, however, is provided by either remixing
existing business methods and set functions (e.g., different
result aggregations) or by delegating method invocations to
supplementary components containing the necessary code.
These two options are described in the following.

4.1 Remix of Set Logic and Business Logic
The aggregation of return values to a single data value is

a prerequisite to transparently invoke a method on a set of
objects as if the method was called on a singleton object.
As a direct consequence, the aggregated value needs to be
of the same type as original return value. Moreover, the ag-
gregated value has to make sense in the application context
in which the method is called without surprising the devel-
oper. Often, this limits applicable aggregation functions to
a few choices such as first, majority, or minimum and max-
imum. For business methods newly defined in the extended
interface, however, we are not bound to these limits. Thus,
we can combine and mix original business methods with dif-
ferent aggregation functions in order to compute and query
additional data and information about the dynamic set.

Assuming that the dynamic set in our lighting application
consists of non-dimmable lamps, we may define the overall
brightness as the fraction of lights that are switched on. Cor-
respondingly, we declare the method getBrightness in List-
ing 6 (line 7) to query the current brightness value. To actu-
ally compute the value, the method’s @Aggregation annota-

tion (lines 4-6) instructs the middleware to average (i.e., use
Average.class) the results of the isPowered method. This
method is provided by the original interface of the lamps and
determines whether a lamp is switched on or off. Invoking
the method on all set members and calculating the average
(i.e., true interpreted as 1.0 and false as 0.0) finally gives
the fraction of lighted lamps in the set.

4.2 Flexible Mixin of Advanced Features
Not all newly declared methods can be simply implemented

by relaying the invocation to an already existing business
method of the device and using a different aggregation func-
tion for obtained return values in order to compute de-
sired results. Often, advanced features also require very
specific and additional implementation logic. Besides writ-
ing own implementations, supplementing components and
libraries may provide necessary logic and missing functions
in a reusable fashion that can flexibly be mixed in own code.
While several programming languages such as Python or
Ruby natively support the concept of mixins, this design
pattern has to be emulated in other languages. For our
dynamic set implementation, we can realize mixins in Java
by exploiting getter-based dependency injections in combi-
nation with default methods that are available in Java 8.
Listing 6 (lines 9-16) gives an example.

The primary idea is to realize a stepping switch for our
lighting application that gradually turns on the lamps of the
dynamic set instead of switching them on all at once. For
this purpose, the members of the dynamic set are subdi-
vided in subsets of equal size. With each subsequent call, the
switch turns on the lamps of a further subset increasing the
overall brightness. As such a gradual invocation strategy is
also sensible in other application contexts, we have factored
out the implementation into an own StepSwitch class. The
@Mixin annotation (line 9) instructs the middleware to also
instantiate a new StepSwitch object whenever a dynamic
set of CustomLights is created. Name/value pairs provided
by optional @Config annotations (line 10) are passed to the
instantiated object and can be used for configuration pur-
poses, for example, to set the number of switching steps to
10 until the lamps of the whole set are turned on. When-
ever the stepswitch method (line 11) is invoked later, this
StepSwitch object is returned.

To leverage the StepSwitch functions, we build on the us-
age of default methods. Default methods enable developers
to add functionality to interfaces by having method decla-
rations being accompanied with a default implementation
that is automatically inherited. This way, we can conve-
niently forward a call of the brighter method (line 12) for
turning on more lights in the dynamic set to the appropri-
ate functions of the StepSwitch. Therefore, we first pass
a compiled invocation handler (lines 13-15) that specifies
method and arguments to be called on a single lamp (i.e.,
setPowered(true)) in order to turn it on. Afterwards, we
let the StepSwitch issue the call on a subset of lamps (line
16). Similarly, we can also define and implement a darker
method that gradually switches off the lamps again.

5. MIDDLEWARE FEATURES
The following subsections describe middleware features of

our dynamic set framework that improve the benefits and
efficiency of using dynamic sets. We start by sketching how
dynamic sets can be used to build flexible mashups and con-

tinue with introducing an optimization mechanism and dis-
cussing important quality of service aspects.

5.1 Flexible and Efficient Mashups
With dynamic sets, a programmer can implement appli-

cations utilizing an unknown number of devices and objects
in a convenient way. In order to enable a programmer to
reuse existing applications and to combine them to flexi-
ble mashups, an application can define a business interface
and our middleware can be instructed to make this interface
and, thus, the application available remotely via mechanisms
such as Java RMI, REST, SOAP, and Apache Thrift. Sim-
ilarly, our middleware can use different protocols to access
the objects that are bundled into a dynamic set. To facil-
itate flexibility and extendability, an application is usually
neither aware of the protocol the middleware uses to ac-
cess the objects in a dynamic set nor of the protocol(s) it
uses to export the functionality of the respective application.
To achieve interoperability and integrate legacy technology,
our middleware platform also utilizes gateways [2] that hide
protocol heterogeneity and adopt transport bindings. More-
over special attention is paid to meet the requirements of
resource constraints devices. This includes, for example, a
lightweight SOAP over CoAP transport binding using an
EXI-based XML compression [5] to make web services ap-
plicable in wireless sensor networks.

5.2 Adaptive Push/Pull
Frequent method calls on a dynamic set or on individual

objects of a dynamic set may raise a problem that is already
well known from remote method invocation implementations
such as Java RMI and that is aggregated in case of dynamic
sets by the fact that a method call may trigger a call on a
potentially very large number of remote objects: since the
programmer is not aware that the used objects are remote,
she or he uses the objects in the same way as local objects.
However, issuing too many remote method calls may waste
resources and induce network congestion.

We have tackled this problem for calls to getter methods
of an object by implementing an adaptive algorithm that
switches between pull-based and push-based communication
to optimize resource consumption. The algorithm considers
both the access frequency of the application and the update
frequency of the remote object to make its decisions. For
example, if the access frequency of the application is large
compared to the update frequency of the object, push-based
communication is used. This means that the object pushes
a change to the local proxy of the application which caches
the latest values and simply returns this value when the ap-
plication calls a getter method. Similarly, when the update
frequency of the object is large compared to the access fre-
quency, pull-based communication is preferred. This means
that calling a getter method on an object results in a remote
call. This optimization can not only be applied to getter
methods, but also to other methods that do not change the
object’s state. Our preliminary evaluation results show that
our adaptive algorithm reduces the resource consumption
significantly in certain scenarios, while it usually does not
have a negative impact on performance.

5.3 Quality of Service
Our dynamic set framework supports a variety of Qual-

ity of Service (QoS) options that can be configured by the

developer, the deployer, or the user of an application. The
supported options cover aspects such as error handling and
retry strategies as well as strategies to limit latency or max-
imal value age. As another example, the local proxy of a dy-
namic set may be instructed to apply sampling or overbook-
ing. Sampling is especially useful for large sets, because in
that case it can make sense for applications that are satisfied
with an approximated result to only query a certain number
or fraction of the objects –usually chosen randomly– instead
of asking all objects. Overbooking can be useful when a
method shall be called on a certain number or fraction of
objects known to be unreliable. Here, a call is distributed
to a larger number or fraction of objects than actually nec-
essary in order to avoid the additional latency introduced
when the number of answering objects is too low and other
objects must be queried in additional request rounds to get
a result with the required precision. Another interesting as-
pect is the spawn and call strategy. Here, the local proxy
object may, for example, be instructed to issue the method
calls synchronously one after the other or to issue several
asynchronous calls (up to a certain limit) simultaneously.

6. RELATED WORK
In the literature, much research on programming abstrac-

tions and, in particular, on transparently grouping objects
exists. In the following, we discuss those approaches that
are closely related to our approach.

In the area of sensor networks, several approaches sup-
porting the idea of sensor fusion exist that have similari-
ties with our approach. However, most approaches in this
area mingle code for middleware functionality and for appli-
cation logic in order to produce compact implementations
with small footprints. For example, Aberer et al. [1] propose
the Global Sensor Networks (GSN) middleware whose cen-
tral concept is the virtual sensor abstraction which enables
to declaratively specify XML-based deployment descriptors
in combination with the possibility to integrate sensor data
through plain SQL queries over local and remote sensor data.
Independently, Kabadayi et al. [9] also proposed virtual sen-
sors. Here, a virtual sensor is a software sensor combin-
ing readings from multiple physical sensors (e.g., to improve
quality) that can be specified declaratively.

In the area of context-aware applications, Sehic et al. [11]
propose a programming model for large-scale context-aware
applications called Origins Model. In this model, an origin
is the elementary application component and abstracts a
single context source. It can, for example, wrap an original
data source or filter, aggregate, compose, and infer data
using data provided by other origins that are declaratively
specified with selection criteria. Based on this selection,
the data can be requested from the selected origins either
synchronously by a normal call or asynchronously by using a
future. In the latter case, completion handler can be defined
that is called when the requested data is available. Using
futures enables promise pipelining that can reduce latency
by allowing to define a processing operation on top of a
future instead of an actual value.

The following four approaches are located in the area of
distributed system. These approaches and our work have in
common that they are based on the same idea, which is to
provide transparent access to an object group. Eugster et
al. [3] present a programming abstraction called Distributed
Asynchronous Collection (DAC) that groups a set of event

objects to a collection. A collection is accessed via a lo-
cal proxy that hides distribution and provides transparent
access. The interface of DACs primarily focus on manag-
ing the members of the collection. In addition to pull-based
methods (e.g., add and contains) with a single return value,
DACs offer push-based methods that allow a client to regis-
ter a callback to be notified in the future, e.g., when a new
object is added to the collection. These methods are mapped
to the underlying topic-based publish/subscribe paradigm.
The main difference between DACs and dynamic sets is that
DACs focus on delivering event objects representing state
changes of objects (either using pull or push) to applica-
tions, while dynamic sets focus on enabling applications to
transparently issue method calls (either synchronously or
asynchronously) to a set of remote objects. Another differ-
ence is that DACs rely on publish/subscribe, while dynamic
sets transparently support different transport protocols and
interactions paradigms.

Felber et al. [4] describe an Object Group Service (OGS)
that provides for fault tolerance and high availability by
transparent object replication. The service enables an appli-
cation to call methods of an object group via a local proxy
in a completely transparent way, i.e., the application can-
not distinguish between an object group and a singleton ob-
ject that implements the same interface. Because of this
transparency, applications can be made fault-tolerant with-
out having to change their code. To achieve fault-tolerance
for benign faults, it is sufficient to return any of the return
values. Thus, a call can return when the first reply arrives,
but it can be configured that the call returns after the ma-
jority of replies or all replies have arrived.

Fault-Tolerant CORBA (FT-CORBA) (cf. [6], chapter 23)
and more recent approaches in the area of web services [10]
also use transparent object replication. However, dynamic
sets are not limited to object replication, since they can
bundle arbitrary objects implementing the same interface
and they also provide advanced functionality in addition to
invocation mechanisms.

Picco et al. [7] propose Distributed Abstract Data Types
(DADTs) that logically encapsulate a set of instances of an
abstract data type in a distributed system. An applica-
tion programmer can define an interface for a DADT (whose
methods operate on the set) and she or he can restrict the
scope of a DADT by defining a view representing a sub-
set in a declarative way. Methods can transparently be in-
voked, for example, on a single instance, on all instances,
or a declarative selector can be used to determine the target
instances. It is also possible to iterate over the members and
to access individual members.

7. CONCLUSIONS
In this paper, we discussed dynamic sets as a program-

ming abstraction that eases the development of ubiquitous
computing applications by bridging the gap between design
time and runtime. With dynamic sets, an application that
was originally written for using a single device can instead
transparently interact with a set of devices of the same type.
Moreover, an application that is aware of the fact that it is
interacting with a dynamic set can make use of the advanced
features of dynamic sets presented in this paper. These fea-
tures include result aggregation, automatic management of
the dynamic set, update notifications, and derived business
methods. Aware applications can also change the selection

criteria of the set according to their needs or derive a new
set from existing sets. Finally, the possibility to define and
to export application interfaces enables to combine existing
applications to flexible and dynamic mashups.

For future work, we plan to further extend the function-
ality of dynamic sets. In particular, we want to implement
means for an application to register listeners that are called
if a member object enters a specified state or exhibits a
specified state change. This enables an application to solely
receive interesting update notifications instead of potentially
a lot of useless updates. Furthermore, we plan to extend dy-
namic sets to support transactions and security mechanisms.

8. REFERENCES
[1] K. Aberer, M. Hauswirth, and A. Salehi. A

Middleware for Fast and Flexible Sensor Network
Deployment. In 32nd Int’l Conf. on Very Large Data
Bases, pages 1199–1202. VLDB Endowment, 2006.

[2] V. Altmann, B. Butzin, R. Balla, F. Golatowski, and
D. Timmermann. A BACnet gateway for embedded
Web services. In 2015 IEEE 20th Conf. on Emerging
Technologies Factory Automation, 2015.

[3] P. Eugster, R. Guerraoui, and J. Sventek. Distributed
Asynchronous Collections: Abstractions for
Publish/Subscribe Interaction. In 14th European
Conference on Object-Oriented Programming, number
1850 in LNCS, pages 252 – 276. Springer, 2000.

[4] P. Felber, R. Guerraoui, and A. Schiper. Replication
of CORBA objects. In Advances in Distributed
Systems, Advanced Distributed Computing: From
Algorithms to Systems, pages 254–276. Springer, 1999.

[5] G. Moritz, F. Golatowski, and D. Timmermann. A
Lightweight SOAP over CoAP Transport Binding for
Resource Constraint Networks. In 8th Int’l Conference
on Mobile Ad-Hoc and Sensor Systems. IEEE, 2011.

[6] OMG. The Common Object Request Broker:
Architecture and Specification, Version 3.0.3. Object
Management Group, Inc., Mar. 2004.
http://www.omg.org/spec/CORBA/3.0.3/.

[7] G. P. Picco, M. Migliavacca, A. L. Murphy, and G.-C.
Roman. Distributed Abstract Data Types. In On the
Move to Meaningful Internet Systems: CoopIS, DOA,
GADA, and ODBASE, volume 4276 of LNCS, pages
1594–1612. Springer, 2006.

[8] M. Prellwitz, H. Parzyjegla, and G. Mühl. Dynamic
Sets: A Programming Abstraction for Object
Bundling. In 14th Int’l Workshop on Adaptive and
Reflective Middleware, pages 9:1–9:3. ACM, 2015.

[9] V. Rajamani, S. Kabadayi, and C. Julien. An
Interrelational Grouping Abstraction for
Heterogeneous Sensors. Transactions on Sensor
Networks, 5(3):27:1–27:31, 2009.

[10] J. Salas, F. Perez-Sorrosal, M. Patiño Mart́ınez, and
R. Jiménez-Peris. WS-Replication: A Framework for
Highly Available Web Services. In 15th Int’l Conf. on
World Wide Web, pages 357–366. ACM, 2006.

[11] S. Sehic, F. Li, S. Nastic, and S. Dustdar. A
Programming Model for Context-aware Applications
in Large-scale Pervasive Systems. In 8th Int’l Conf. on
Wireless and Mobile Computing, Networking and
Communications, pages 142–149. IEEE, 2012.

http://www.omg.org/spec/CORBA/3.0.3/

	Introduction
	Dynamic Sets
	Declaration and Instantiation
	Configuration
	Return Value Aggregation

	Set Management
	Manual Management
	Automatic Management

	Customization
	Remix of Set Logic and Business Logic
	Flexible Mixin of Advanced Features

	Middleware Features
	Flexible and Efficient Mashups
	Adaptive Push/Pull
	Quality of Service

	Related Work
	Conclusions
	References

