
ViPMesh: A Virtual Prototyping Framework
for IEEE 802.11s Wireless Mesh Networks

Michael Rethfeldt, Hannes Raddatz, Benjamin Beichler,
Björn Konieczek, Dirk Timmermann, Christian Haubelt

University of Rostock
Institute of Applied Microelectronics and Computer Engineering

18051 Rostock, Germany, Tel.: +49 381 498-7269
Email: michael.rethfeldt@uni-rostock.de

Peter Danielis
ACCESS Linnaeus Center, School of Electrical Engineering

KTH Royal Institute of Technology, Stockholm, Sweden
Email: pdanieli@kth.se

Abstract—WLAN mesh networks are characterized by their
flexible and low-cost deployment, scalability, and self-healing
capabilities. The new WLAN standard IEEE 802.11s introduces
low-level mesh interoperability. However, building large-scale
real-world test beds and reproducible setups is challenging and
costly. In the majority of research works, network simulation is
preferred over practical measurements. Here, the main disadvan-
tage exists in simplified device and protocol models restricting
the comparability to practical implementations. In contrast, using
device emulation still requires the simulation of wireless channel
and environment models. Consequently, a combination of both
emulation and simulation is needed to enable virtual prototyping
of real applications and protocols in WLAN mesh networks.
Nevertheless, the computation of complex wireless channel effects
requires a decoupling of wall clock and simulation time. There-
fore, we present ViPMesh, a virtual prototyping framework for
IEEE 802.11s and its Linux reference implementation. ViPMesh
relies on WLAN device emulation and nested virtualization using
QEMU and Linux containers to support the analysis of real
applications on top of an unmodified protocol stack. Adopting
an alternative time source approach for QEMU, ViPMesh acts
as discrete-event simulator. It further integrates channel and
environment models with support for IEEE 802.11n MIMO
techniques, high throughput modes, multi-channel operation, and
node mobility. To the best of our knowledge, this is the first
approach that combines the IEEE 802.11s reference implemen-
tation with the described simulation features. The functionality
of ViPMesh is demonstrated in different example scenarios.

I. INTRODUCTION

Compared to common centralized WLAN infrastructures,
WLAN mesh networks feature automatic peering and multi-
hop routing and thus provide a flexible and low-cost wireless
network extension with high scalability and robustness. Since
2011, the new standard amendment IEEE 802.11s enables
low-level interoperability, integrating mesh mechanisms di-
rectly into the WLAN MAC layer [1]. As a promising core
technology for future wireless communication networks, IEEE
802.11s is subject to ongoing research that aims at optimizing
the interplay with existing network protocols and applications.
Thereby, we pursue the evaluation of network applications
as well as the prototyping of own optimization algorithms,
developed specifically for IEEE 802.11s networks. However,
the setup of real-world test beds is costly, impracticable, or
simply not possible for increasing network sizes and dynam-
ics. Network emulation or simulation allow for reproducible
measurements also for flexible setups with a large number of

nodes [2]. Above all, emulation permits software design and
analysis on top of an unmodified protocol stack, to leverage the
comparability with real-world test beds. However, it still needs
to be combined with simulations that account for wireless
channel effects, different propagation environments, or dy-
namic network topologies due to node mobility. Furthermore,
the integration of comprehensive simulation models is desir-
able to investigate the influence of modern WLAN technology
parameters, such as IEEE 802.11n MIMO techniques, or high
throughput (HT) configurations. As a result, the considerable
computational effort of complex simulation models leads to
the requirement of synchronizing both simulation and system
time of emulated network participants. We denote the combi-
nation of node emulation and network simulation as a virtual
prototyping approach for the evaluation of applications and
algorithms for IEEE 802.11s WLAN mesh networks.
Consequently, we present ViPMesh, a virtual prototyping

framework for IEEE 802.11s and its Linux reference im-
plementation. ViPMesh relies on WLAN device emulation
and nested virtualization using QEMU and Linux contain-
ers to support the analysis of real applications on top of
an unmodified protocol stack. Adopting an alternative time
source approach for QEMU, ViPMesh acts as discrete-event
simulator. As major contribution, it complements the IEEE
802.11s reference implementation with comprehensive models
for medium access, physical-layer/environment effects, multi-
channel operation, and mobility.
The objectives of our approach are as follows:

• Virtual prototyping of IEEE 802.11s mesh networks
• Evaluation of real applications and protocol stacks
• Realistic (multi-)channel and mobility simulation
• Modelling of modern physical-layer features
• Independence of simulation performance and emulation

The remainder of this paper is organized as follows: Section II
introduces the technological basis. Section III formulates the
problem statement. In Section VI, we provide an overview of
previous work in the field of combined simulation/emulation,
and reason why current solutions are not sufficient to fulfill the
objectives mentioned above. Section IV presents the proposed
ViPMesh framework followed by Section V, which shows
results and discusses them. Finally, we conclude the study in
Section VII, and suggest directions for future work.

II. TECHNOLOGICAL BASIS

In this Section, we first provide the fundamentals of IEEE
802.11s WLAN mesh networks and the Linux reference im-
plementation of the standard. Second, we give an overview of
approaches for network protocol and application analysis.

A. IEEE 802.11s WLAN Mesh Networks

The mesh standard IEEE 802.11s comes as amendment to the
802.11 MAC-layer specification and thus inherits most of its
mechanisms. It enables vendor-independent infrastructure-less
multi-hop communication based on the widespread WLAN
technology. For this, it introduces mesh extensions, such
as automatic link establishment (peering), frame forwarding,
and path selection (routing) [1]. To ensure interoperability,
every node must support the Hybrid Wireless Mesh Protocol
(HWMP) and the Airtime Link Metric (ALM) as default
routing mechanisms. Thereby, ALM represents a cost metric
for transmitting a frame over a specific mesh link by con-
sidering the applied WLAN physical layer and the wireless
medium. The Linux project open80211s [3] is currently the
most advanced open-source reference implementation of IEEE
802.11s. It is part of the mac80211 kernel module, representing
the Linux software WLAN MAC layer.

UserT
Space

KernelT
Space

mac80211Tvincl.TIEEET802.11sH

Configuration
SoftwareT/TTools

Network
Application

SocketTAPI

TCP/IP

mac80211_hwsim DeviceTDriver

HWTDeviceVirtualTDevice

Fig. 1: Linux kernel with mac80211 and mac80211 hwsim

Figure 1 depicts mac80211 within the Linux kernel. Apart
from the integration with the TCP/IP protocol stack, a socket
API provides direct access for userspace software, e.g., to
configure device or MAC-layer parameters. mac80211 is used
either by real WLAN hardware, if compatible drivers exist,
or by emulated virtual WLAN devices, created with the
help of kernel module mac80211 hwsim. As designed only
for the functional testing of mac80211, frames generated by
mac80211 hwsim devices are assumed to be sent over a
perfect channel, i.e., transmissions are always successful and
issued immediately. Thus, the open-source software wmedi-
umd [4] was developed to complement mac80211 hwsim with
a wireless medium simulator, running in userspace. In its initial
version, wmediumd only applies a configurable loss probability
to frame transmissions. In 2013, an extension was released that
enables step-wise mobility calculation and adds a simplified
path loss model with static interference [5].
Consequently, the combination of mac80211 hwsim and

wmediumd represents a first promising step towards a pro-
totyping framework for IEEE 802.11s networks. However, in

its original version, wmediumd only provides a rudimentary
channel model and does not account for a simulation time
that is independent of system performance. Following our
objectives, stated in Section I, a new approach for integrating
and extending wmediumd is necessary.

B. Approaches for Evaluating Practical Network Protocols
and Applications

In contrast to the pure simulation of network protocol and ap-
plication models within simplified scenarios, different options
for the evaluation of real implementations exist. In [2] a clas-
sification is given, distinguishing the following approaches:

• One class of approaches uses real or emulated systems
as data source for network and protocol simulations.
However, the system behavior depends on the simulation
performance and there is no decoupling of wall clock
and simulation time, which may lead to considerable
inaccuracies. Thereby, wall clock denotes the real-world
time of the simulation host, whereas simulation time
denotes the virtual time considered in the network model.

• Another possibility is the integration of protocol imple-
mentations, extracted from real systems, into simulations.
Here, the result is a high maintenance effort to keep track
of implementation updates and perform adaptations for
the respective simulation environment. Moreover, evalu-
ation is still less accurate compared to the integration of
full real-world systems and protocol stacks.

• The most promising approach is found in the integration
of virtualized systems into simulations, combined with a
decoupling of wall clock and simulation time. This pro-
vides for the highest accuracy, as the simulation models
only need to cover hardware- and physical-level effects
that are not part of the emulation. Moreover, maintenance
effort is kept low, since implementation updates can be
deployed by simply replacing virtualized systems, system
parts, or programs. As a result, the virtual prototyping of
real applications on top of unmodified protocol stacks is
made possible, as pursued in our work.

For the third class, different levels of virtualization can be
considered. In the course of this paper, we distinguish system
virtualization and container virtualization. Whereas the first
denotes the virtualization of a complete operating system (OS)
within an emulated machine, the latter represents a more
lightweight variant by isolating only system components such
as file systems, processes, or network stacks on top of a shared
OS kernel. Practical implementation examples are, e.g., the
open-source emulator QEMU for system virtualization [6], and
Linux Containers (LXC) for container virtualization [7]. In our
architectural concept, presented in Section IV-A, we combine
both virtualization methods.

III. PROBLEM STATEMENT

In Section I, we outlined the main objectives of our approach.
To fulfill these objectives, a joint simulation/emulation envi-
ronment should meet the following functional requirements:

• Support of IEEE 802.11s
• Support of IEEE 802.11n MIMO and HT
• Support of real applications
• Support of a real protocol stack
• Support of wireless channel effects
• Support of environmental effects
• Support of multi-channel operation
• Support of device mobility

Table I compares a selection of widely used discrete-event
simulators with respect to the given requirements. These
simulators have been selected as they either are open source or
can be freely used for academic applications. Features marked
as ”partly met“ have to be considered as model properties
with insufficient coverage of the objective. For example, ns-3
only supports co-channel interference and therefore does not
permit the realistic evaluation of multi-channel setups, whereas
OMNeT++ only provides an incomplete IEEE 802.11s model.
The comparison shows that currently there is no simulator,
which meets all the requirements mentioned above.
The simulator wmediumd models a lossy wireless medium be-

tween virtualized WLAN devices under Linux [4]; its mobility
extension allows for simulating step-wise node mobility [5].
wmediumd was developed to complement the WLAN device
emulator mac80211 hwsim which is part of the Linux kernel
(see Section II-A). It utilizes the real-world Linux WLAN
stack along with its IEEE 802.11s reference implementation.
Thus, wmediumd has been chosen as basis for our framework.

IV. VIPMESH FRAMEWORK

In this Section we present our virtual prototyping framework
ViPMesh for IEEE 802.11s WLAN mesh network applications.
We pursue a joint emulation/simulation approach with nested
virtualization, as given by the classification in Section II-B.
First, we outline our architectural concept, distinguish emu-
lated and simulated components, and explain levels of virtu-
alization. Second, we illustrate the decoupling of wall clock
and simulation time, originating from [2]. Third, we describe
implementation details of our simulation models.

A. Architectural Concept

The architecture of ViPMesh is shown in Figure 2. It is based
on multiple virtualization levels and mainly comprises:

• the host OS, running a native simulation daemon and the
guest OS, running inside a VM (full virtualization)

• the guest VM, containing all emulated mesh nodes within
separate network namespaces (containers)

• interfaces for host-guest information exchange
• a control protocol for the decoupling of wall clock and

simulation time, according to [2]

To virtualize the guest OS, building the emulation part of our
framework, we rely on the open-source software QEMU [6].
This first virtualization step is needed to decouple wall clock
and simulation time, as detailed in Section IV-B. Inside the
guest VM, we run a Linux OS that emulates arbitrary numbers
of mesh nodes with real protocol stacks and applications. The
WLAN MAC layer is located within the Linux kernel module

HostkOS

GuestkOSk.QEMUkVMW Simulationk.wmediumdW

Emulation

Frames

StatuskNkDelay

ClockkSource

Host-Guest
Interface

Application

Network
Stack

Virtual
Device

Application

Network
Stack

Virtual
Device

...

Emulated

Mesh Node 1
Simulated

Network Effects

WallkClockkTime QEMUkSystemkTime SimulationkTime

Emulated

Mesh Node n

Fig. 2: Architectural concept of ViPMesh

mac80211 that also integrates the IEEE 802.11s reference
implementation. A second kernel module, mac80211 hwsim,
allows for the creation of virtual WLAN devices, as intro-
duced in Section II-A. Thus, despite our particular focus on
IEEE 802.11s, this approach also allows for the evaluation
of common infrastructure-mode WLAN setups or any other
MAC-layer variant, as configurable under Linux. Using the
concept of Linux containers (LXC), we assign each virtual
device to a separate network namespace and thereby obtain
isolated protocol stacks and applications [7]. In contrast to
approaches that put each emulated node in a separate VM,
container virtualization represents a lightweight alternative and
allows for good scalability when emulating large network
setups (see Section II-B). However, if heterogeneous systems
shall be evaluated, a new VM per hardware architecture would
be required, that still emulates all nodes of the same platform
using container virtualization.
A simulation daemon within the host OS is responsible for

processing network topology, mobility, environment/channel
effects, and medium access delays. All emulated mesh nodes
in the guest VM are mapped to the corresponding simulated
node instances on the host side. Communication channels are
used to exchange information about frames that are generated
by the emulated nodes (guest to host) as well as transmission
status and duration, determined by the simulation (host to
guest). The host-guest interfaces are based on socket com-
munication, using the VirtIO framework [13]. An additional
channel is used for time synchronization between simulation
and QEMU instance. Our simulation daemon originates from
the open-source software wmediumd [4], as introduced in
Section II-A. Adopting its mobility support, added by an
external project [5], we heavily extended and replaced the
wmediumd internals with our own simulation models for
physical-layer effects, IEEE 802.11n MIMO techniques, and
medium access (IEEE 802.11e EDCA). Further details are
given in Section IV-D.

B. Decoupling of Wall Clock and Simulation Time

To prevent the computing performance of the host system
from affecting the combined emulation/simulation process, a
decoupling of wall clock and simulation time is necessary.

TABLE I: Comparison of selected discrete-event simulators with respect
to our requirements (+: req. is met, o: req. is partly met, -: req. is not met)

NS-3 GLOMOSIM OMNET++ NCTUNS SWANS WMEDIUMD WMEDIUMD

REQUIREMENT [8] [9] [10] [11] [12] [4] MOB. EXT. [5]

IEEE 802.11S + - o - - + +

REAL APPLICATIONS + - - + o + +

REAL PROTOCOL STACK - - - + - + +

MIMO TECHNIQUES - - - - - - -

INTERFERENCE EFFECTS o + + + + - o

MULTI-CHANNEL OPERATION + - o + - - -

DEVICE MOBILITY + + + + + - +

We adopt an approach originating from Werthmann et al.
[2], comprising the control protocol IKR SimLib along with
a corresponding patch for the QEMU emulator. Providing
an alternative clock source for QEMU, the guest VM’s real-
time clock (RTC) and high precision event timer (HPET) are
advanced in discrete time steps, controlled by the simulation in
the host OS. In between time steps, the guest VM handles ex-
ternal I/O communication and executes processes until they are
blocked by I/O requests, alarms, or timer events. Consequently,
the guest VM automatically applies the simulation time as its
system time and ViPMesh acts as discrete-event simulator. As
a side effect, the influence of computation and processing time
inside the guest OS gets lost, while the impact of network
effects is emphasized. However, our focus is on analyzing the
behavior of real applications and protocols depending on the
underlying communication technology, channel effects, and
network topology. Moreover, we assume these network effects
to dominate the overall communication latency.

Guest

Host

Processing

Simulation

Wall Clock Time Guest System Time Simulation Time

Waiting
Advance

Time

1 2

2

Frame Status &
Delay

1
...

...

Advance
Time

Fig. 3: Emulation/Simulation Procedure of ViPMesh

C. Emulation/Simulation Procedure

In Figure 3, the basic emulation/simulation procedure for
a discrete advance of simulation time including a frame
transmission is depicted, showing the relation between the
simulation time of the host OS and the system time of the
guest VM. We illustrate the discrete advance of simulation
time (green) and guest system time (blue) as arrows whereas
the host OS wall clock time (red) is displayed as continuous
timeline. Additionally, the processing times needed by emula-
tion and simulation, as related to the wall clock time without
influence on simulation and guest time, are expressed as bars.
A frame generated by an emulated node of the guest VM

is passed to the host OS, along with further transmission

information required, such as the current data rate or WLAN
channel. On the host side, the annotated frame travels through
several simulation steps. Results of the simulation are an
information message, denoting transmission status (success or
failure) to the frame originator and a message containing the
actual frame for the destination node. Moreover, overall frame
delay for transmitter and receiver is included in the messages
and reported back to the emulation. The guest VM then applies
the actual delivery of all successful frames to the emulated
nodes, as determined by the simulation.

D. Simulation Models

In the following, we briefly describe the different simulation
models that were integrated into wmediumd. Figure 4 shows
the order of models, as applied to each frame generated by the
emulation. Thereby, each model adds a virtual delay and/or
attenuation of the signal-to-noise ratio (SNR) to the simulated
frame transmission.

Generated
Frames

MediumSAccess
Mobility,SPathSLossS

andSInterference

MIMOSChannel
andSPropagationS

Environment

Transm/R
StatusR-
Delay

AccessSDelay SNR
SNR
Transm.SDelay

- CarrierRSense
- CollisionRDomains
- IEEER8zq/OOe

EDCARProtocol
- RetransmissionR

Handling

- qDRNetw/RTopology
- Step4wiseRMobility
- Free4spaceRPathR

Loss
- Co4 -RAdjacent4

ChannelR
Interference

- q/v5)GHzRChannels
- IEEER8zq/OOa5g5nR

OFDM
- MIMORTechniques
- HTRModes
- Small4scaleRFadingR

bEnvironmenth

Em
u

la
ti

o
n

Em
u

la
ti

o
n

Fig. 4: Simulation models of ViPMesh

Starting with a Medium Access model to derive the random
back-off delay caused by contention-based channel access,
SNR attenuation effects depending on spatial and spectral
distance are determined by the Mobility, Path Loss and In-
terference model. As a last step, technology-specific effects
as well as scenario-specific multi-path fading characteristics
are applied by the MIMO Channel and Propagation Environ-
ment model, before transmission status and overall delay are
reported back to the emulation.

a) Medium Access:
Virtual WLAN devices created with help of the Linux kernel
module mac80211 hwsim only pass frames to and from the
software MAC layer mac80211. Thereby, frames transmitted
between emulated nodes on the same channel are simply

copied. Even when relying on wmediumd and its mobility
extension [5], there is no consideration of realistic channel
effects, random back-off, or delays caused by consecutive
frame retransmissions. Thus, apart from a complex physical-
layer model, we also integrate our own models for carrier sense
and the IEEE 802.11e Enhanced Distributed Channel Access
(EDCA) protocol into wmediumd.
Originating from the IEEE 802.11e standard, EDCA is de-

fined as mandatory default channel access mechanism for
IEEE 802.11s networks [1]. It is based on classical CSMA/CA
but supports traffic prioritization by using different access
categories (AC) for video, voice, best effort, and background
data. Practically, each WLAN device maintains a separate
queue and back-off timer per AC. Without priority mapping,
explicitly issued on higher layers, frames are sent as best effort
traffic. Furthermore, for realistically evaluating IEEE 802.11s
mesh networks in multi-channel operation, the consideration
of collision domains is part of our EDCA model. Thereby,
nodes on the same channel within signal detection range,
as determined by carrier sense, form a collision domain and
consider each other in the medium access protocol.

b) Mobility, Path Loss and Interference:
We adopted the mechanism for topology and mobility def-
inition from the original wmediumd implementation and its
extension by Illan et al. [4], [5]. As in the initial version, a two-
dimensional area of arbitrary size is used for node placement.
The mobility extension allows for the definition of a coordinate
sequence per node that is executed in a step-wise manner. Its
accuracy depends on the choice of distance and time intervals.
In the original version, a minimum of 1 m distance and 1 s
time steps could be configured. We increased both resolutions
to floating point accuracy. The distance between nodes is then
recognized to calculate the path loss (large-scale fading) for
frame transmissions. The original wmediumd extension uses a
simplified path loss calculation based on linear regression [5].
However, we replaced it with a more complex free-space path
loss model that is commonly used in theory [14].
Depending on the collision domains, as determined by the

Medium Access model, co- and adjacent-channel interference
are calculated. This enables a realistic evaluation of multi-
channel mesh networks and the influence of transmissions on
overlapping channels. Whereas co-channel interference only
depends on the spatial distance between nodes in the same
collision domain, signal attenuation caused by transmissions
on adjacent channels is additionally derived from the overlap
of their 20 or 40 MHz wide spectral masks, according to the
IEEE 802.11 standard [1].

c) MIMO Channel and Propagation Environment:
As most comprehensive extension to the original wmediumd
simulator, we integrate our own complex physical-layer model
that allows for the simulation of WLAN networks based on
the IEEE 802.11a/g/n standards using OFDM multi-carrier
modulation. We developed and evaluated our initial channel
model using MATLAB [14], [15], featuring comprehensive
tool-sets in this domain, before rewriting the model as a C
implementation and integrating it into wmediumd.

Our model supports the 2.4 and 5 GHz frequency bands with
channel widths of 20 and 40 MHz. Moreover, it implements
all IEEE 802.11n modulation and coding schemes (MCS),
including legacy (IEEE 802.11a/g) and high throughput (HT)
modes with long or short guard intervals (GI). Common effects
of real multi-carrier communication systems are considered,
such as the influence of antenna gains and additive noise
on the signal-to-noise ratio (SNR), as well as inter-symbol-
interference (ISI). Different antenna configurations can be
configured to support IEEE 802.11n transmit/receive diversity
and spatial multiplexing techniques. Currently, an upper limit
of two antennas per mesh node persists, which allows for the
evaluation of 2x2 MIMO systems.
For the evaluation of small-scale fading effects, we integrated

official environment models of the WINNER-II project [16].
This model set includes line-of-sight/non-line-of-sight multi-
path propagation gains for 18 indoor and outdoor scenarios
(urban, suburban, rural) that are valid for a frequency range
of 2 to 6 GHz, thus including the 2.4 and 5 GHz bands.

V. EVALUATION

We demonstrate the physical-layer simulation model of
ViPMesh using two example scenarios. We run simulations for
a single transmission link, applying the physical-layer models,
i.e., simulation steps two and three as depicted in Section IV-D.
Our extended wmediumd simulator is initialized with a con-
figuration file, containing, e.g., the network topology, mobility
definitions, propagation environment, channel parameters, or
antenna configurations, applied within the models.
We analyze our channel model by generating a data stream

between a simulated transmitter and receiver and calculating
the resulting bit error rate (BER). It denotes the percentage of
erroneous bits in the amount of data received and is commonly
used as quality indicator for digital transmission paths.
In a first scenario, we vary the transmitter-side signal-to-

noise ratio (SNR) in 1 dB steps, between 0 and 40 dB. For
each setting, an overall of 10,000 pseudo frames is generated
as input for the channel model, containing 500 bytes of
random payload. Thereby, the average BER over all frames
is calculated. We simulate a 2.4 GHz transmission channel
having a width of 20 MHz and long guard interval (GI)
with high throughput (HT) mode disabled, resulting in 48
data sub-carriers per OFDM symbol. We apply a flat-fading
multi-path propagation environment model, originating from
the WINNER-II project [16], comprising some strong line-
of-sight (LOS) and many weak non-line-of-sight (NLOS)
paths. We further configure up to two antennas per node,
used as transmit and/or receive chains, and evaluate different
mappings, including MIMO variants:

• SISO (1 transmit/receive chain, 1 stream)
• SIMO (1 receive, 2 transmit chain(s), 1 stream)
• MISO (2 receive, 1 transmit chain(s), 1 stream)
• DIV-MIMO (2 receive/transmit chains, 1 stream)
• SP-MIMO (2 receive/transmit chains, 2 streams)

The variants SIMO (transmit diversity), MISO (receive di-
versity), and diversity MIMO (combination) transmit and/or

receive the same spatial stream redundantly. Contrary, spatial
multiplexing (SP-MIMO) transmits and receives two indepen-
dent spatial data streams. To verify the ability of our model
to represent the dependence between modulation order and re-
quired SNR, we apply different IEEE 802.11n modulation and
coding scheme (MCS) indexes, denoting different modulation
variants. Thereby, the given MCS indexes correspond to the
single- and dual-stream variants.

• MCS 1 (9): QPSK with coding rate 1/2
• MCS 3 (11): 16-QAM with coding rate 1/2
• MCS 6 (14): 64-QAM with coding rate 3/4

1E-06

1E-05

0.0001

0.001

0.01

0.1

1

 0 5 10 15 20 25 30 35 40

B
it
-E

rr
o

r-
R

a
te

,
B

E
R

Signal-to-Noise Ratio, SNR (dB)

FEC-Rate: 1/2, Distance: 1 m,
 Channel Width: 20 MHz, HT: disabled, GI: long

QPSK
16-QAM
64-QAM

SISO
SIMO
MISO

DIV-MIMO
SM-MIMO

Fig. 5: BER depending on SNR for different antenna
configurations and modulation orders

Figure 5 shows, in logarithmic scale, the BER between trans-
mitter and receiver in 1 m distance for the different antenna
configurations and OFDM modulation orders, depending on
the SNR. For a 0 dB SNR (equal signal and noise power),
BER is 50 %. As expected, a decreasing BER can be observed
for an increasing SNR. When using higher modulation orders,
leading to more bits per symbol and higher theoretical data
rates, also a higher SNR is needed as symbol transmission
becomes more error-prone. As shown in Figure 5, 64-QAM
(6 bits/symbol) needs an SNR of 25 dB to achieve a BER of
10 % whereas 16-QAM and QPSK only require an SNR of
15 dB and 3 dB in the best case, respectively.
Additionally, the differences between the antenna configu-

rations become clearly visible, confirming theoretical expec-
tations. Thereby, SIMO and MISO allow for diversity, i.e.,
transmitting or receiving the same spatial stream redundantly
whereas DIV-MIMO combines both diversity variants. This
results in an SNR gain, especially when applied in multi-
path propagation environments. Thus, the diversity variants
outperform SISO, respectively. On the other hand, SM-MIMO
is capable of transmitting two independent spatial streams with
a theoretical doubling in data rate. However, for the correct
signal detection at the receiver it needs the highest SNR by
far, compared to all diversity variants and SISO. In general,
spatial multiplexing benefits from dominating NLOS paths to
distinguish received streams. Thus, the applied propagation
environment, comprising strong LOS paths, is not particularly
suitable for SM-MIMO, as confirmed by our simulations.

Figure 6 shows the results of a similar scenario for an
increasing distance between transmitter and receiver, this time

1E-06

1E-05

0.0001

0.001

0.01

0.1

1

 1 5 10 15 20 25 30 35

B
it
-E

rr
o

r-
R

a
te

,
B

E
R

Distance (Meter)

Modulation: QPSK, FEC-Rate: 1/2, SNR: 30 dB,
 Channel Width: 20 MHz, HT: disabled, GI: long

SISO
SIMO
MISO

DIV-MIMO
SM-MIMO

Fig. 6: BER depending on inter-node distance for different
antenna configurations and QPSK modulation

using only QPSK modulation. Thereby, distance is increased
in 3 m steps from 1 to 36 m. Transmitter-side SNR is con-
figured to 30 dB, considering environmental noise. All other
configurations are kept as described previously. Results show
an increasing BER with increasing distance. This demonstrates
the ability of our simulation model to represent the dependence
between inter-node distance and SNR due to free-space path
loss (large-scale fading).

VI. RELATED WORK

We further compare our concept with current approaches in
research to position it with regard to the state-of-the-art.
In [17], the authors propose an approach to include real im-

plementations of TCP/IP stacks and applications in a wireless
network simulation. By using virtual machines (VMs) that are
controlled by the event calendar of the network simulation
process, a continuous time wall clock is not required but event-
driven simulations are run. Thereby, simulations can be run
that are slower or faster than real-time. For the implementation
of VipMesh, we adopt this concept of time decoupling. In
[2], the authors extend their approach and present VMSimInt,
which is a framework that integrates VMs into a network
simulation tool to provide realistic OS behavior. Thereby,
the focus is on providing a realistic TCP implementation. In
their approach, each node is placed in its own VM, so the
number of nodes corresponds to the number of required virtual
machines. As opposed to our approach of isolating all nodes in
a single VM, using lightweight nested container virtualization,
the concept of [2] does not scale very well in terms of memory
requirements as well as communication and control overhead
that increase significantly with any additional node and VM.
A virtual time system for OpenVZ-based network emulations

is presented in [18]. The authors modify OpenVZ and its
schedulers to be able to provide VMs each with their own
virtual time, running on a single OS. As opposed to heavy-
weight systems like Xen whose VMs contain both OS and
application, this approach scales better with an increasing
number of VMs. VMs and their virtual times are managed by
a control application running on the host OS and simulating
a network of choice. The approach currently solely features
container-based virtualization for Linux but prospectively the
authors aim at developing a virtual time system for QEMU to

support a larger number of platforms. In contrast, we combine
Linux containers with a time-controlled QEMU-based system
virtualization. Moreover, we integrate comprehensive physical-
layer simulation models for IEEE 802.11s mesh networks.
The work [19] addresses the problem of time divergence

in hybrid network emulation by introducing a system called
TimeSync that uses discrete-event simulation time to control
and synchronize time advance on VMs. The core idea of
TimeSync is to create a simulator-driven virtual timeline in
the VMs participating in emulation. Although the core idea is
similar to our approach, the focus of TimeSync is different as
it uses stationary nodes connected by a wired Ethernet network
rather than supporting IEEE 802.11(s) networks consisting of
both stationary and mobile nodes.
An approach working with modified virtual clock requests

is presented in [20]. The developed time dilatation program
TimeKeeper redirects the access of Linux containers from the
host clock to modified virtual clocks. These clocks can be
controlled with TimeKeeper and therefore it both controls the
time dilatation in the isolated virtual environments and the
synchronization between these environments. This concept can
basically be integrated into a combined emulation/simulation
environment as it allows for the resource-efficient virtualiza-
tion of nodes. However, our tests revealed that a Linux net-
work namespace or container does not utilize a fully isolated
network stack and hence TimeKeeper does not completely
decouple the virtual times from the wall clock. Consequently,
this approach shows severe limitations regarding the timing
precision when integrating it into our architectural concept.

In summary, ViPMesh improves the state-of-the-art by a first
approach that complements a real protocol stack, including the
IEEE 802.11s reference implementation as applied in practical
systems, with a set of comprehensive simulation models that
allow for the early design evaluation of real applications and
algorithms in WLAN mesh setups with IEEE 802.11n MIMO
techniques, multi-channel operation, and mobility.

VII. CONCLUSION

We present ViPMesh, a virtual prototyping framework for
WLAN mesh networks based on IEEE 802.11s and its Linux
reference implementation. ViPMesh relies on WLAN interface
emulation and QEMU-based system virtualization with nested
container isolation to support the early design analysis of real
applications on top of an unmodified network stack. Thus,
despite our particular focus on IEEE 802.11s, this approach
also allows for the evaluation of common infrastructure-mode
WLAN setups or any other MAC-layer variant, as configurable
under Linux. Adopting an alternative time source approach
for QEMU, ViPMesh acts as discrete-event simulator. Fur-
thermore, it integrates comprehensive medium access, channel,
and environment models with support for interference effects,
IEEE 802.11n MIMO, multi-channel operation, and device
mobility. The proof-of-concept implementation of ViPMesh
is evaluated in example scenarios, demonstrating its physical-
layer model. To further calibrate our simulation models, com-
parative measurements will be conducted in corresponding

real-world setups, using a 40-node test bed at our institute.
Our MIMO channel model also allows for a straight-forward
extension to integrate, e.g., modulation and coding schemes
added by the recent IEEE 802.11ac standard.

ACKNOWLEDGMENT

The authors would like to thank the German Research Foun-
dation (DFG), RTG 1424 (MuSAMA) and research fellowship,
GZ: DA 1687/2-1, for their financial support.

REFERENCES

[1] “IEEE Standard for Information technology - Telecommunications and
information exchange between systems - Local and metropolitan area
networks - Specific requirements Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specifications,” IEEE Std
802.11-2012 (Revision of IEEE Std 802.11-2007), 2012.

[2] T. Werthmann, M. Kaschub, M. Kühlewind, S. Scholz, and D. Wagner,
“VMSimInt: A Network Simulation Tool Supporting Integration of Arbi-
trary Kernels and Applications,” in Proceedings of the 7th International
ICST Conference on Simulation Tools and Techniques. ICST (Institute
for Computer Sciences, Social-Informatics and Telecommunications
Engineering), 2014, pp. 56–65.

[3] “open80211s,” 2016. [Online]. Available: http://open80211s.org/
[4] “Cozybit Wireless Medium Simulator (wmediumd),” 2016. [Online].

Available: https://github.com/cozybit/wmediumd
[5] A. Martı́nez Illán, “Medium and mobility behaviour insertion for

802.11 emulated networks,” Master’s thesis, Universitat Politècnica de
Catalunya, 2013.

[6] F. Bellard, “QEMU, a Fast and Portable Dynamic Translator,” in
Proceedings of the USENIX Annual Technical Conference, ser. ATEC
’05. Berkeley, CA, USA: USENIX Association, 2005, pp. 41–41.

[7] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated
performance comparison of virtual machines and Linux containers,” in
Performance Analysis of Systems and Software (ISPASS), 2015 IEEE
International Symposium on, March 2015, pp. 171–172.

[8] “ns-3,” 2016. [Online]. Available: https://www.nsnam.org/
[9] P. Owczarek and P. Zwierzykowski, “Review of simulators for wire-

less mesh networks,” Journal of Telecommunications and Information
Technology, no. 3, p. 82, 2014.

[10] “OMNet++,” 2016. [Online]. Available: https://omnetpp.org/
[11] S.-Y. Wang and Y.-M. Huang, “NCTUns distributed network emulator,”

Internet Journal, vol. 4, no. 2, pp. 61–94, 2012.
[12] R. Barr, “SWANS - Scalable Wireless Ad Hoc Network Simulator,”

2004. [Online]. Available: http://jist.ece.cornell.edu/docs.html
[13] R. Russell, “Virtio: Towards a De-facto Standard for Virtual I/O De-

vices,” SIGOPS Oper. Syst. Rev., vol. 42, no. 5, pp. 95–103, Jul. 2008.
[14] B. Sklar, Digital communications: fundamentals and applications. Up-

per Saddle River, NJ, USA: Prentice-Hall, Inc., 1988.
[15] Y. S. Cho, J. Kim, W. Y. Yang, and C. G. Kang, MIMO-OFDM Wireless

Communications with MATLAB. Wiley Publishing, 2010.
[16] “WINNER II Channel Models,” September 2007. [Online]. Available:

http://www.ist-winner.org/WINNER2-Deliverables/D1.1.2v1.1.pdf
[17] T. Werthmann, M. Kaschub, C. Blankenhorn, and C. M. Mueller,

“Approaches for evaluating the application performance of future mobile
networks,” European Cooperation in the Field of Scientific and Technical
Research, COST IC1004 TD (11), vol. 1038, 2011.

[18] Y. Zheng and D. M. Nicol, “A Virtual Time System for OpenVZ-
Based Network Emulations,” in Principles of Advanced and Distributed
Simulation (PADS), 2011 IEEE Workshop on, June 2011, pp. 1–10.

[19] F. Sultan, A. Poylisher, C. Serban, J. Lee, R. Chadha, C. J. Chiang,
K. Whittaker, C. Scilla, and S. Ali, “Timesync: Virtual time for scalable,
high-fidelity hybrid network emulation,” in IEEE MILCOM, 2012.

[20] J. Lamps, D. M. Nicol, and M. Caesar, “TimeKeeper: A Lightweight
Virtual Time System for Linux,” in Proceedings of the 2nd ACM SIGSIM
Conference on Principles of Advanced Discrete Simulation, ser. SIGSIM
PADS ’14. New York, NY, USA: ACM, 2014, pp. 179–186.

