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Abstract—Cyber-Physical Systems (CPS) are tightly coupled
with the environment, and therefore it is important that interac-
tions with the surroundings like Human-Computer-Interactions
are performed very responsive. Since CPS are often embedded
without traditional input devices, like in medical or automo-
tive contexts, gesture recognition approaches are emerging. As
those algorithms are computationally complex especially when
implemented on multi-core architectures, design decisions have
to be taken carefully in order to meet performance and energy
constraints. In this paper, we present a Scenario-Aware Dataflow
model to estimate the performance of a template-based hand ges-
ture recognition system based on Dynamic Time Warping (DTW).
Our model enables us to estimate the important characteristics
like real-time capabilities for online recognition and response
time of the system when implemented on a multi-core archi-
tecture. Moreover, we introduce an extension to existing SADF
performance analysis tools, which enables us to acquire processor
utilization from our model. Based on the performance estimations
the real-time capability for online recognition was validated for
different configurations and verified in our experiments.

I. INTRODUCTION

Gesture recognition is a promising way for Human-Computer
Interaction (HCI) especially for Cyber-Physical Systems. As
those usually contain a lot of inertial measurement units,
sensor-based gesture recognition has become very promising.
However, the recognition of complex patterns demands for
both, high accurate sensors as well as a computing platform
with sufficient computational power. Especially, real-time on-
line gesture recognition is a challenging task.

Multi-core architectures find their way into Cyber-Physical
Systems more and more and already provide high computa-
tional capacities, which are important for processing dataflow
oriented applications like sensor-based gesture recognition. In
order to exploit the offered resources and to simplify the
implementation process, model based development methods
have proven to be effective. One of the main advantages of
early system models is the ability to predict system char-
acteristics and therefore the possibility to substantiate early
design decisions. Furthermore, sophisticated formal models
like dataflow graphs allow the estimation of extra-functional
properties like computing performance and energy consump-
tion of the system.

In this paper, we use Scenario-Aware Dataflow (SADF)
graphs in order to model different modes of operation de-
pending on the change of sensor signals of a gesture detec-
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tion system running on multi-core architectures and estimate
the expected performance. SADF graphs extend Synchronous
Dataflow (SDF) graphs by means of modeling dynamic behav-
ior while still supporting formal analyzability and the ability
to effectively map computations onto multi-core systems. We
developed an SADF model and a multi-core implementation
of a template-based hand gesture recognition system based on
Dynamic Time Warping (DTW). The SADF model enables
us to predict the real-time capabilities of the online recog-
nition system and response time of the system for different
parallelization strategies. Moreover, we are able to estimate
the average utilization of the computing platform, which
directly influences the power consumption of the system. In
our experiments, we fitted and calibrated this system for the
Texas Instruments multi-core DSP TMS320C6678 containing
8 Digital Signal processor (DSP) cores.

In comparison to previous work, our contributions are:

1) We present an SADF model, which is configurable in
order to represent different mappings onto multi-core
architectures.

2) We propose to use scenarios in order to distinguish
between low and high fluctuating sensor signals, i.e.,
sensor data which most probably contain no ges-
ture/significant movement at all, and sensor data which
might contain gestures, thus requiring the computation
of the recognition algorithm.

3) We propose a novel way to estimate the system utiliza-
tion by extending the SADF performance analysis tools
and compare the performance estimation results with our
multi-core DSP implementation.

Our paper is structured as follows. First, related work
is discussed. Section III formally introduces Scenario-aware
Dataflow (SADF) graphs and Synchronous Dataflow (SDF)
graphs. This is followed by the explanation of the proposed
parallelization approach for template-based gesture recognition
on muti-core architectures. The key contribution of the paper
is presented in Section V, where the SADF model of the
recognition system is presented in detail. The experiments to
validate the prediction of extra functional model properties
are described in section VI, their results are presented in
section VI-A. In Section VII conclusions are drawn and further
research is outlined.



II. RELATED WORK

Studies on different classification algorithms for sensor-based
gesture recognition have shown that using template-based
approaches like Dynamic Time Warping (DTW) show good
recognition accuracies [1][2][3]. Based on those studies we
focused on template-based gesture recognition and imple-
mented a gesture recognition system based on DTW in our
experiments although our approaches can be applied to any
template-based gesture recognition task.

In the past, research on exploiting parallelism within the
DTW algorithm has been done. Burr et al. could speed up
the template matching process by exploiting instruction-level
parallelism. However specialized hardware is needed for their
approach [4]. Bae and Fairhurst recommend globally shared
memory architectures with fast interconnection networks to
avoid impacts of inter-core communication to the performance
of DTW when exploiting instruction-level parallelism [5].
Yoder and Siegel could achieve ideal speedups using thread-
level parallelism for template-based gesture recognition with
DTW. However, their approach cannot be applied effectively
when having more processing cores than templates [6]. In
[7], a configurable approach using thread-level parallelism in
template-based gesture recognition has been introduced, which
overcomes this problem and enables a compromise between
latency and scalability on multi- and many-core systems. An
extended dataflow model based on Enable/Invoke Dataflow
(EIDF) [8] has also been provided to formally describe this
approach. However, this model has no capabilities to capture
timing information of the modeled system.

In order to substantiate implementation decisions in a very
early design stage, we have to take into account the sys-
tem performance. Therefore, we need a model from which
performance metrics can be calculated for different config-
urations of our parallelization approach. We used Scenario-
Aware Dataflow which has been introduced in [9]. Those
models have already been applied for MP3 and MPEG-4
decoders [10][11]. They have also been used for selecting
proper Dynamic Voltage Frequency Scaling modes for several
streaming applications. In contrast, in our paper we use
Scenario-Aware Dataflow (SADF) graphs to select proper
parallelization configurations of the online gesture recognition
system regarding real-time requirements and latency when
performed on multi-core processors. Moreover, scenarios are
used to distinguish between different processing modes which
depend on the fluctuation of the sensor signals. Signals with
low fluctuations are skipped during gesture detection as no
significant movement is contained in the signal. Only sen-
sor signals with high fluctuations are considered for gesture
recognition. We also propose a novel way to use SADF
performance analysis tools to estimate processor utilization
for different parallelization strategies. Resource utilization for
SADF has also been addressed in [12] and [13]. In [12], a non-
deterministic state machine to capture dynamic applications
and their mapping on resources is exploited. Assuming a
similar state machine, [13] relies on extending SADF with
additional concepts to capture resource usage. Our work relies

on the stochastic variant of SADF to capture occurrences
of sensor signal fluctuations and proposes an approach to
compute processor utilization without extending SADF.

III. SCENARIO-AWARE DATAFLOW GRAPHS

The conceptual basis of the presented modeling approach are
Synchronous Dataflow (SDF) graphs as described by [14]. An
SDF graph G = (V, E, cons,prod, D) consists of a set of
Vertices V, a set of edges £ C V — V, token consumption
rates cons : E — N, token production rates prod : E — N,
and a delay function D : E' — Ny. The vertices are so called
actors communicating data tokens over unbounded channels
with FIFO semantics represented by edges, so every channel
is annotated with the number d(e) of tokens on it. In SDF
graphs the consumption and production rates need to be fixed.
An actor v € V can be fired if Ve = (v,v) € E : d(e) >
cons(e). If actor v fires, it consumes cons(e) token from each
incoming edge ¢ = (v,v) € E and produces prod(e) token
on each outgoing edge e = (v,v) € E. The execution of an
SDF graph forms fixed repetitive firing sequences caused by
the constant production and consumption rates. Every such
sequence is called an iteration and could be described by a
non-trivial repetition vector v, which describes the number of
activations (firings) of every actor to get into a recurring state
(count of tokens on the channels).

In [9] the semantics of SDF was extended to Scenario-Aware
Dataflow (SADF) with the concept of scenario-depended exe-
cution parameters of actors. Therefore every actor can operate
in different modes, which define separate token rates and
execution times. Additionally new entities within the SADF
graphs are defined. New vertices called detectors execute
discrete-time Markov chains to maintain the scenario transition
logic of a subset of actors, which are controlled by this
detector. Markov chains consist of a finite state space and
probability-based transitions between these states. Therefore
the state of the detector is not dependent on the actual values of
data token from its input channels. Every controlled actor has
a so called control channel from a detector, which transports
control tokens. For every execution of an actor with different
modes, a control token is consumed that determines the current
operation mode of this actor. This mode defines the token
consumption and production rates on all channels and an
execution time. See [15] for a complete introduction to SADF.

Using the performance analysis tool for SADF [9] which is
part of the SDF3 tools from [16] it is possible to acquire per-
formance metrics like throughput, inter firing latency, response
delay and others. The inter firing latency is the minimum,
maximum, or average time between consecutive firings of a
particular actor, whereas the response time is the time until a
particular actor initially fires.

IV. TEMPLATE-BASED GESTURE RECOGNITION ON
MULTI-CORE ARCHITECTURES

Before we present our proposed SADF model of the hand
gesture detection system, we introduce the application in more
detail. Gesture recognition, like activity recognition is typically
performed in several stages. Those stages form a so called



Activity Recognition Chain (ARC). In the following, we will
explain the ARC stages of a typical template based gesture
recognition system in the order as described in [17].

In the Data Acquisition stage, sensor data is sampled with a
certain frequency. In the Preprocessing stage filters or correc-
tions can be applied to the sensor signals. After preprocessing
the continuous incoming data is segmented in order to perform
online gesture detection. A typical approach for this is the
usage of a sliding window. Thereby temporal snapshots of
a certain size of the continuous data, so called windows,
are considered for a gesture recognition. Since windows can
overlap, the windows are referred to as sliding windows. This
process is done at the Segmentation stage of an ARC. In the
Feature Extraction stage, feature vectors are extracted from
the data segments. Those are typically statistical properties or
results from additional signal transformation.

In template-based gesture recognition, a signal or feature
vector of a currently performed gesture is compared to a set of
templates at the Modeling and Inference stage. The template
which most resembled the signal or feature vector most likely
represents the performed gesture. Those templates can be ex-
tracted features or the raw sensor signals of earlier performed
gestures or of modeled gestures. In our implementation we
use the Dynamic Time Warping (DTW) algorithm to perform

the template matching.
In the last stage, the Classification is performed based on the

results of former stages. A template-based gesture recognition
system usually classifies the data within the current segment
with the label of that template which showed the greatest
similarity to that segment. Therefore the template with the
greatest similarity to the sliding window data is evaluated and

the sliding window is labeled with this gesture.
Since the Modeling and Inference stage is the most compu-

tation intensive task, an optimization regarding the computa-
tion time is done to perform gesture recognition on mobile
devices efficiently. In [7] a configurable approach for using
two different kinds of parallelism within the Modeling and
Inference stage of template-based gesture recognition has
been introduced to utilize multiple processor cores for this
task. This approach can compromise between response time
and scalability when applied on a homogeneous multi-core
architecture.

As described in [7] an initiator-worker structure is deployed
for the Modeling and Inference stage and the group of worker
cores is subdivided into equal sized groups called files. In
the following, the number of tiles in which the worker cores
are subdivided is called a configuration. Figure 1 shows the
configuration 3, where the system is using three tiles with two
cores per tile. As a new sliding window from Segmentation
stage arrives, the initiator core sends it to a free tile. A
tile is responsible for the computation of the likeness to all
templates of a sliding window. The set of gesture templates
is distributed over all cores belonging to a tile, such that the
data in the window can be compared to multiple templates
simultaneously.

In a mobile context it is necessary to save as much energy
as possible. Therefore it is important to avoid gratuitous
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Fig. 1. Initiator-Worker structure with three tiles

computations, since energy consumption is directly related to
hardware utilization. To avoid unnecessary gesture recognition
for segments in which no activities are captured, we propose
a measurement of the fluctuation of the signal at the feature
extraction stage. If the magnitude of this signal change is
below a certain threshold, the segment could be discarded and
computation time, thus energy could be saved in the following
stages. Since the gesture recognition searches for windows of
high activity, the change of the signal is filtered with a basic
exponential moving average (EMA) filter. This method has
already been used to recognize the begin and end of activities
in [18].

Additional to the recognition pipeline described in [7] we
introduce the stage responsible for computing the exponential
moving average (EMA) of the changes between all samples
within the window. In order to speed up this task, we im-
plemented the calculation without computing the square root.
Equations (1) and (2) mathematically describe this calculation
which is performed on a whole sliding window, where z, Yz,
and zj, are the k-th sampled acceleration value from dimension
X, Y, and z, respectively. The smoothing factor a which is 0.2
in our implementation has been adopted from [18].

Hy = (zp —2p1)* + (y — 1)’ + (2o — 2e-1)® (1)
EMAHk =af, + (1 - a)EMAkal 2)

Based on the value computed for a sliding window, the
next sliding window is processed in the same way, or the
gesture recognition is skipped for that window and just the
exponential moving average is computed. This behavior will
later be captured using scenarios in the SADF model. Since
this computation only has to be performed once for each
sliding window, we decided to only let the last core of a tile
compute this value, because our experiments showed that the
heuristic of [7] for distributing the set of templates over the
cores of a tile usually leads to the last core having the least
amount of data to process.

V. SADF MODEL OF THE GESTURE DETECTION
ALGORITHM

The extended dataflow model of the gesture detection system
introduced in [7] which is based on EIDF has no capabilities to
capture timing information. In the paper at hand, we introduce
Scenario-Aware Dataflow (SADF) as model of computation,
since it can capture both timing information of actors in form
of execution times and different execution times, production,
and consumption rates of actors based on its scenarios. We



Fig. 2. SADF structure of the gesture recognition system in configuration 3

propose to use two different scenarios which model an enabled
and a disabled Modeling and Inference stage, based on the
EMA of the preceding sliding window.

As described in [7], the calculations on different cores
are modeled by independent chains of actors which fire
sequentially when executed on the same processor core, but
actors of different chains can fire simultaneously like executed
on different processor cores. The structure of our SADF
model is shown in Fig 2, where we omitted the detector
for the sake of simplicity. The Source actor represents the
Segmentation stage which provides a new sliding window
with a fixed frequency. The WindowDist actor sends those
windows to different tiles in a cyclo-static manner based on the
configuration, which means the number of tiles. For example:
if six worker cores are available and we use a configuration of
three tiles, we have two cores per tile. In our model, this would
lead to WindowDist actor having three scenarios in which
it can act. In scenario 1 it produces a token on the input edges
i1 and 12 of the first two actor chains belonging to Tilel,
which represents the process of sending the sliding window
to those cores. In scenario 2 the WindowDist actor would
produce tokens on channel i3 and i4 and in scenario 3 on
channel i5 and 1i6, respectively. In our implementation the
Initiator DSP core sends messages containing a pointer to the
sliding window data to the corresponding worker cores. Since
the process of sending messages is done sequentially those
processes are captured in the actors MSGS1 to MSGS6, which
are connected through the synchronization edges s1, s2, s3,
s4, and s5. Those edges ensure the sequential execution of
actor MSGS1 and MSGS2, when the current sliding window
is sent to the first tile. On the synchronization edges between
actors of different tiles, production and consumption rates are
0. For example: in a configuration of three tiles, production
and consumption rates to and from edges s2 and s4 are O,
which is illustrated by greyed out edges in Fig. 2.

The MSGR actors capture the time of receiving the messages
from the Initiator core and MEMCP represent the process of
copying the sliding window data from shared memory to the
scratchpad memory of the particular DSP core. The DTW actors
are used to model the Dynamic Time Warping computation

between the sliding window and the template gestures. Note
that the execution times of DTW actors differ on different cores
within a tile, since in our case templates of different sizes have
been distributed over those cores. The EMA actors capture
the process of calculating the EMA of a sliding window.
The cores on which EMA calculations are performed depend
on the configuration. In order to keep the regular structure
of the SADF graph, regardless which configuration is used,
every actor chain contains an EMA actor but on those cores
not computing the EMA, this actor has an execution time
of 0. Actor WB is used to capture the time for writing back
the similarity results between sliding window and templates
to shared memory. Actor MSGB represents the process for
sending a message with a pointer to the similarity results to
the evaluating DSP core, which is modeled by the Eval actor.
This core collects the results and performs the classification
based on the similarities. After that it sends synchronization
messages to the initiator core which indicates that the tile
which processed the specific sliding window is now ready
to calculate a new sliding window. This is modeled with a
feedback channel from actor Eval to actor WindowDist.

Based on the result of the exponential moving average
calculation of the preceding window, two scenarios, namely
a result over a specific threshold (highEMA) or below this
threshold (lowEMA) are defined. Each actor belonging to a
tile in Fig. 2 can act in those scenarios.! Since only an EMA
calculation is performed in a lowEMA scenario on the last core
of the tile the execution time of actors of all other cores of that
tile are O in scenario lowEMA. In Fig. 3 this is indicated by
greyed out actors. Only the actors of the last core of a tile
in scenario lowEMA are assigned with their corresponding
execution times, except the DTW actor which also has an
execution time of 0, since no gesture recognition is performed
in this scenario. In scenario highEMA all actors of a tile are
assigned with execution times bigger then 0, except for most
of the EMA actors, for the same reason as already described
in the lowEMA scenario. Note that the markov chain shown in
Fig. 3 is only a part of the markov chain of our SADF model.
Its transition annotations model the probability of occurrences
of fluctuations in the sensor signals.

Scenarios

Fig. 3. Actors of the first tile of configuration 3 in scenario lowEMA (top)
and highEMA (bottom)

'Note that a third scenario is assigned to all actors which is introduced to
capture the ’inactivity’ of a worker core. This Scenario will be explained in
more detail in section V-A



In order to obtain a cyclo-static behavior sending sliding win-
dows to tiles and receiving their results, actors WindowDist
and Eval also act in different scenarios. Each scenario repre-
sents the distribution of one window to exactly one particular
tile, while all other tiles do not receive that window. Those
scenarios are triggered in a cyclo-static manner. In Fig. 4
this procedure is shown for a configuration of three tiles.
In scenario SentTo3 actor WindowDist only produces a
token on those input edges, which correspond to the 3rd tile.
Equivalently, actor Eval consumes a token from this tile in
its scenario GetFrom3 which is synchronized with scenario
SentTo3 of WindowDist.

A. The scenario inactive

In our model the Eval actor is actually modeled as a
detector, since in this stage the result from the EMA calculation
for a particular sliding window is evaluated and determines the
scenario of the worker core, which processes the next sliding
window. This actor has to produce at least one control token
to all controlled actors, which include all actors belonging to
a tile in Fig. 2. Since the sliding windows are dispatched in a
cyclo-static manner to different tiles, except for a configuration
with 1 tile, the actors belonging to tiles fire fewer times than
the Eval actor fires. For example: In a configuration with
three tiles the Eval actor fires three times while the actors
of the first tile fire one time, since a token is only produced
every third firing of actor WindowDist to the actors MSGS1
and MSGS2. This would lead to a buffer overflows on those
control channels, since more tokens are produced from Eval
than being consumed from controlled actors.

In order to keep those control channels bounded, an inactive
scenario is introduced to all actors belonging to a tile. In
the inactive scenario, no tokens are consumed/produced with
an execution time of O time units. This enables those actors
to consume a control token, by neither delaying any other
following firings of those actors nor producing any tokens to
synchronization edges. This practically means, that every time
all actors of a tile get a control token to select the highEMA
or lowEMA scenario, additional control tokens are produced
for all actors belonging to other tiles to trigger the inactive
scenario. This procedure is shown in Fig. 4. Dashed arrows
indicate control channels occupied by control tokens produced
by the detector node. Although contrary to the other pictures of
our model, in Fig. 4, the Detector is shown as a separate
actor and only the cyclo-static part of its markov chain is
illustrated for the sake of clarity. In our complete model (not
illustrated in this paper), the markov chain of the detector
Eval is actually a product of both markov chains, shown in
Fig. 3 and Fig. 4.

Introducing an inactive scenario also has a positive effect to
the calculation of the hardware utilization, which is explained
in the following section.

B. Processor Utilization

We have extended the performance analysis tool for SADF
in SDF3 [11] with the ability to compute the scenario occur-
rence probabilities for each actor. In case an actor can only

Scenarios
of WindowDist

Scenarios
of Eval

GetFrom

GetFrom
2 3

Fig. 4. Illustration of Tiles 1 and 2 being inactive, while Tile 3 is performing
lowEMA.

operate in a single scenario (alike SDF actors), this occurrence
probability trivially equals 1. For actors that can operate in
multiple scenarios, the tool extension generally exploits the
performance model checking approach as described in [10].
However, in case the scenario occurrences depend only on the
behavior of a single Markov chain, the more efficient approach
of deriving the scenario occurrence probabilities from the
equilibrium distribution of that Markov chain is applied. We
remark that an SADF graph with a single detector classifies

for using this efficient approach for all actors.
This new feature enables us to calculate the ratio of com-

putation time of a processor core within an observed time
interval to the length of that interval, which corresponds to
the processor utilization. Therefore consecutive actors without
external dependencies are virtually mapped onto a processor
core. We deduce this time interval from the difference of the
arrival times of two consecutive sliding windows at a particular
core. In a configuration with N tiles this period equals the
inter firing latency (IFL) of the Source actor multiplied by
N, since only the N-th sliding windows are dispatched to the
same core. We can use the IFL of actor Source, because
this actor is synchronized with WindowDist by a feedback
channel from WindowDist to Source. Since all actors
mapped to a processor core always fire consecutively synchro-
nized by the feedback channel from Eval to WindowDist,
the computation time of the processor core is the cumulative
average execution time of those actors. The cumulative average
execution time C'AFE is calculated with equation Eq. 3 with
M being the number of actors a;. mapped onto a specific core
c and S; being the number of scenarios of that specific actor.

CAE= Y > pi(j) 6(j) 3)

1<i<M 1<5<8S;
The execution time of actor a;. in scenario s; is denoted as
di(j) and p;(j) is the occurrence probability of scenario s;

for actor a;. which we get from the extension we introduced.
In our case we want to estimate the utilization of the worker

cores of our gesture recognition system. Thus all actors of
each independent actor chain of our model are mapped onto a
corresponding processor core. In a configuration with N tiles,
those actors CAE is one IN-th of the CAE just considering
scenarios lowEMA and highEMA, since only the N-th firing of



that actors is not in a inactive scenario with an execution time
of 0. Because the CAE is implicitly divided by N, the inter
firing latency of the Source actor has not to be multiplied
by N anymore. Therefore the average utilization AU of that
processor core c is calculated by:

CAE, @
Ir LSource
where I F' Lgource 18 the inter firing latency of actor Source.
By selecting a Source actor, virtually mapping consecutive
actors to processor cores and using the introduced SDF3
extension, we can obtain the processors utilizations from our
model in a generic way.

AU, =

C. Execution Time Annotations

We have annotated our model with execution times based on
measured values derived from our implementation. In order to
avoid cache effects, we disabled caching for the worker cores.
We implemented the gesture recognition system on a shared
memory architecture, where data transfer between multiple
cores is performed through shared memory synchronized by
messages which contain meta information and pointer to the
transferred data. Thus the times for sending sliding windows
to a worker core (MSGS) and sending results to the core which
evaluates the results (MSGB) are equal and independent of the

scenario.
All actors of our model have been annotated with the

worst-case execution times derived from measurements of the
particular processes on the multi-core DSP. For the sake of
simplicity, we merged the actors belonging to a tile in Fig.
2 to the two actors DTW_Mn and EMA_Mn. This can be
done, because those actors always fire consecutively being
synchronized by the feedback channel to WindowDist. The
DTW_Mn actor includes the execution times of DTW, MSGR,
and MEMCP, whereas the actor EMA_Mn includes the execution
times of EMA, WB, and MSGB of their corresponding scenarios.
The Table V show detailed annotated execution times of
all actors in all scenarios. Note that inactive scenarios are
excluded, since the execution time of all actors in this scenario
is 0.
VI. EXPERIMENTS

We implemented a hand gesture recognition system which
has already been introduced in [19] and [7]. Gestures are per-
formed with a glove equipped with 3 accelerometers. We de-
fined 5 Gestures including a grasping motion, swiping
left and swiping right with two fingers and drawing
a circle clock-wise and counter clock-wise with
the index finger. To each of those gestures we recorded
5 reference recordings (templates) leading to a total of 25
differently sized reference recordings from 57 to 123 samples.
Those reference recordings have been recorded at a frequency
of 25 Hz. The gesture recognition system was implemented
for a TMDSEVM6678L board from Texas Instruments [20].
It is equipped with the homogeneous multi-core processor
TMS320C6678 with 8 Digital Signal Processor cores with a
frequency of 1 GHz. Our implementation uses the SYS/BIOS
real-time kernel [21] provided by Texas Instruments.

In our experiments, we performed offline tests in order to get
reproducible results. Therefore we recorded test sequences of
gestures on which the gesture recognition task is performed
offline. In order to simulate online behavior, the sliding win-
dows are dispatched to each tile, triggered by a clock module,
which throws an interrupt at a certain frequency. To verify
real-time behavior, we checked in our experiments if sliding
windows had to be skipped due to no free tiles.

Since we disabled caching for the worker cores of our
experiments the execution time of our system is increased
approximately by the factor two. Because of this we doubled
the period between sliding windows in comparison to earlier
publications to 40 ms by shifting it by two samples instead of
one. The sliding window itself has a fixed size of 125 samples
which corresponds to 2.5 seconds.

In order to get the processor utilization from our implemen-
tation, we used the System Analyzer Tools [22] from Texas
Instruments to monitor the load of the threads which perform
the tasks included in all actors belonging to a tile. The task
load values which have been averaged over a period of 40 ms
were acquired through JTAG at runtime.

A. Performance Estimation

We evaluated the differences between the analytically ac-
quired timing properties of our SADF model and the timing
behavior of the implementation. Therefore we measured the
time to process sliding windows depending on the occurrence
of an activity within a sliding window. The measured values
are summarized in Table I. Note that the accumulated time
of sending and receiving a message (10,722 ns) is subtracted
from the shown times, since this additional time was included
in the measurements, due to the measuring process itself.
Table II shows the Response Time (RT) for computing a single
sliding window acquired from our SADF model. In order to
test our model for real-time requirements, we also evaluated
the inter firing latency (IFL) of the Source actor. Since this
actor is synchronized with the WindowDist actor, the infer
firing latency should equal its execution time to meet real-
time requirements. If the inter firing latency is higher than
its execution time, the processing of a sliding window is not
finished in time and the next sliding has to be skipped.

TABLE I
MEASURED RESPONSE TIMES FOR PROCESSING A SLIDING WINDOW
DEPENDING ON THE CONFIGURATION

highEMA | lowEMA
Cfg. @RT [ms] o [ms] #values ‘ Cfg. ORT [ms] o [ms] #values
6 224,142  0.075 29596 0.072 0.000054 8,734
3 117,490 0.057 2,695|3 0.072 0.000041 8,979
2 76,995 0.045 2,370 |2 0.072 0.000040 8,231
1 40,564 0.016 1,287 1 0.072 0.000039 7,710

Additionally, Table II shows the difference between calcu-
lated and the corrected measured response times.

Comparing the measured response times and the analytically
acquired response times, we can see that there is a small
deviation for scenario highEMA of approximately 0.85 %
for the configuration with one tile and 0.79 % for all other
configurations. In scenario lowEMA there is a deviation of



TABLE II implementation in configuration 1 is approximately half of the
RESPONSE TIMES AND INTEI;IIZIII;{:NG LATENCIES ACQUIRED FROM THE expected values acquired from the SADF model.
MODEL
. TABLE IV
highEMA lowEMA TASK LOAD OF THE WORKER CORES IN BOTH SCENARIOS highEMA AND
Cfg. RT [ms] IFL [ms] Almpl. ‘ Cfg. RT [ms] IFL[ms] Almpl lowEMA ACQUIRED FROM OUR IMPLEMENTATION
6 222.387 40 0.79% | 6 0.061955 40 13.59% highEMA \ lowEMA
3 116.568 40 0.79% | 3 0.061955 40 13.35%
2 76.394 40 079%|2  0.061955 40 13.36% Config 1 2 3 6] 1 2 3 6
1 40.220  40.2203 0.85% |1  0.061955 40 13.36% Corel 49.9% 96.2% 97.8% 93.3%|0.00% 0.00% 0.00% 0.13%
Core2 46.2% 95.6% 88.8% 93.3% |0.00% 0.00% 0.13% 0.00%
Core3 50.6% 88.2% 97.8% 93.3% |0.00% 0.13% 0.00% 0.00%
approximately 14 %, which is much higher than in scenario Core4  45.0% 96.2% 88.8% 93.3% |0.00% 0.00% 0.00% 0.00%
R . . .. CoreS 44.7% 95.6% 97.8% 93.3% |0.00% 0.00% 0.00% 0.00%
highEMA. 1t leads to the assumption that there is an additional Core6  43.5% 88.2% 88.8% 93.3% |0.13% 0.00% 0.00% 0.00%

absolute error apart from a relative error between model and
implementation. However, such an error has much less impact
on the highEMA scenario since the response delay in that
scenario is much higher than in scenario lowEMA. Since the
real-time requirement in scenario highEMA is the important
one, this error is acceptable to deduce the real-time ability
of different configurations. From the analytically acquired
properties shown in Table II we predict that the configuration
with one tile does not meet real-time requirements in scenario
highEMA, since the IFL of actor Source exceeds 40 ms.
We could verify that in our experiments, because every other
sliding window is discarded in scenario highEMA due to the
exceeding processing time of that sliding windows. All other
configurations meet real-time requirements which are in line
with the analytically acquired results from the SADF model.

We also calculated the utilization of all worker cores based
on the results from the SADF model. In Table III the analyt-
ically acquired processor utilizations are summarized for all
configurations.

TABLE III
ANALYTICALLY ACQUIRED PROCESSOR UTILIZATION FROM OUR SADF
MODEL

highEMA \ lowEMA

Config 1 2 3 6| 1 2 3 6

Corel 98.8% 95.5% 97.1% 92.7% |0.00% 0.00% 0.00% 0.02%
Core2 91.2% 95.0% 88.2% 92.7% |0.00% 0.00% 0.04% 0.02%
Core3 99.9% 87.6% 97.1% 92.7% |0.00% 0.06% 0.00% 0.02%
Core4 89.0% 95.5% 88.2% 92.7% |0.00% 0.00% 0.04% 0.02%
Core5 88.3% 95.0% 97.1% 92.7% |0.00% 0.00% 0.00% 0.02%
Core6 86.0% 87.6% 882% 92.7% |0.13% 0.06% 0.04% 0.02%

Very first results of the task load from the implementation
are shown in Table IV. Except for configuration 1 all task
load values of the implementation in scenario highEMA in
Table IV show a relative error of less than 2 % to the
analytically acquired utilizations from the SADF model shown
in Table III. This indicates a high accuracy of the introduced
approach estimating the utilization for those configurations.
However, for configuration 1 in this scenario the task load
of our implementation is approximately half of the acquired
utilizations from the model. This can be explained by the fact
that this configuration does not meet the real-time require-
ments, which leads to a discard of every other sliding window
in the implementation. Contrary to this in our SADF model
no sliding windows are discarded when exceeding 40 ms
for processing a sliding window. Thus the task load of the

In scenario lowEMA there are also differences in the task
load acquired from the implementation and the values from the
model. The reason for this is that in our implementation the
initiator core is not generally distributing sliding windows in a
cyclo-static manner. Sliding windows are sent to the next free
tile. In a highEMA scenario this in fact leads to a cyclo-static
behavior, but with introducing lowEMA scenarios, the first tile
completes the calculation before the next window arrives. Thus
the initiator core sends the next sliding window also to the first
tile, because it is free. So if only lowEMA scenarios occur only
the first tile will process all incoming sliding windows, which
is contrary to our SADF model. This causes the effect, that the
utilizations of our model in scenario lowEMA are distributed
over the last cores of all tiles, while in our implementation the
utilization is accumulated to the last core of only the first tile.
Summing up the utilization values from all EMA calculating
cores in scenario lowEMA from Table III shows that the sum
has an absolute deviation of 0.01 % from the task load of the
EMA calculating core of the first tile in our implementation.
This corresponds to a relative error of the predicted utilization
of less than 8 %.

B. Recognition Performance

Before introducing the EMA stage to our algorithms, we
evaluated the recognition performance of the recognition sys-
tem. Note that recognition performance describes the correct-
ness of the system distinguishing between gestures and non-
gestures and how accurate it classifies them. We calculated
the F1-score, which is the harmonic mean of the ratio of
correct classifications to all classifications and the ratio of
correct classifications to all performed gestures [17]. The F1-
score of the recognition performance was 66.4 %. This is a
rather mediocre result, but from a plain DTW recognition on
raw sensor data, without any optimizations on the recognition
accuracy. By introducing the EMA, the recognition system can
save a lot of computation time on worker cores, but since the
EMA detects the beginning and end of a gesture, the recognition
performance is directly affected. By introducing the EMA
the Fl-score of the recognition performance fell to 62.2 %
which is not a big decrease, but a similar mediocre result.
However, since we focused on parallelization aspects and
computation time we did no additional optimization regarding
the recognition performance.



VII. CONCLUSIONS

In this paper we showed a Scenario-Aware Dataflow model
for template-based gesture recognition on multi-core platforms
with the ability to predict functional and extra functional
properties. This model allows substantiating early design deci-
sions as different parallelization approaches and configuration
parameters for design space exploration. In our experiments
we fitted and calibrated this system for the Texas Instruments
multi-core DSP chip TMS320C6678. For the response times
of the system our results show an error of less than 1 % for
high computation load scenarios and less than 14 % error for
low computation load scenarios. Since the high computational
load scenario is the critical component for the further analysis
of real-time capabilities and response time, the higher error of
the low load scenario is acceptable. Furthermore the predicted
utilization of the system shows an error of less than 2 % for
high computation load scenarios and an error of less than 8 %
for low computation scenarios to the actual task load acquired
from the implementation. This metric helps to enhance the set
of reference gestures for the desired application in an early
development stage. Moreover, our model can be used to predict
the real-time capabilities of different configurations. This is
crucial for online gesture recognition, especially in the context
of Cyber-Physical Systems.
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