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Abstract—In industrial automation environments, networks
providing a reliable and timely data delivery are required. Fulfill-
ing this need, Industrial Ethernet (IE) systems have established as
an important networking technology in many application areas.
Although there are several IE solutions on the market, all of
these systems have notable drawbacks, like limited scalability or
the introduction of a Single Point of Failure (SPoF).

Therefore, we propose a novel IE system that is based on
Software Defined Networking (SDN). Originally meant for data
center and IT networks, the SDN concept offers features like
central network management functions and a fine-grained traffic
control that allows to support many applications with diverse
requirements even in the same network. Thereby, SDN is also
perfectly suited for complex automation environments. To guar-
antee RT data transmission as well as scalability and an efficient
resource usage, our IE system uses a Medium Access Control
(MAC) scheme that is based on a Time Division Multiple Access
(TDMA) mechanism that is extended by simultaneous data
transmissions on physically separate links. The enhanced TDMA
mechanism is configured by a joint routing and scheduling
algorithm that takes application requirements into account. Our
theoretical analysis as well as results achieved with a prototype
implementation of the system confirm the applicability of our
concept in demanding automation environments with applications
that require a worst case communication latency below 1 ms.

I. INTRODUCTION

In industrial automation environments, many applications
require a reliable real-time (RT) communication system that
guarantees the timely delivery of messages (e.g., sensor or
control data), because a violation of communication deadlines
can have unacceptable consequences like damage imposed on
parts of the production facility.

Traditionally, fieldbusses are therefore used in many appli-
cation areas to realize an RT communication. In recent years,
Industrial Ethernet (IE) systems, which promise several ad-
vantages [1], have established as a serious competitor to these
fieldbusses. Similar to the fieldbusses, several IE solutions of
different companies have emerged, which all solve the problem
that standard Ethernet (IEEE 802.3) is not RT capable due to
its medium access control (MAC) scheme. Even in full-duplex
switched networks, unacceptable packet delays or packet loss
can occur due to the over-utilization of links as, in general, all
connected terminal devices (hosts) are allowed to send data at
line rate at any time. Therefore, existing IE solutions introduce
an additional MAC that assigns send permissions to the hosts

in way that a certain worst case latency of a data transmission
can be guaranteed.

Nevertheless, every IE system has at least one of the
following drawbacks [1]:

• Limited scalability in terms of the number of devices
• Incorporation of a Single Point of Failure (SPoF)
• Insufficient self-configuration features
• Increased costs due to the use of proprietary hardware

instead of standard IEEE 802.3 hardware
• Use of broadcast transmissions inhibits simultaneous

transmissions of multiple data flows on separate links and
thereby limits network efficiency

Especially the limited scalability is a major problem con-
sidering the future increase of the number of devices in
automation environments, which will be necessary to support
the more comprehensive approaches to horizontal and vertical
integration and big data analysis (cf. Industrial Internet [2],
Industrie 4.0 [3]).

Therefore, our objective was the design of a new RT
communication system that avoids the mentioned drawbacks
of the existing IE systems while providing comparable latency
characteristics and independence of the used network topology.
Additionally, it should be more flexible and based on open
standards, so that the further development is simplified and an
optimal cost-effectiveness is achievable. In our concept, we
exploit the SDN controller’s central view on the network to
discover the topology and to collect the requirements of the
applications using the network. Then, we use the collected
information in a joint routing and scheduling algorithm that
computes routes for all required network connections as well
as a send schedule that ensures compliance with the appli-
cation requirements (e.g., bandwidth, maximum latency). In
contrast to classical TDMA systems, the provided network
configuration allows simultaneous data transmissions on phys-
ically separated routes (Space Division Multiple Access or
SDMA). Finally, we use the features provided by existing
SDN technologies like OpenFlow to install the customized,
application-specific routes in the network.

Specifically, our contributions are:

• Novel concept (SDN-based TDMA mechanism) for end-
to-end Quality of Service (QoS) avoiding the drawbacks
of the well-known IE systems



• Original heuristic algorithm for joint routing and schedul-
ing in switched networks

• Results of a real hardware testbed running a fully func-
tional prototype implementation with achievable latencies
below 1 ms

The rest of the paper is structured as follows. Section
II introduces the concept of SDN and explains the used
network delay model. Section III presents our novel concept
for RT communication systems. Section IV describes our
prototype implementation of the concept and achieved results.
Then, pros and cons of our concept are discussed, before
Section V summarizes related approaches to RT networking.
A conclusion is given in Section VI.

II. BASICS

A. Network Delay Model

In this work, we consider the end-to-end network delay from
the application layer of the sender to the application layer
of the receiver. Therefore, network delay can be divided into
five categories. The first delay is caused by the network stack
(e.g., UDP, IP and Ethernet implementation) of the sender
(denoted as tSoftwareS ). It is followed by the transmission
delay tTransmission at the sender’s Ethernet PHY and several
propagation delays tPropagationi

and switch delays tSwitchi
,

whose numbers depend on the route through the network to the
receiver. Finally, the packet is delayed by the network stack of
the receiver (tSoftwareR ). These five delays are summarized
as tDelivery .

A classical approach to enable a RT capable communication
is the use of a TDMA scheme, in which the hosts get the send
permission one at a time and each host is only allowed to send
for a certain amount of time. If such a time slot based RT
communication system is used, we must additionally consider
that packets cannot be sent immediately, but they have to
wait in a packet queue until the respective device obtains the
send permission. Considering this additional delay tQueue, the
complete packet latency is given by Equation 1.

tLatency = tQueue + tDelivery (1)

Note that the switch delay normally depends on the link
utilization because packet queuing delay increases for highly
utilized link. In case of a completely time slot based system,
queuing delay at switches is not a concern as we can assume
that switch queues are always empty. Then, switch delay is
only dependent on packet size and switch implementation.
Moreover, tTransmission is of significant importance for time
slot based systems, because the transmission time resembles
the length of a required time slot. I.e., a time slot designated
to an application must have at least the length that equals the
transmission time of the data to be sent (including all headers).
Therefore, the minimum slot length is given by the well-known
formula for transmission delay computation (Equation 2):

tSlotLength ≥ tTransmission = DataSize/Bandwidth (2)

Within this work, the length of an assigned time slot is
called tSlotLength. If the amount of data that is generated

TABLE I
EXEMPLARY OPENFLOW RULE.

In
Port

MAC
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MAC
DST

Ether-
type

IP SRC IP DST IP
Proto.

TCP
SRC

TCP
DST

Action

* * * IPv4 10.0.1.3 10.0.1.5 TCP 7777 6100 Out#3

between two time slots is small enough to be sent completely
in the next time slot, the data’s worst case (WC) delivery time
tDeliveryWC is given by Equation 3.

tDeliveryWC = tSoftwareS + tSlotLength + tSoftwareR

+

N+1∑
i=1

tPropagationi
+

N∑
i=1

tSwitchi
(3)

1) Requirement Parameters: When using a time slot based
RT communication system, the requirements of an application
can be defined by the following three parameters.

• tDataInterval describes the time interval with which an
application generates data packets that must be sent. For
example, in an automation environment this could be the
time interval for the periodic sending of sensor data.

• tSlotLength determines how long an assigned time slot
must be so that all data of a single data interval can be
transmitted within a single time slot.

• tMaxLatency describes the maximum acceptable latency
of the communication, including all latencies of Eq. 1.

The communication system can use this information about
application requirements to configure all time slots appro-
priately, so that sufficient bandwidth is available for each
application and all application deadlines are met.

B. Software Defined Networking

In traditional networks, each network infrastructure device
(NID) that works on OSI layer 2 or higher has its own
control logic that is responsible for routing decisions. For
example, this control logic implements the MAC address learn-
ing mechanism in simple switches or routing protocols like
RIP, OSPF or IS-IS in more advanced switches and routers.
In contrast to this traditional approach, the SDN concept
moves the control logic from the NIDs into a central SDN
controller [4] [5]. The SDN controller then makes all routing
decisions and establishes these in the network by installing
appropriate packet processing rules in the NIDs. Additionally,
the network becomes programmable and as a consequence,
custom, application-specific routing strategies can be deployed
easily. Compared to a distributed control logic, the controller’s
central view on the network also simplifies the implementation
of important parts of the control logic (e.g., topology discovery
or routing protocols). The interface for the communication be-
tween controller and NIDs, which is used for rule installation,
is called Southbound API. Optionally, the controller can also
offer a so called Northbound API for the communication with
applications using the network. For example, applications can
use this interface to request a specific QoS.



TABLE II
STARTUP PROCESS OF THE PROPOSED RT COMMUNICATION SYSTEM.

0. Switches connect to the controller
1. Discovery of switch interconnections
2. Discovery of connected terminal devices
3. Request for communication requirements
4. Computation of routes and schedule
5. Route installation and send schedule distribution
6. Host synchronization
7. RT communication of applications

1) OpenFlow: One widespread and freely available South-
bound API is the OpenFlow protocol [6] [5]. In the following,
OpenFlow-capable NIDs are called OpenFlow switches. Open-
Flow defines the communication interface between OpenFlow
switches and the controller and it specifies the structure of
packet processing rules. Table I shows an exemplary Open-
Flow rule for a specific traffic flow. An OpenFlow rule
installed in a switch is applied to every incoming packet whose
header fields match those of the rule. Wildcards (*) in a rule
match an arbitrary entry in the packet header. If none of the
installed rules matches the header of an incoming packet, the
OpenFlow switch requests the correct treatment of the packet
at the SDN controller. The SDN controller typically answers
such a request with the installation of a new, appropriate rule.
If the expected traffic flows are known beforehand, an SDN
controller might also install appropriate packet forwarding
rules in the switches proactively, so that no further requests
and responses between switches and controller are necessary
during the actual communication. As OpenFlow has become a
widespread protocol in many areas of networking and it is not
very demanding to the hardware (i.e., implementations based
on existing hardware are possible) [7] [6], it can be expected
that future IE switches will also support OpenFlow.

III. CONCEPT

In our concept, we propose a MAC that is based on the tra-
ditional TDMA approach. We enhance the TDMA mechanism
by exploiting two important features of SDN. At first, topology
information is easily accessible by the central SDN controller.
Secondly, standardized SDN interfaces like OpenFlow offer
the possibility to install customized, application specific routes
in the network. By taking topology information into account
and controlling routes, it is possible to allow multiple devices
to send data over physically separated links at the same
time. This simultaneous transmission on separate links is
also called Space Division Multiple Access1 (SDMA). In
this joint TDMA/SDMA approach managed by the central
SDN controller, hard RT communication is ensured by the
traditional TDMA principle, whereas the additional use of
SDMA facilitates the efficient use of network resources and
provides good scalability in terms of network size.

1The term SDMA is more common in the wireless context, but also
describes the principle of our system very well.
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Fig. 1. Exemplary link schedule for a single switch topology with three hosts.
Naming scheme: H0S denotes the link from host 0 to the switch. Flow 0.2
denotes a communication flow from host 0 to host 2.

A. Overview

During the startup phase of the network, several steps
are required to configure the network appropriate for the
application requirements. These steps are depicted in Table
II.

Steps 0-2: At the beginning, all OpenFlow switches con-
nect to the SDN controller, which then performs a network
topology discovery mechanism. SDN Controller frameworks
like POX [8] already ship with discovery modules that can
be configured or slightly modified to provide such a topology
discovery at system startup. The discovery of switch intercon-
nections relies on specially crafted LLDP packets, whereas
hosts can be discovered by passively monitoring network
traffic or by an active search like a ping sweep.

Step 3: Afterwards, it is necessary to inform the controller
about the communication requirements of each terminal de-
vice. This information is given by flow definitions (determin-
ing the endpoints of a communication) and corresponding per-
flow requirement parameters according to Section II-A1.

Step 4: The controller then uses the collected information
about the topology and the communication requirements to
compute a route and a send schedule for each flow. During this
computation, the controller creates a conflict-free link schedule
for each single link in the network that specifies when the
link is used by which flow. Thereby, a deterministic packet
delivery is ensured, as neither unexpected delays through
multiple packets in a switch queue nor packet loss due to
link congestion can occur. An example of a conflict-free link
schedule for a single switch topology with three hosts, which
are communicating over three different traffic flows, is given
in Figure 1. The send schedule that is relevant for the hosts is
given by the assigned time slot on the first link of the route
(H0S and H2S in the example). Note that only the hosts are
expected to be able to send data following a given schedule,
whereas switches simply forward data with a certain delay
determined by packet size and switch implementation. The
switch delay causes the time shift between time slots of a
flow on successive links of a route.

Step 5: Following the computation of routes and link sched-
ule, the SDN controller uses of the standardized OpenFlow
interface to install the respective rules for the routes in the
OpenFlow switches. Then, it transmits the corresponding send
schedule to every host via a northbound interface.

Step 6: Before the RT communication in time slots can
start, the hosts need to synchronize their clocks to a common



reference clock. Afterwards, they can autonomously detect if
they currently have the permission to send data of a certain
flow (clock time within respective send time slot). The host
synchronization can be realized through the use of a well-
known synchronization algorithm like the one used by the
Network Time Protocol (NTP). Although this algorithm uses a
single time server, it is possible to avoid a SPoF by equipping
each device with the same synchronization functionality, so
that each device can take the role of the time server.

Step 7: Finally, the RT communication can start. During
this communication, the devices periodically repeat the com-
munication pattern determined by the send schedule.

Resembling an important part of our work, details on the
definition of communication requirements of the applications,
as well as an original routing and scheduling algorithm for
the computation of link schedules like depicted in Figure 1
are described in the following subsections.

B. Flow and Constraint Discovery (Step 3)

In this step, the controller collects information about the
communication requirements of the hosts and their running
applications. The endpoints of a communication are defined
by an OpenFlow header (cf. Table I). On the one hand,
it is possible to specify necessary connections on a device
level by wildcarding transport protocol header fields. On the
other hand, a definition of multiple connections between the
same pair of hosts, each dedicated to a specific application,
is possible by using the transport protocol header fields. For
every given flow definition, the SDN controller also needs
the corresponding constraints (cf. Section II-A1) to be able
to reserve time slots of appropriate length and frequency.
Additionally, it is possible to use a single device level flow
and multiple application level flows between the same pair
of hosts at the same time. In this case, the application level
flows can be used to satisfy the requirements of specific
applications, whereas the device level flow can be considered
as a general communication budget for further applications,
for example without RT requirements. As a flow only defines
an unidirectional communication, bidirectional communication
between two hosts requires the definition of dedicated flows
for either direction.

Different strategies can be used for gathering flow defini-
tions and constraints. With sufficient a priori knowledge about
the topology and the applications using the network, it is
possible that the controller either reads the flow definitions
and constraints from a file or generates them following a pre-
defined pattern. If topology and traffic pattern are completely
unknown beforehand, it will be necessary that the controller
requests the communication requirements from the hosts via
a northbound interface.

C. Routing and Scheduling Algorithm (Step 4)

To create link schedules similar to the one shown in Figure
1, a routing and scheduling algorithm is necessary, which finds
an appropriate (i.e., satisfying all flow constraints) route and
a time slot configuration for every flow. Before our routing

𝑡𝐶𝑦𝑐𝑙𝑒𝑇𝑖𝑚𝑒  𝑡𝑄𝑢𝑒𝑢𝑒  𝑡𝐷𝑎𝑡𝑎𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙  

data is ready to be sent time slot – data is sent

Time

𝑡𝑆𝑙𝑜𝑡𝐿𝑒𝑛𝑔𝑡  ℎ  

Fig. 2. Visualization of a time slot configuration.

and scheduling algorithm is presented, we will briefly explain
how the different parameters of latency and the flow-specific
constraints (cf. Section II-A) are related and how they must
be taken into account by the algorithm to satisfy the flow
constraints.

At first, the time slot length for the considered flow is
set according to the corresponding requirement parameter
tSlotLength. This configuration guarantees that the sender can
transmit all data packets of a single data interval of the flow
in a single time slot. If the period tCycleT ime of the time
slot is additionally chosen according to Equation 4, data of
multiple data intervals cannot accumulate in the host’s queue
and all data packets are always sent in the next time slot.
At the beginning, tCycleT ime is set as high as possible (i.e.
tCycleT ime = tDataInterval), as this leads to a lower link
utilization.

tCycleT ime ≤ tDataInterval (4)

After setting a time slot length and cycle time, it is necessary
to search for an appropriate route for the flow. The goal of
the route search is to find a short route that does not cause
time slot conflicts in the link schedule. Based on this route, it
is possible to compute tDeliveryWC (cf. Eq. 3). Furthermore,
as the generation of data packets to be sent is typically not
synchronized with the time slots, in the worst case, packets are
generated right after the beginning of a time slot and therefore
have to wait a full cycle time until they can be sent (worst case
for tQueue, cf. Figure 2). This results in the worst case latency
given by Equation 5.

tLatencyWC = tCycleT ime + tDeliveryWC (5)

Then, Eq. 6 must be satisfied to meet the flow requirements.
If Eq. 6 is not satisfied, there is still the option to reduce
tCycleT ime. In contrast, lowering tDeliveryWC is not possible
assuming that our route search already chose the route with
the lowest delivery time.

tLatencyWC = tCycleT ime+tDeliveryWC ≤ tMaxLatency (6)

After changing tCycleT ime, it is necessary to compute a
new route because new time slot conflicts can arise in the link
schedule on the previously computed route due to the new time
slot configuration. Finally, Eq. 6 must be checked again with
the new values for tDeliveryWC and tCycleT ime. Potentially,
these steps of lowering the cycle time and computing a new
route have to be repeated multiple times.

Additionally, some applications may benefit from jitter-free
packet delivery times. This is generally not given if tCycleT ime

is chosen smaller than tDataInterval because tQueue then
varies for every cycle. If necessary for the application, it is
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Fig. 3. Arbitrarily chosen example for the illustration of per-flow cycle times
and slot lengths.
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Fig. 4. Flowchart of the main part of the routing and scheduling algorithm.

possible to avoid that the time slot mechanism causes jitter by
additionally choosing tCycleT ime in accordance with Eq. 7.

tCycleT ime =
tDataInterval

n
, n ∈ N (7)

As mentioned above, the route search requires a check if all
time slots assigned to a link never overlap. This check must
also work if the time slots use different cycle times and have
an arbitrary length. Such a check can be realized as follows.
At first, the least common multiple (LCM) of the cycle times
of all time slots is computed. Then, the schedule of the link is
checked for time slot conflicts up to the LCM. If no time slot
conflicts occur up to the LCM, there will not be conflicts in
the future as the time slot pattern repeats after the LCM. For
example, Fig. 3 shows a link with time slots of three flows.
The LCM of the cycle times is 40 µs. As the first 40 µs of
the link schedule are conflict-free, the schedule for this link
is feasible.

Following these considerations, it is possible to formulate
a routing and scheduling algorithm that enables the use of
different time slot lengths and cycle times per flow. For
every required RT flow, our routing and scheduling algorithm
executes the steps depicted in Figure 4. At first, the cycle time
for the time slots of the flow is set to the highest possible value
considering Eq. 4 , as it is preferable to use a high cycle time

due to a lower link utilization and a lower chance to conflict
with other flows. Then, a send time slot is determined. The
send time slot is the time slot of the first link of a route and
thereby it defines when the host is allowed to transmit the
data of the flow. With the given send time slot configuration,
a modified version of Dijkstra’s single source shortest path
(SSSP) algorithm is run to search for a possible route. For this
purpose, the SSSP algorithm has been extended to be aware of
time slots: It knows the time slots that have been assigned to
previously processed flows and when searching for a route for
another flow, it only adds links to a route if this does not lead
to a time slot overlapping. During this process, the required
time slots for every link of a route can be computed based
on the given send time slot and known switch delays. Finally,
the modified SSSP algorithm behaves like the original SSSP
algorithm but without adding a link to a route if this would lead
to a time slot conflict. This way, the modified SSSP algorithm
jointly solves the routing and scheduling problem. As the host
can start the data transmission at an arbitrary point in time
between 0 and tCycleT ime of the respective flow (with time
steps limited by the hosts time resolution), many different send
time slot configurations are possible. Therefore, the modified
SSSP algorithm is repeated with every possible send time slot
configuration and only the best route found (by hop count
metric) is saved. Afterwards, the worst case latency (Eq. 5)
of this route and its corresponding time slot configuration is
computed and the algorithm checks if it meets the deadline
(Eq. 6). If the deadline is met, appropriate forwarding rules for
the route are installed in the switches and the corresponding
time slots are added to the link schedule. If the best route
found does not satisfy Eq. 6, the search for routes is repeated
with a lower cycle time (still considering Eq. 4 and Eq. 7).
The algorithm stops with an error if no route is found at all for
a certain cycle time because it is unlikely that a route can be
found with an even lower cycle time as the chance of schedule
conflicts increases. The algorithm also stops if the cycle time
drops below the required slot length.

IV. IMPLEMENTATION AND RESULTS

A. Implementation

The SDN controller of our implementation of the presented
system is based on the POX framework. The topology dis-
covery was realized by means of modified POX modules.
To manage the different phases of the system (cf. Table
II) and for the routing and scheduling algorithm as well as
the custom northbound interface, new modules were added
to POX. The northbound interface for the communication
between controller and hosts uses a custom JSON format.
Python’s standard library functions were used for parsing and
creating JSON documents. As hosts, ZedBoards (667MHz
ARM Cortex A9 Dual Core, 512MB DDR3 RAM) running
FreeRTOS with the lwIP [9] network stack were used, with
additional custom features (synchronization, packet queuing,
time slots, JSON interface) implemented in C++. The library
rapidJSON was used for JSON message parsing. These hosts



offer a time resolution of 10 µs. A higher time resolution can
be configured but the platform then produces unreliable results.

In the test setup, the OpenFlow-capable HP 2920 datacenter
switch was used to connect the hosts. This store-and-forward
switch processes the relevant subset of OpenFlow rules in
hardware. Therefore, it offers the possibility to conduct latency
measurements that provide realistic results for a network with
gigabit Ethernet.

Note that we use standard hardware components and NIC
drivers, as they provide all features required by our system.
For the use in a production network, it will be necessary to
certify such components with respect to their RT capabilities,
which will require a detailed analysis of the components to
verify that unexpected packet delays can never occur.

B. Initial Parameter Measurement

Before taking the developed system into operation, the
parameters tSwitch, tSoftwareS and tSoftwareR of the used
components need to be measured and made known to the
controller.

We implemented the queuing mechanism and the ability
to send in flow-specific time slots as an additional wrapper
around the used network stack. Applications have to use API
functions of this wrapper to send data. The wrapper then
implements the queuing and time slot functionality and calls
API functions of the network stack when a time slot is reached
and packets can be sent.

When the wrapper calls an API function of the network
stack to send a packet, the time tSoftwareS passes before
the data is transmitted. To comply with the given time slot,
this software delay must be known and compensated, e.g., by
making the respective API call exactly by tSoftwareS before
the beginning of the respective time slot or by adding an appro-
priate safety margin between time slots. In practice, tSoftwareS

is not perfectly constant (e.g., dependent on packet sizes) and
thus cannot be fully compensated by making the respective
API call earlier by a fixed amount of time. Therefore, a safety
margin (B in Fig. 5) must be added between the time slots,
with a length that equals the difference between the maximum
and minimum possible value of tSoftwareS .

Furthermore, tSwitch must be determined because it is used
by the controller during computation of the link schedule.
In practice, tSwitch is not constant either and therefore it is
necessary to introduce an additional safety margin between
time slots for every switch a packet traverses (E in Fig. 5).
The length of this per-switch safety margin must equal the
difference of the maximum and minimum of tSwitch.

Additionally, the maximum values of tSoftwareS ,
tSoftwareR and tSwitch must be known to the controller
beforehand to correctly compute the expected worst case
delivery time of packets (cf. Eq. 3) and check if the deadlines
are met (Eq. 6).

As we measured the switch and software delay values
with our ZedBoard hosts, we pessimistically rounded the
measured minimum delay values down by an additional 10 µs
(i.e., 1 clock tick) and the measured maximum delay values

TABLE III
FLOW CONSTRAINTS FOR THE PRESENTED TEST CASE.

Flow
Name

Source
Host

Dest.
Host

tMaxLatency tDataInterval tSlotLength

0.1 0 1 600 400 20
2.3 2 3 600 400 20
4.5 4 5 600 400 20
6.7 6 7 600 400 20
0.7 0 7 600 400 20
2.1 2 1 600 400 20
4.3 4 3 600 400 20
6.5 6 5 600 400 20

Time 
[µs]

reserved for flow 0.1

reserved for flow 2.3
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reserved for flow 2.1
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reserved for flow 4.3
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Fig. 5. Link Schedule for the presented test case. Reservation consists of: A:
Actual transmission time slot B: Safety margin for variable software delay C:
Safety margin for synchronization inaccuracy (early clock) D: Safety margin
for synchronization inaccuracy (late clock) E: Safety margin for variable
switch delay.

TABLE IV
MEASUREMENT RESULTS FOR THE PRESENTED TEST CASE.

Flow
Name

tLatency

Minimum [µs]
tLatency

Maximum [µs]
tLatency

Average [µs]
tLatency

Std. Dev. [µs]
0.1 320 320 320,0 0,0
2.3 410 430 423,87 4,87
4.5 370 430 375,27 5,05
6.7 380 390 386,42 4,79
0.7 70 80 73,78 4,85
2.1 180 180 180,0 0,0
4.3 120 290 126,92 7,69
6.5 110 120 116,42 4,79

up an additional 10 µs to accommodate the host’s limited
measurement accuracy.

The accuracy of the synchronization mechanism is also
limited by the host’s time resolution and in practice, the clocks
of the master and synchronized slaves differ. This must be
taken into account by adding further safety margins (C and D
in Fig. 5).

Figure 5 visualizes all mentioned safety margins and their
exact values for our implementation.

C. Results

We verified that our routing and scheduling algorithm as
well as our prototype implementation are correctly working
with several successful tests using ring, tree and single switch
topologies and multiple traffic patterns. For simplicity, we
present our results of an example using a single switch
topology with eight ZedBoard hosts (0-7) connected to an HP



2920. Traffic pattern and flow constraints are shown in Table
III. The link schedule generated by our algorithm is shown in
Figure 5. By the example of two of the Links (H0S and SH1)
the figure also shows how each reserved time is composed
of the actual time slots and the safety margins. Note that it is
correct that the time slots on links successively used by a flow
start at the same time, because the minimum switch delay of
our used switch was measured as 0 µs. The cycle time of all
time slots was set to 400 µs. With the described setup, one-
way latency measurements were conducted by sending UDP
packets with a payload of 1000 bytes over the respective flows.
A measurement series consists of 5000 measured delay values
per flow. Measured latency values are depicted in Table IV.
The measurement was conducted on application level, thereby
including all delay factors of Eq. 1.

The results satisfy the expectations and can easily be
explained. As the chosen cycle time of the time slots and
the data interval of the test application are equal, the queuing
delay of packets of the same flow is always the same during
a complete measurement series, resulting in a low standard
deviation. Nevertheless, the first packet generation and packet
queuing of a flow takes places at an arbitrary point in time
between two time slots, leading to a random queuing delay
between zero and tCycleT ime for every flow and thereby to
different average latencies per flow. tDelivery can be assumed
as equal for all flows because of the equal single hop routes.
The typical difference of up to 20 µs between minimum and
maximum latency value of a single flow can be explained by
random errors that can occur due to the limited clock accuracy
and the used synchronization mechanism.

The results are generally very convincing because they
confirm that the routing and scheduling algorithm works
correctly and creates a feasible schedule that satisfies all flow
constraints. Additionally, the results show that our prototype
implementation can content the flow requirements without any
exceptions (maximum latency value below tMaxLatency). This
is especially remarkable because with data intervals far below
1 ms the flow requirements are quite demanding and fulfill the
needs of many hard RT applications.

D. Discussion

The introduction of safety margins is an issue that limits
the efficient use of available network resources. Nevertheless,
there are several possibilities to mitigate this problem. E.g.,
hosts with a higher time resolution will allow a more precise
synchronization and the corresponding safety margins (C/D
in Figure 5) can be reduced accordingly. Additionally, with a
more precise measurement of switch and software delays (cf.
Section IV-B) safety margins B and E can be reduced. By the
use of OpenFlow-capable cut-through switches, safety margin
E may be even negligible. For the use in data centers, switch
fabrics offering such features already exist (e.g., Mellanox
SwitchX-2 EN). Thus, it becomes apparent that our novel IE
concept facilitates even a much higher efficiency than we were
able to demonstrate with our prototype implementation.

In our concept, the additional use of SDMA besides TDMA
allows the simultaneous communication of multiple traffic
flows over physically separate parts of a network. Such
an efficient use of the network topology is not possible
in several existent IE solutions because they make use of
broadcast transmission (or hubs). Thereby, our concept offers
a significantly better scalability. As the configuration of the
combined TDMA/SDMA system is autonomously performed
by the routing and scheduling algorithm of the SDN controller,
the manual configuration effort is decreased to a minimum.
Additionally, every computed route and every time slot of the
link schedule is flow-specific (cf. Table I) and not device-
specific, which means that it is possible to (independently)
take account of the different requirements of multiple com-
municating applications running on a single host. As the SDN
controller is only involved in the startup phase of system but
not in the actual real-time communication, it is not necessary
to analyze the SDN controller with respect to RT capabilities.
Therefore, even standard SDN controller frameworks and
existing libraries of the respective programming language can
be used for the controller application. Furthermore, the SDN
controller is no Single Point of Failure (SPoF) because once
the system is configured, RT communication can continue even
in case of a controller failure. The controller is only required
for a restart or reconfiguration of the communication system.
As the controller does not require specialized hardware, but
can be executed on any PC or embedded device, it is also
easy to replace in case of a failure. By the implementation of
the control logic in software, the system becomes also very
flexible and adaptable to different application areas. Especially
the opportunity to select different routing and scheduling mod-
ules depending on the expected topology, traffic pattern and
application requirements offers great optimization potential.
For the terminal devices and OpenFlow switches, no special
hardware features are required and thereby, standard Ethernet
hardware can be used.

V. RELATED WORK

Although the use of SDN in industrial automation networks
has been considered in the past [10] [11], there are few publi-
cations that propose an SDN-based networking concept which
is able to provide application-specific, guaranteed worst case
latencies. In [12], Guck and Kellerer present an SDN-based
end-to-end QoS mechanism that works with flow-specific
bandwidth allocations and additionally uses static priority
queuing in the switches. Similar to our proposed concept, the
controller collects information about the network topology and
flow requirements and then uses these in a joint admission
control and routing algorithm to compute an appropriate
network configuration. The given analysis proves that the
system is able to provide guaranteed worst case latencies. The
advantage of the approach of Guck and Kellerer is that host
implementations become simpler compared to our proposed
concept, as they do not need to implement synchronization
features and a TDMA mechanism. Nevertheless, with their
approach it is difficult to achieve low latencies over multi-hop



routes, as queuing delays of every traversed switch must be
considered. Additionally, low-jitter communication becomes
difficult as packet delay depends on the behavior of multiple
hosts communicating over the same links and packet queues.

Further work that addresses SDN-supported QoS-
provisioning is typically focused on network optimization
for soft RT multimedia applications (e.g. video streaming,
VoIP, online gaming). For example, the authors of [13]
formulated an Integer Linear Programming (ILP) solution
that uses topology information and application requirements
(minimum bandwidth, maximum delay and packet loss) to
compute appropriate routes. Additionally, they propose the
use of network monitoring features to detect requirement
violations due to dynamically changing network load and
they use this information to trigger path recomputations.
In [14], the authors also propose a QoS mechanism in
which the SDN controller monitors network utilization and
reactively reconfigures routes if it detects that application
requirements with respect to latency or bandwidth are
violated. The authors of [15] propose an SDN-based network
resource management that categorizes traffic by the use of
an additional IP header field that contains an application ID.
Based on the categorization in three classes, different routing
algorithms are applied for the respective traffic flows. These
algorithms use different cost functions to weight latency, jitter
and packet loss and thereby enable a routing optimization for
different applications. Similar to the previously mentioned
works, the system uses monitoring features that report the
current network status, which is considered by the routing
algorithms. Although the basic principles in the related work
with soft RT focus are partly similar to those of our proposed
system and the concept of [12], the given analysis is typically
not sufficient to provide any guarantees with respect to
worst-case latency or jitter. Instead, these approaches consider
the adaption of the network configuration to dynamically
changing traffic patterns, which typically occur in IT and data
center networks.

VI. CONCLUSION

We designed a new, SDN-based concept for RT communi-
cation systems. The concept exploits the capabilities of SDN
to collect topology information and application requirements,
which are then used by a newly developed routing and
scheduling algorithm to autonomously determine an appro-
priate network configuration. This configuration is installed
in the network by means of the northbound and southbound
interfaces of the SDN concept. To ensure RT communication,
the network uses the well-known TDMA approach, which has
been extended by the exploitation of the network topology
to allow simultaneous data transmissions (SDMA). By this
SDMA-extension, the concept offers an increased potential
to scale up the network size without decreasing the RT
capabilities. Moreover, our concept takes application-specific
requirements into account. We successfully implemented our
proposed concept as a prototype based on standard hardware
components. The latencies achieved with this prototype are

below 1 ms for small networks. Even in very large networks
with long multi-hop routes latencies far below 10 ms can
be expected. These promising results confirm that systems
based on the proposed concept are at least equal to existing
IE solutions with respect to satisfiable cycle time and latency
requirements. However, our concept outpaces them due to its
superior scalability, the possible use of standard hardware, and
the absence of an SPoF.

Additionally, we identified precise and scalable device syn-
chronization strategies as well as the development of further
routing and scheduling algorithms as interesting topics for
our future research. In the future, we will also work on the
important aspect of dynamically changing networks, i.e., how
new devices and flows or changing flow requirements can be
integrated into the network at runtime without disturbing RT
communication of other flows.
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