
A Protocol for Distributed Voting
in Urban Environments

Peter Danielis, Sylvia T. Kouyoumdjieva, and Gunnar Karlsson
ACCESS Linnaeus Center, School of Electrical Engineering

KTH Royal Institute of Technology, Stockholm, Sweden
Email: {pdanieli, stkou, gk}@kth.se

Abstract—Distributed aggregation algorithms have tradition-
ally been applied to environments with no or rather low rates of
node churn. The proliferation of mobile devices in recent years
introduces high mobility and node churn to these environments,
thus imposing a new dimension on the problem of distributed
aggregation in terms of scalability and convergence speed. To
address this, we present a distributed voting protocol for mobile
device-to-device communication. We investigate a particular use
case, in which pedestrians equipped with mobile phones roam
around in an urban area and participate in a distributed yes/no
poll, which has both spatial and temporal relevance to the
community. The objective of our approach is to produce a precise
mapping of the local estimate to the anticipated global voting
result while preserving node privacy. Since mobile devices may
have limited resources allocated for mobile sensing activities, we
utilize D-GAP compression. We evaluate the proposed protocol
via trace-driven simulations of realistic pedestrian behavior and
demonstrate that it scales well with the number of nodes.
Furthermore, in densely populated areas the local estimate of
participants does not deviate by more than 2.5% from the global
result and the achievable compression rate is at least 25%.

I. INTRODUCTION

Distributed tasks and computations, e.g., to estimate the
average of a set of values, are often conducted based on inputs
supplied by collaborative users. Such aggregation functions are
of high importance in large-scale distributed systems where
there is a need to compute global system properties [1].

In this paper, we focus on a specific class of distributed
tasks, namely distributed voting in the context of urban
polling. Potential urban polling applications collect and pro-
cess information on locally-relevant questions and provide
users in a community with answers to them [2]. In general,
the information obtained during a poll can be processed either
in a centralized or in a decentralized manner. Centralized
processing requires nodes to submit their votes to a central
entity. However, this approach lacks scalability and poses
privacy concerns as users might in general not want their
votes to be seen by a central entity, be it trusted or not [3].
Contrary, decentralized (or distributed) processing requires
nodes to compute local estimates of the result based on partial
system knowledge. As opposed to conventional distributed
processing scenarios where nodes are considered to be static
or semi-static [4], in this work we examine scenarios, in which
nodes exhibit high mobility. We refer to a node as a pedestrian
carrying some device equipped with a wireless communication
interface such as a mobile phone. We rely on device-to-device

communication for disseminating votes among participants
in the poll. Mobile nodes opportunistically exchange data
whenever they come in direct communication range [5]. For
urban polling, this data comprises voting information conveyed
by means of broadcasts and nodes immediately update their
local estimate upon message reception.

In the context of distributed voting in urban environments,
a distributed voting protocol needs to comply to the following
requirements: (1) to be scalable, (2) to have fast convergence
and high accuracy, and (3) to preserve node privacy. Thus, in
this work we present a distributed voting protocol for mobile
device-to-device communication, which provides all of the
above characteristics. The main contributions are:

• We show that our approach is suitable for operation
in dynamic environments with high node mobility. It
makes use of the benefits of D-GAP compression, which
allows for scalability of the protocol [6]. Furthermore,
our approach preserves node privacy by applying a cryp-
tographic hash function to user identities.

• We perform extensive trace-driven simulations using re-
alistic pedestrian mobility. We show that our approach
scales well with the number of nodes in the system.
Furthermore, our approach demonstrates both fast conver-
gence and high accuracy, with local estimates deviating
at most by 2.5 % from the global value in dense scenarios.

• Our approach achieves at least 25 % compression rate in
the investigated use case making it appropriate for execu-
tion on mobile devices with limited storage capabilities
or with restrictions on the memory to be used.

• Our approach exhibits low processing load at the appli-
cation layer as it requires only a fraction of the received
broadcast messages (34 % in dense scenarios and even
less in sparser scenarios) to be processed to achieve
accurate local estimates.

II. RELATED WORK

Distributed voting belongs to the class of distributed ag-
gregation problems. Distributed aggregation in general com-
prises computations such as sum, average, minimum, or max-
imum over unreliable networks, in which no central entity
is accessible or required. There are two main paradigms
to address the aggregation problem, namely restarted and
bookkeeping gossip-based and tree-based aggregation. Tree-
based aggregation protocols have been shown to perform

1 1 0 0 0 1 1 1 1 1 0 0

[1] 2 23{

Bit vector (12 bits):

D-GAP vector (9 bits): 5 }

Fig. 1. An example of D-GAP compression. A bit vector of 12 bits is
converted into an integer D-GAP vector of 9 bits. The leading bit in the
D-GAP vector indicates if the vector starts with 0s or 1s.

poorly in dynamic environments with high levels of churn [4].
Most of the restarted gossip algorithms may count a node
twice and do therefore not achieve a high accuracy. Further,
bookkeeping protocols usually require up to thousands of
rounds to converge, thus they are not suitable for scenarios
with high dynamics. For further information, the interested
reader is refered to [4].

III. OUR DISTRIBUTED VOTING PROTOCOL

In this section, we present a distributed voting protocol for
mobile device-to-device communication.

A. The need for D-GAP compression

In the context of distributed voting, each node can cast
a binary vote (0 or 1) to a poll. For nodes to be able to
calculate the anticipated global vote, they need to keep track
of the votes of other peers in their vicinity throughout their
lifetime. We leverage the concept of D-GAP compression [6].
D-GAP compression provides a compressed representation of
bit vectors in the form of integer vectors (later referred to as D-
GAP vectors) and can be treated as a specialized variant of run
length encoding. Each integer in a D-GAP vector represents
the number of consecutive 0s or 1s that are present in the bit
vector at a given position. Whether the integer corresponds
to a sequence of 0s or 1s is determined by the leading bit
of the D-GAP vector. A leading bit of 0 shows that the first
integer corresponds to a number of consecutive 0s, followed
by a number of consecutive 1s and so on; a leading bit of 1
indicates the opposite behavior. An example of converting a
12-bits bit vector into a 9-bits D-GAP vector is illustrated in
Figure 1. We calculate the total number of bits required for
representing the D-GAP vector, N(DGAP):

N(DGAP) =

n∑
i=1

(blog2 dic+ 1) (1)

where di is the integer representation at position i of the
D-GAP vector, and n is the size of the vector.

B. Operations on D-GAP vectors

A D-GAP vector is solely a data structure. Hence, we define
the following three operations for our approach that can be
performed on two D-GAP vectors of arbitrary lengths: merge,
consolidate, and append. For brevity, let us consider
vectors of different lengths, DGAPmin and DGAPmax, de-
noting the shorter and the longer vector, respectively. Note
that here vector length corresponds to the expanded bit vector
length and is defined as L(DGAP) =

∑n
i=1 di.

DGAPres = [1] 2

DGAPmin = [0] 2 3

DGAPmax = [1] 2 3 5 2

DGAPres = [1] 5

DGAPmin = [0] 2 3

DGAPmax = [1] 2 3 5 2

DGAPres = [1] 5

DGAPmax = [1] 2 3 5 2

DGAPres = [1] 10

DGAPres = [1] 10

DGAPmax = [1] 2 3 5 2

DGAPres = [1] 10 2

Step 1: Merge

Step 2: Consolidate

Step 3: Append

Fig. 2. Merging, consolidating, and appending D-GAP vectors. Bold integers
denote positions under consideration, crossed integers are not considered, and
the resulting vector is highlighted in red.

• The merge operation combines DGAPmin and
DGAPmax[1:L(DGAPmin)] vectors into a resulting
vector DGAPres. The merge operation is performed in
an iterative manner until it reaches the end of DGAPmin.

• The consolidate operation combines the last position
of DGAPres with the next position of DGAPmax after
the merge operation is performed. The consolidate
operation is only performed if the integers at these two
positions correspond to the same bit value.

• The append operation simply adds the remainder of
DGAPmax to DGAPres.

Observe that if the two input vectors are of equal lengths,
the only operation that will be performed is merge. Figure 2
illustrates an example of all three operations.

C. Functional principles of our protocol

With our approach, each node locally keeps track of nodes
it has has obtained knowledge of, either directly or via other
peers, as well as of their votes. This information is presented
in the form of two correlated D-GAP vectors. Whenever a
node first casts a vote, it adds itself to the disclosed-nodes
vector, and it adds its vote to the votes vector. Observe
that due to privacy preservation reasons, the position, in
which information is stored in each of the D-GAP vectors,
is determined by a cryptographic hash function such as MD5,
which is calculated over a unique identifier, e.g., the node’s
MAC address. For instance, if for a node, which casts a vote
for 1, the cryptographic hash function returns a position of 25,
both its disclosed-nodes vector and its votes vector would be
initialized with {[0] 24 1}. If the same node casted a vote for
0, the votes vector would instead be initialized with {[0] 25}.

Each node periodically broadcasts a beacon containing its
disclosed-nodes vector and its votes vector to peers in its
vicinity. Whenever a node receives information from another
peer, it immediately updates both its disclosed-nodes vector
and its votes vector. The protocol consecutively executes the
operations merge, consolidate, and append in order to
update the local estimate. Thus, the disclosed-nodes vector and

the votes vector contain cumulative information of all nodes
that have been disclosed over time, and their corresponding
votes, even if these nodes have left the system. Furthermore,
our protocol allows nodes to disclose peers that they have
not encountered physically by propagating the knowledge
accumulated by other participants in the system.

IV. EVALUATION SCENARIO

In this section, we introduce the mobility scenario as well
as the simulation setup and investigated performance metrics.

A. Mobility scenario

In order to realistically recreate pedestrian mobility, we
use the Walkers traces [7] captured in Legion Studio [8], a
commercial simulator initially developed for designing and
dimensioning large-scale spaces via simulation of pedestrian
behaviors. Each simulation run results in a trace file, contain-
ing a snapshot of the positions of all nodes in the system every
0.6 s. We considered an outdoor urban scenario, modeling the
Östermalm area of central Stockholm. It consists of a grid of
interconnected streets. Fourteen passages connect the observed
area to the outside world. The active area, i.e., the total surface
of the streets, is 5872 m2. The nodes are constantly moving,
hence the scenario can be characterized as a high mobility
scenario. (More information can be found in [9].)

B. Simulation setup

In our evaluation scenario, we assume that all nodes carry
devices and all are participating in the distributed poll in the
area. Each node casts a binary vote v = {0, 1} upon entry
in the simulation, and votes are distributed according to a
distribution f(x) with a mean E(x). For the evaluation, we
use an implementation of an opportunistic content distribution
system in the OMNeT++ simulator [10]. Each simulation run
is executed in synchronous rounds of 0.6 s. Nodes broadcast
their disclosed-nodes vector and their votes vector at the
beginning of each round. The transmission range is set to 10 m.

C. Performance metrics

We focus on evaluating the following performance metrics.
• Deviation (∆): The deviation is a measure of the accuracy

of our protocol:

∆ =

∣∣∣∣ x̄− xx
∣∣∣∣ (2)

where x̄ = E(DGAPloc) is the local estimate, and x is
the anticipated global result.

• Compression ratio (CR): The compression ratio is a
measure of the efficiency and scalability of our protocol:

CR = 1− N(DGAP)

N(BVEC)
(3)

where N(DGAP) is calculated as per Eq. 1, and
N(BVEC) is the number of bits required if the data were
represented in the form of a bit vector. N(BVEC) can be
calculated by summing up all di of the D-GAP vector
(see Eq. 1).

• Information overhead (IO): The information overhead is
a measure of the processing load reduction for a node in
the system and therefore indicates scalability as well:

IO = 1− n(BRC)

N(BRC)
(4)

where N(BRC) is the total number of broadcast messages
received by a node throughout its lifetime in the system,
and n(BRC) ⊂ N(BRC) is the number of broadcast
messages that were used for updating the local estimate.

V. SIMULATION RESULTS

In this section, we investigate simulation results for the
Östermalm scenario for the arrival rates λ = {0.0025, 0.005
0.01, 0.07, 0.15, 0.30} nodes/s each for a single trace. We
assume that votes are deterministically distributed, with a
mean E(x) = 0.75, i.e., 75 % of all nodes vote for one and
25 % vote for zero. In this case, the first node entering the
system votes for zero whereas the following three nodes vote
for one. After that, this distribution continues for all further
nodes.

Figures 3(a)-(b) show the local estimates of all nodes over
time for sparsely populated scenarios, i.e., λ = {0.005,
0.01} nodes/s. We see that the convergence of the local
estimates towards the global result is strongly dependent on
the population density. As the arrival rate increases, a trend
can be seen towards convergence, and at λ = 0.01 nodes/s
nodes are clearly able to locally estimate the global result.
Still, for any of the low arrival rates, some nodes do not
gain sufficient knowledge about other nodes or even do not
disclose anyone so that their local estimates remain 0 or 1 (see
Figures 3(a)-(b)). As the arrival rate further increases, nodes
converge earlier to the global result, and outliers disappear.
We have omitted results for λ = {0.07, 0.15, 0.3} nodes/s due
to space constraints.

Generally, our results show that disclosing approximately
30 % of nodes is sufficient for achieving precise estimates.
Thus, we conclude that even in dynamically changing en-
vironments there is a correlation between the percentage of
disclosed nodes and the convergence to the global result.

We further evaluate the performance of the system in steady
state, i.e., once the average number of nodes in the area stays
unchanged albeit the arrivals and departures in the system.
We then aggregate results from 1000 nodes. Table I shows the
average and maximum deviation ∆ including 95 % confidence
intervals (CIs) as well as the information overhead IO in
the steady state depending on the arrival rate λ. Note that
minimum deviation values are omitted as they are zero in all
cases. These results clearly show that the denser the scenario,
the smaller the deviation ∆, i.e., the accuracy increases. As
the arrival rate increases, both the average and the maximum
deviation are steadily decreasing. Finally, for the most densely
populated scenario, λ = 0.3 nodes/s, the maximum deviation
never exceeds 2.43 %. Moreover, the information overhead IO
is between 93 % and 94 % for λ = {0.005, 0.01, 0.07} nodes/s,
which results from the fact that often the same nodes meet

0

0.2

0.4

0.6

0.8

1

0 2000 4000 6000 8000 10000 12000 14000 16000

Lo
ca
l e
st
im

at
e

Time [s]

(a)

0

0.2

0.4

0.6

0.8

1

0 2000 4000 6000 8000 10000 12000 14000 16000

Lo
ca
l e
st
im

at
e

Time [s]

(b)

Fig. 3. Local estimates of all nodes: (a) λ = 0.005 nodes/s and (b) λ =
0.01 nodes/s.

TABLE I
AVERAGE AND MAXIMUM DEVIATION ∆, AND INFORMATION OVERHEAD

IO WITH DIFFERENT ARRIVAL RATES λ.

ARRIVAL RATE AVG. ∆ MAX. ∆ IO
λ [NODES/S] [%] [%] [%]

0.005 14.91±1.19 100 93.30±0.4
0.01 7.19±0.73 100 94.05±0.2
0.07 2.06±0.08 6.3 93.98±0.3
0.15 1.01±0.05 3.07 89.55±0.2
0.3 0.79±0.04 2.43 66.28±0.5

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

C
D
F
o
f
D
‐G
A
P
 s
h
ar
e

Compression ratio CR

λ =0.005

λ =0.01

λ =0.07

λ =0.15

λ =0.3

Fig. 4. CDF of the compression ratio CR for storing votes under different
arrival rates λ.

again and do not exchange new information. On the one hand,
this underlines the low processing load on application layer
and thus our protocol’s scalability in sparse scenarios. On the
other hand, as shown above, the accuracy is not very high
for the sparse scenarios. In denser scenarios, the information
overhead amounts to lower values of IO = 89.55 % and
66.28 % for λ = 0.15 nodes/s and λ = 0.3 nodes/s, respectively.
Due to the higher population density, it is more probable that
new nodes meet, which then exchange new information and
thus the information overhead decreases.

Figure 4 shows the cumulative distribution functions (CDFs)
of the compression ratio CR when storing the D-GAP vectors

with votes across different arrival rates λ. The achievable
compression ratio CR is higher in case of using D-GAP for
storing disclosed nodes than that for storing votes. For each
disclosed node, a 1 is set in the D-GAP, which results in long
sequences of consecutive 1s and increases compression. On
the other hand, depending on the voting distribution and its
mean value, sequences of consecutive 1s may be shorter in
the D-GAP vector for storing votes resulting in a lower CR.
With the increase of the arrival rate, the compression ratio also
increases, and for λ = 0.3 nodes/s, the average compression
ratio amounts to 91.52 %. This results from the fact that most
nodes in the system have been disclosed, thus almost all bits in
the D-GAP are set to 1. The compression ratio of the D-GAP
for storing votes approaches 25 % as the arrival rate increases,
Figure 4, which depends on the chosen voting distribution and
its mean value E(x) = 0.75. Different voting distributions have
been studied but have been omitted due to space constraints.

VI. CONCLUSION

In this paper, we presented a distributed voting proto-
col in the context of urban polling, which is suitable for
environments, in which nodes exhibit high mobility. It re-
lies on device-to-device communication to exchange voting
information. The proposed protocol preserves privacy and
exhibits high convergence speed, accuracy, and scalability.
Prospectively, we will investigate the use case of counting the
nodes that are currently in a system in more detail.

ACKNOWLEDGMENT

The authors would like to thank the German Research
Foundation (DFG) (research fellowship, GZ: DA 1687/2-1)
for their financial support.

REFERENCES

[1] S. Gambs, R. Guerraoui, H. Harkous, F. Huc, and A.-M. Kermarrec,
“Scalable and secure polling in dynamic distributed networks,” in
Reliable Distributed Systems (SRDS), 2012 IEEE 31st Symposium on,
Oct 2012, pp. 181–190.

[2] L. Koeman, V. Kalnikaité, and Y. Rogers, “”everyone is talking about
it!”: A distributed approach to urban voting technology and visualisa-
tions,” in Proceedings of the 33rd Annual ACM Conference on Human
Factors in Computing Systems, ser. CHI ’15. New York, NY, USA:
ACM, 2015, pp. 3127–3136.

[3] Y. Benkaouz, R. Guerraoui, M. Erradi, and F. Huc, “A distributed polling
with probabilistic privacy,” in Reliable Distributed Systems (SRDS), 2013
IEEE 32nd International Symposium on, Sept 2013, pp. 41–50.

[4] L. Nyers and M. Jelasity, “A comparative study of spanning tree and gos-
sip protocols for aggregation,” Concurrency and Computation: Practice
and Experience, vol. 27, no. 16, pp. 4091–4106, 2015, cpe.3549.

[5] Ó. Helgason, E. A. Yavuz, S. Kouyoumdjieva, L. Pajevic, and G. Karls-
son, “A mobile peer-to-peer system for opportunistic content-centric
networking,” in Proc. ACM SIGCOMM MobiHeld workshop, 2010.

[6] A. Kuznetsov, “D-gap compression,” 2002. [Online]. Available:
http://bmagic.sourceforge.net/dGap.html

[7] S. T. Kouyoumdjieva, Ó. R. Helgason, and G. Karlsson, “CRAW-
DAD data set kth/walkers (v. 2014-05-05),” Downloaded from
http://crawdad.org/kth/walkers/, May 2014.

[8] “Legion Studio,” http://www.legion.com/.
[9] Ó. Helgason, S. T. Kouyoumdjieva, and G. Karlsson, “Opportunistic

communication and human mobility,” Mobile Computing, IEEE Trans-
actions on, vol. 13, no. 7, pp. 1597–1610, July 2014.

[10] Ó. R. Helgason and K. V. Jónsson, “Opportunistic networking in
OMNeT++,” in Proc. SIMUTools, OMNeT++ workshop, 2008.

