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Abstract—Vendor-independent interoperability is one of the
key-enablers for medical devices in future operating rooms,
intensive care units, and medical care in general. Using the
paradigm of a Service-Oriented Architecture (SOA) is a promis-
ing approach realized by the new IEEE 11073 SDC family
of standards. Standard compliant communication stacks will
be used to build up systems of networked medical devices.
The performance of the stack implementation is crucial for
the usability in real-world medical environments. Therefore,
we investigate the latency of currently available middleware
stacks: SoftICE, openSDC, and OSCLib. The aim is to evaluate
the suitability of the underlying concepts, understanding the
communication behavior using different hard- and software
platforms, and finding problems to support future development.
For the latency measurements we build up a use-case independent
testbed and instrument the libraries to get more information.
On the one hand, our investigations substantiate the suitabil-
ity of the underlying concept and the available middleware
stack implementations. On the other hand, unexpected results
occurred, like a strong dependency of communication latency on
the combination of hardware platform, Java Virtual Machine
(JVM), and JVM configuration and even a strong dependency
on the intensity of exchanged data when using Java middleware
implementations.

I. INTRODUCTION

The IEEE 11073 SDC standard family [1] supports a
promising new way for the development of standardized
vendor-independent interoperability of medical devices based
on the known principle of a Service-Oriented Architecture
(SOA). The ability to exchange information (fundamental
interoperability) is realized by the Medical Devices Commu-
nication Profile for Web Services (MDPWS, IEEE 11073-
20702) [2] that is derived from the well-established standard
Devices Profile for Web Services (DPWS). The Domain Infor-
mation and Service Model (IEEE 11073-10207) [3] ensures the
structural interoperability. It defines the way medical devices
describe their capabilities and their state as well as the services
that can be used for remote interaction, like get-, set-, or event-
service. IEEE 11073-20701 describes the overall Service-
Oriented Medical Device Architecture (SOMDA) and defines
the binding between the previous two standards. Fig. 2 shows
the interaction of the new standards and the integration into the
whole communication stack. While the focus of the established
IEEE 11073 standard family is on interconnection of two

medical devices, IEEE 11073 SDC focuses on systems of
multiple networked devices, using a SOA-based approach.

Although the standardization process is not completely
finished, there were already several efforts on implementations
of IEEE 11073 SDC compliant middleware stacks. Currently,
three implementations are available as open-source projects:
SoftICE, openSDC, and OSCLib. The IEEE 11073 SDC bases
on DPWS and the usage of existing DPWS frameworks as,
e. g. the widely-used JMEDS framework [4] is reasonable.
JMEDS as well as many web services frameworks are im-
plemented in Java with the focus on productivity. Therefore,
SoftICE and openSDC are developed in Java and make use of
JMEDS. The third library, OSCLib, is implemented in C++.
As such frameworks are complex software projects, this paper
omits a detailed description, but can be found in [5] focused
on OSCLib.

The requirements for the middleware stacks in terms of
latency, reliability, determinism, etc. depend on the actual med-
ical use case. They vary from no over soft real-time up to hard
real-time requirements and timing constraints from seconds
down to sub-milliseconds. Thus, in this paper we investigate
the latency of the available service-oriented medical com-
munication stacks. These implementations are currently not
intended to be used for approved medical devices. Therefore,
the focus of this paper is a general evaluation of the suitability
of the underlying concepts by examining the frameworks,
investigating the communication behavior, and identifying
problems that will support future developments. We conduct a
use case independent communication stack evaluation. As the
available libraries are prototypes without quality assurance,
we do not take other important characteristics into account
like usability, documentation, support, or release stability.

II. EVALUATION SETUP

A. Testbed

We perform the measurements in an isolated testbed con-
taining one service provider and one service consumer, as
displayed in Fig. 1. Both are connected using a D-Link
DES-1008D 100 Mbit/s Fast Ethernet Switch and 1 m CAT5
Ethernet cables. Additionally, a control PC is used to start
the measuring procedure and collect the measured timestamps



TABLE I: Overview about used evaluation platforms. Timer Res.: Minimal period between two timestamps in C++ and Java.
*64 MByte reserved for GPU; **due to Raspbian limitations it behaves like 32 bit ARMv7

PLATFORM ARCHITECTURE CPU CLOCK
RATE

TIMER
RES.

RAM DISTRIBUTION JVMS

Intel Galileo Board
(GBoard)

32 bit x86 (Intel
Pentium-class)

Intel R© Quark
SoC X1000

400 MHz 5 · 10−3 ms 256 MByte Debian
GNU/Linux 8.4
Jessie (Kernel
3.8.7)

Oracle JVM
1.8.0_131 Oracle
JVM 1.7.0_80
OpenJDK 1.8.0_131
OpenJDK 1.7.0_101

Raspberry Pi 1
Model B (RPi 1)

32 bit ARMv6 ARM1176JZF-S 700 MHz 1 · 10−3 ms 512 MByte* Raspbian
GNU/Linux 8.0
Jessie Lite (Kernel
4.4.50-v7)

Oracle JVM 1.8.0_131
Oracle JVM 1.7.0_75
OpenJDK 1.8.0_40
OpenJDK 1.7.0_131

Raspberry Pi 2
Model B V1.1 (RPi 2)

32 bit ARMv7 ARM Cortex-A7 900 MHz 6 · 10−4 ms

1024 MByte*
Raspberry Pi 3
Model B V1.2 (RPi 3)

64 bit ARMv8** ARM Cortex-A53 1200 MHz 5 · 10−4 ms

after the data exchange has finished. During the measurements,
the control PC is physically separated from the actual testbed
by unplugging the connecting Ethernet cable. The isolation
from other network participants has the advantage that mid-
dleware related latencies can be measured without dealing with
problems like network overload, packet loss, etc. We use static
IPs for the devices hosting the service consumer and provider.

B. Evaluation Platforms

The measurements are performed on different hardware
platforms, shown in Tab. I. We have chosen a set of hardware,
covering two different instruction set architectures (ARM and
x86) and different classes of computation power and mem-
ory resources. These platforms represent the heterogeneous
devices within operating rooms (ORs) and intensive care
units (ICUs). In the focused Point of Care (PoC) medical
device domain, the constraints in terms of computation power,
memory, power consumption, etc. are not as high as in other
domains. Thus, we state that Intel Galileo Board (GBoard) and
Raspberry Pi 1 Model B (RPi 1) are suitable representatives.

For a comparison of the available IEEE 11073 SDC imple-
mentations (see Section II-C) it is necessary to provide suitable
Java Virtual Machines (JVMs). As the Oracle JVM and the
OpenJDK have the highest market share, we investigate both
JVMs for Java 7 and Java 8. Due to security reasons, Java
should be up-to-date. Thus, we use the currently newest stable
release version of each JVM. For details see Tab. I. Note,
during our evaluation, we noticed that performance disparities
can occur even between minor JVM updates providing only
bug fixes and security updates.

Unless stated otherwise, we used default platform settings
for our investigations, e.g., JVM-mode (-client) or default

Service 
Provider

Service 
Consumer

Control PC
Fig. 1: Physical testbed setup.

settings of the CPU governor (ondemand) for RPis (frequency
scaling of GBoard is not provided).

C. IEEE 11073 SDC Implementations

For the evaluation within this paper three different imple-
mentations of the new IEEE 11073 SDC standard family come
into question. These software libraries are made available as
open source projects: openSDC (Java), SoftICE (Java, requires
Java 8), and OSCLib (C++). Commercial implementations are
currently not available on the market. Note, as IEEE 11073
SDC uses a new communication paradigm, other IEEE 11073
frameworks, like Antidote using IEEE 11073-20601, are not
compatible.

We evaluate the following library versions: OSCLib
2.0 [6], openSDC version “OR.NET-BETA_06-SNAPSHOT-
conhit16” [7] (based on [8]), and SoftICE 0.96b [9]. Note,
these are not necessarily the latest available versions. As the
IEEE 11073 SDC standard family is currently in the process
of standardization, it is not fully stable yet. Therefore, we
use the last versions of the libraries being fully compatible
among each other. Based on these versions, comprehensive
demonstrators have been shown with the complexity of
modern ORs, for example at the conhIT exhibitions 2016
and 2017 in Berlin, Germany.

III. MEASUREMENT METHODOLOGY

A. Communication Round Trip Time (RTT)

In IEEE 11073 SDC, and in SOAs in general, there are
two different communication patterns: request-response and
publish-subscribe. In the request-response pattern, the service
consumer invokes a provided service operation of the service
provider (request) and gets the corresponding answer from the
service provider (response). The get-service works according
to this pattern. If the service consumer wants to get informed
about state changes of the service provider periodically or
episodically (whenever a state changes), the service consumer
subscribes to events provided by the service provider. The
latter will publish the corresponding events to the subscribers
when its state has changed or after a certain period. IEEE
11073 SDC uses this publish-subscribe pattern for events and
alerts. As remote control operations in the medical domain
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Fig. 2: Timestamps to instrument the libraries.

are not performed as “fire and forget”, set-operations are
handled as a combination of both mechanisms: Simplified,
after the service consumer has invoked a remote control
command, it gets informed about the result of the invocation
by asynchronous event mechanisms.

In this paper, we investigate the latency of get-operations,
by measuring the Round Trip Time (RTT) from invoking a
get-operation, until the response is available. More precisely,
according to Fig. 2 the RTT is defined as follows:

RTT = t6 − t0 (1)

The first timestamp t0 is taken when the application software
of the service consumer calls the corresponding invoke method
of the middleware Application Programming Interface (API).
The measurement stops when the responded value is available
at the application software of the service consumer to be
displayed or processed, represented as timestamp t6.

Since measuring the RTT takes place only at the service
consumer, we do not have to care about time synchronization
of service consumer and provider. As described above, set-
operations behave quite similar.

Measuring the latency for asynchronous and uni-directional
event-based communication requires either time synchroniza-
tion between service provider and consumer or using the
HTTP status response of the client. The latter would be
equivalent to investigate get-operations. As events use the
same technical mechanisms as get-operations and the behavior
can be derived from investigating get operations, we omit
events in this work.

B. Middleware Instrumentation

Measuring the RTT provides information about the overall
performance of the investigated system. In order to get a
deeper understanding of the elapsed times in all parts of
the communication we instrumented the different middleware
libraries by taking additional timestamps: t1 to t5. Fig. 2
visualizes the simplified instrumented communication stack
of service provider and consumer. Using external tools like
wireshark/tshark is not suitable, as the computation overhead
on resource-constrained systems has a high performance ef-
fect, e.g., SoftICE library on RPi 1 shows an increased RTT
of ~ 17 %.

Timestamp t0 is taken directly before the vendor/device
specific application of the service consumer invokes a request
by calling a corresponding middleware API function. After-
wards, the middleware software creates the request message,
including serialization, and sends the message to the lower
layer. Directly before the whole message is sent, timestamp
t1 is taken. Taking additional timestamps in the lower layers
(TCP/IP and below) is not possible using the software under
our control and would cost much effort. The message can be
transmitted using any IP-based network. In our case, we use a
100 Mbit/s switched Ethernet connection. The next timestamp
is taken at the service provider at the border between the un-
derlying layer and the middleware software. As the header has
to be read to decide whether the incoming message has to be
handled, we define timestamp t2 as the point of time, when the
middleware has received the header of the request message, but
has not started to handle the message body. The middleware
deserializes and interprets the message. All IEEE 11073 SDC
middleware implementations under investigation do the metric
value provisioning on their own, i.e., the application pushes
new values to the middleware but is not called during requests.
Therefore, the provider application is not touched. Timestamp
t3 is taken, when the requested metric state has been found.
This is the point, where request handling is finished and
the response creation starts. Corresponding to timestamp t1,
t4 is taken immediately before the middleware commits the
complete response message to the lower layer. Afterwards,
timestamp t5 is taken when the header of the response message
has been received by the middleware software of the service
consumer, analogous to t2. The measurement is finished when
the requested value becomes available at the application on
service consumer side, represented by timestamp t6.

1) Delay Calculation: In addition to the RTT calculation
given in Eq. 1, the following sub-delays can be defined: service
consumer middleware request delay (δReqCon), service con-
sumer middleware response delay (δRespCon), service provider
middleware request delay (δReqProv), service provider mid-
dleware response delay (δRespProv), as well as the summed
service consumer middleware delay (δConMiddle), and service
provider middleware delay (δProvMiddle).

δReqCon = t1 − t0 δReqProv = t3 − t2

δRespCon = t6 − t5 δRespProv = t4 − t3 (2)
δStack = RTT − δReqCon − δRespCon

− δReqProv − δRespProv

The fraction δstack expresses the delay of the transmission
of request and response messages between the two middleware
instances of service consumer and provider and its calculation
is presented in Eq. 2.

2) Accuracy and Comparability: The timestamps t1 to t5
are taken within the IEEE 11073 SDC middleware imple-
mentations. These implementations are quite complex and
use other third-party libraries. Therefore, it is not possible to
determine exactly the same defined measurement probe points
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Fig. 3: “Tukey boxplots” (box represents range between 25%-quartile and 75%-quartile; median marked as horizontal line within the box; whiskers (vertical line
above and below the box with horizontal line at its end) represent lowest/highest value still within the 1.5 interquartile range (IQR) ) of the RTT measurements
for combinations of libraries, hardware platforms, and JVMs. Y-axis is cut to 500 ms; number of not displayed values is denoted as #cut. Each box represents
40,000 measurements (aside from omitted values above 500 ms) including all aspects described in Sec. IV. For uncut figure see [10].

in each middleware library. Nevertheless, the probing seems
to show decent timings of the examined parts to get a well-
informed estimate about the delay portions in all middlewares.

C. Measurement Procedure

For our latency evaluation we performed 40,000 measure-
ments for each combination of middleware library, hardware
platform, and JVM, i. e., each calculated median, standard
deviation, etc. is based on 40,000 values. In our standard setup
we implemented an inter-measurement delay of 20 ms, i. e., a
sleeping period between timestamp t6 of run n and timestamp
t0 of run n + 1. For the basic evaluations this results into
1,120,000 measurements, each producing seven timestamps.
Additional measurement series were performed, e. g., to inves-
tigate the effect of XML schema validation (Section IV-A) or
the effect of Java just-in-time (JIT) compiling (Section IV-D),
resulting in 400,000 additional measurements.

D. Resolution and Technical Realization of Timestamps

Taking the timestamps described previously in this sec-
tion is done using the mechanisms provided by the imple-
mentation languages of the IEEE 11073 SDC middleware
libraries. We use the method java.lang.System.nanoTime() to
take the timestamps of openSDC and SoftICE library and
std::chrono::steady_clock class for the C++ library OSCLib.
Regardless of the formal definition of corresponding timer
methods, we experimentally determined the minimal timer
resolutions for all platforms as shown in Table I. The worst
resolution is 0.005 ms. Therefore this resolution is suitable as
the measured RTTs are in the range of tenth of milliseconds.
Consequently, we present milliseconds measurements with a
resolution of one fractional digit in this paper.

E. Traceability

All measured raw data, the instrumented middleware li-
braries, and the used implementations of service consumer and
provider can be found at [10].

IV. EVALUATION

A. Evaluation of RTT Measurements

An overview about all measured RTT values in milliseconds
is given in the Fig. 3. Note, we cut the y-axis at 500 ms and
omit RTT values above to ensure readability. The number
of omitted values which is only a marginal fraction of all
measurements, is annotated at the x-axis labels. The complete
figure can be found at [10]. We group the measurements by
the different IEEE 11073 SDC communication libraries and
further divide them into sub-groups by the different hardware
platforms. A “Tukey boxplot” is shown for each combination
of library, hardware platform and JVM.

The (sometimes huge) differences of RTT latencies be-
tween the different JVMs running on the same hardware
platform hosting the same middleware implementation can
be seen clearly. For example, comparing the median RTTs
of openSDC, running on a RPi 1, using the JVMs Open-
JDK8 (325.0 ms) and Oracle7 (24.7 ms) shows a difference
of factor greater than 13. For the RPis, having an ARM
architecture, it can generally be seen that the Oracle JVMs
perform significantly better than the OpenJDK JVMs. This
behavior shows that Oracle has been optimizing the ARM
implementation of its closed source JVMs in comparison
to the open source reference OpenJDK. One of the main
differences is the absence of a highly optimized JIT compiler
for the ARM architecture in OpenJDK. There are ambitions
to port a JIT compiler equivalent to Oracle HotSpot, which is
maintained in [11]. However, the OpenJDK version available
in Raspbian does not provide this JIT. In its standard options,
an interpreting mode JVM called zero is used.

Comparing RPi 1, 2, and 3 using openSDC and SoftICE
the percentage difference between the JVMs decreases with
increasing system capabilities. While the median RTTs do
not vary much between Oracle 7 and Oracle 8 JVM, for the
openSDC library running on the different RPis, the Oracle 7
JVM reveals the best performance. As SoftICE requires Java 8,
Oracle 8 JVM has the lowest RTTs on the ARM architectures.



TABLE II: RTT measurement results for the standard schema validation configuration. Values in parenthesis are the results with schema validation for both
incoming and outgoing messages. Results using the JVM with best performance for each system are displayed: 1OpenJDK8; 2Oracle 7; 3Oracle 8

Galileo Pi1 Pi2 Pi3
openSDC1 SoftICE1 OSCLib openSDC2 SoftICE3 OSCLib openSDC2 SoftICE3 OSCLib openSDC2 SoftICE3 OSCLib

Median [ms] 30.3 (39.2) 24.9 (46.2) 35.4 24.7 (33.7) 42.1 (86.1) 23.5 12.6 (17.0) 17.4 (30.5) 11.7 8.8 (12.2) 9.8 (21.6) 8.8

Std.Dev. [ms] 20.4 (27.4) 25.5 (37.0) 0.3 10.5 (12.8) 11.8 (15.7) 0.3 5.9 (7.0) 4.9 (6.8) 0.3 4.4 (4.7) 4.1 (6.0) 0.1

Max [ms] 1784.9
(1458.2)

1194.4
(1339.8)

38.7 1228.9
(1313.4)

859.5
(1001.6)

25.3 630.4
(676.8)

385.5
(854.9)

14.4 397.6
(419.8)

292.0
(803.9)

21.9

As the GBoard has an x86 CPU, we get a different picture.
Although the differences are not as obvious as for the RPis, it
can be seen that the OpenJDK 8 has the best RTT performance
on this platform. As the OpenJDK includes a JIT implemen-
tation, which was derived from earlier Oracle JVM versions,
small differences seem reasonable. Furthermore, it seems that
Oracle’s optimizations focus rather on high performance x86
platforms and therefore may be less effective for the resource
constrained GBoard.

For the OSCLib we used only the standard C++ envi-
ronment based on the default gcc versions available in both
distributions. According to the increasing CPU clock rate, the
measured RTTs decrease from GBoard, over RPi 1, 2, and 3.

In Table II we present median, standard deviation (Std.Dev.),
and maximum value for the different RTT measurements. In
contrast to Fig. 3, we grouped this table by hardware platform.
To reduce the amount of data displayed, we just present the
measurements taken with the best performing JVM and omit-
ted the values of the other JVMs. There are different standard
configurations concerning XML schema validation within the
three libraries: The OSCLib does a schema validation for
every incoming and outgoing message. There are no options
implemented to change this behavior. The openSDC library
performs a schema validation for every incoming message,
but not for outgoing messages by default. This behavior can
be changed by the usage of a JVM flag. On the contrary,
applications using the SoftICE library typically do not val-
idate any message schema, but an API call is provided to
activate full schema validation. To ensure a fair comparison,
we additionally performed the measurements for openSDC
and SoftICE with schema validation for each incoming and
outgoing message, as it is done by OSCLib. These results are
displayed in parentheses in Fig. 3.

As measured by the median RTT (with schema validation),
the C++ implementation OSCLib has the best performance,
closely followed by openSDC. While there is a clear difference
to SoftICE on the RPi 1, the gap decreases with increasing
resources on RPi 2 and 3.

Unexpectedly, on the GBoard, the difference between the
libraries is much smaller, e. g., factor ~1.2 between SoftICE
and openSDC, compared to factor ~2.6 at RPi 1 or ~1.8 at
RPi 2 and RPi 3. For the measurements with standard schema
validation the rank even changes and SoftICE has the best
performance although openSDC and OSCLib have a better
performance with the same configuration on the RPis. This
shows that the software latency on the platforms with more

resources (like the RPi 3) tends to be more dominated by other
factors than the algorithmic complexity, i.e., the latency of I/O
operations caused by the JVM implementation or operating
system. Since the GBoard has a lower computation power
than the other platforms, the algorithmic complexity has a
greater impact and the OSCLib with schema validation for
all messages reveals the highest latency.

Schema validation has a significant impact on the perfor-
mance. For SoftICE the delay increases by factor ~1.8 – 2.2.
In the case of openSDC the growth is lower (factor ~1.3 – 1.4)
as schema validation is only added for outgoing messages.
Whether it is necessary to perform schema validation for all
messages, incoming messages, or no messages, has to be dis-
cussed according to the use case and risk management of the
manufacturer that is necessary for the different applications.

B. Standard Deviation and Outliers

The latency evaluation of communication middleware im-
plementations cannot be reduced to the median RTT. Depend-
ing on the application, variance/standard deviation and maxi-
mum latency are important additional parameters to evaluate
whether a system performs well or not. Therefore, we present
the standard deviation as well as maximum RTT values in
Tab. II. Additionally, the boxplots of Fig. 3 illustrate the main
aspects of the measurement value deviation.

1) C++ Implementation: The C++ library OSCLib has a
small standard deviation. Except for the RPi 3, the maximum
RTT value is less than 3.5 ms above the median. The clear
outliers (in terms of percentage) might be results of non-
deterministic delays caused by the operating system. This
could be fixed by using a real-time capable operating system.

2) Java Implementations: Due to garbage collection (GC)
of JVMs, the Java implementations have a much higher
standard deviation than the C++ implementation, especially
when running on the more resource-constrained GBoard and
RPi 1. The effect of GC is traced in Fig. 4. To provide a
deeper analysis of the results, we choose the openSDC library,
running on a RPi 3, using Oracle 7 JVM. The discussed aspects
can be transferred to all Java-based measurements.

In Fig. 4 we present a comparison of a small subset of
RTT measurements. Firstly, we will discuss the measurement
series represented by green dots, each representing one RTT
measurement using standard GC mechanisms. The GC can be
investigated by starting service consumer and provider using
JVM parameters to display GC information, like -verbose:gc
(for basic information). This additional output shows, that the
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Fig. 4: Latency characteristics of different GC strategies. Subset of measure-
ments is shown, excluding aspects discussed in Sec. IV-D.

GC is started on service consumer and provider with different
but nearly constant periods. As Java GC is mostly triggered
by memory pressure, the periods can change unpredictably.
Nevertheless, these investigations give us strong evidence that
the measurements marked with orange circles are influenced
by GC at the service consumer and the measurements marked
with red circles are influenced by GC at the service provider.
These highlighted measurements are moderate outliers. The
two frequencies of GC at service consumer and provider can
be followed in the chart. All of the JVMs under investigation
use a two phase GC when started with standard options. In
addition to the “normal” GC, which mostly collects short-
living objects, a so-called Full GC takes place and tries to
clean objects in the whole heap memory. Also the point of time
where a Full GC occurs is hardly predictable. As it suspends
the execution significantly longer, it causes massive outliers as
marked with the dark green star (top left of Fig. 4). In this case,
measurement number 17,635 has the maximum RTT value of
397.6 ms.

Standard JVMs provide only very limited possibilities to
cope with the non-deterministic character of the GC. Accord-
ing to the documentation, calling the method System.gc() is
a “suggestion” to the JVM to perform a (full) GC. There is
neither a guaranty that the GC is performed at the moment the
method is called, nor that it is performed at all. Nevertheless,
we implemented an extension to openSDC service consumer
and provider, breaking the measurements and triggering the
GC manually. After triggering the GC there is a waiting period
of one second before the next measurement is performed.
For this investigation, we suggest performing an GC every
25 measurements. The result is visualized by the blue dots
in Fig. 4. As there are no blue outliers, it can be recognized
that no GCs take place, beside the ones explicitly triggered.
This series of 40,000 measurements has the following char-
acteristics: median RTT: 5.5 ms; standard deviation: 1.8 ms;
maximum value: 34.5 ms (this high maximum value is caused
by the JIT compiler, as described in Section IV-D).

Having a look at the whole amount of measurements it
can be stated that no Full GC has taken place and that no
or only a very limited number of unplanned GCs occurred.

(Due to limited space in this paper, the whole deviation of
RTT values is not displayed and, to ensure readability, Fig. 4
shows only a subset of all measurements.) In another run
we have seen a single outlier within a measurement using
the described mechanism of periodic GC triggering. This
underlines the non-deterministic character, as this outlier can
be caused either by an additionally performed Full GC by the
JVM or by a GC taking a longer time than the configured
sleeping period between the measurements after the GC has
been triggered. This small experiment shows that triggering
the GC from application code can only give hint that it is
possible to improve predictability of execution times of Java
applications. The initial memory management can also have
a positive effect. For this paper, we only used the JVM
standard configuration concerning initial memory size. As
broadly discussed in the Java developer community, triggered
GC, as we have experimentally performed, could have serious
disadvantages.

Additionally, there is a need of a predictable amount of time
depending on the activity of the software running on the JVM,
while no other task needs to be run. Otherwise, the manually
triggered GC will needlessly suspend the application, as a Full
GC takes longer as a normal GC and is usually not needed
as often. Unfortunately, the standard Java API only provides
a trigger to run Full GC. Whether reserving time for GC is
possible or not depends on the application scenario and cannot
be decided in general.

To really cope with this issue, a dedicated real-time JVM
has to be used and the implementation should follow the
Real-Time Specification for Java (RTSJ). Konieczek et al. [12]
have shown a real-time capable implementation of the Con-
strained Application Protocol (CoAP) based on Java. CoAP
is another Internet of Things (IoT) middleware specification
roughly comparable to DPWS that is the base technology of
IEEE 11073 SDC. Additionally, a real-time capable operating
system has to be used to ensure deterministic delays. As
mentioned earlier, this is a general requirement, independent
from the way the middleware is implemented (Java, C++, etc.).
Concluding the work in [12] and our experimental results,
we state that a deterministic middleware implementation is
possible using Java.

C. Breakdown of RTT

As described in Section III-B the RTT is composed of
different sub-latencies. Fig. 5 presents the percentage deviation
of the delays taking place during the different phases of
the communication: Request creation at service consumer
middleware (δReqCon), request handling at service provider
middleware (δReqProv), response creation at service provider
middleware (δRespProv), and response handling at service
consumer middleware (δRespCons). Additionally, there is the
phase between the middleware (δStack), containing the HTTP
implementations and TCP/IP stacks of both participants as
well as Ethernet transmission time, including switch delay.
As we use a Fast Ethernet switch in store and forward mode
and an upper bound of 30µs for the switch delay as measured
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in a previous work at our institute [13], we roughly determine
an upper bound of 300µs for plain Ethernet transmission. As
shown in Table II, this relatively small, mostly constant delay
ranges from 0.3 % to 3.4 %. All other δStack components are
highly platform dependent.

The different parts of the bars within the chart are grouped
by phases taking place at the service consumer (dark and light
blue) and at the service provider (dark and light green) and
they are not displayed in the order they have taken place during
the communication. We present the results for all libraries
and all hardware platforms with each using the JVM with
the best performance. As already discussed, for a detailed
comparison the different configurations concerning schema
validation have to be taken into account. Therefore, we also
added the measurements with enabled schema validation for
SoftICE into Fig. 5, labeled as SoftICE-SV.

It can be recognized that the time elapsing during the
processing of the middleware is much higher than the time
elapsing in the lower communication stack layers and the
network transmission (δStack). The percentage of δStack in
case of openSDC and OSCLib is less than 15 %. For SoftICE
the portion is higher. The ration of processing time defers with
schema validation, as the schema validation takes a significant
period of time (see also Tab. II.) When using SoftICE with
schema validation, the percentage is less than approximately
20 %. We draw the following conclusion from these results:
For optimizing the latency of the communication system, the
main focus should be on optimizing the middleware, as the
main period of time elapses here. Looking at the difference
between SoftICE and the other two libraries concerning the
percentage of δStack, the performance of the used HTTP
implementations should be investigated.

It can be seen that the latency caused by service consumer
and provider is approximately equal for SoftICE and OSCLib.
In the case of openSDC, it can be recognized that the delay
caused by the service provider is much lower than the delay
caused by the service consumer: approximately a factor of
3 to 4.5. As service providers are typically more resource-
constrained than the service consumer, care was taken during
the development of IEEE 11073 SDC that the service con-
sumer can be as simple as possible with respect to medical
safety issues. On the one hand, it could be inferred that
therefore greater efforts were made on service provider side
by the openSDC developers. On the other hand, there seems
to be space for optimization at the service consumer side.
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Fig. 6: Time dependent latency progression. Each dot: median of 100 values.
First 5,000 of 40,000 measurements shown.

D. Analysis of RTT Values Over Time

To investigate the performance of the middleware imple-
mentations we also analyzed the change of measured latency
values over time. For the C++ implementation OSCLib the
values just vary around the median, as expected and already
discussed. Having a deeper look into the Java implementations
openSDC and SoftICE, a huge influence of the Java just-in-
time (JIT) compiler can be seen. As a representative Fig. 6
shows the change of RTT values over time for the SoftICE
library running on a RPi 3 using Oracle 8 JVM. This analysis
is transferable to the other platforms, if also a sophisticated
JIT is used, as generally in the Oracle JVM and in the x86
implementation of OpenJDK.

Each dot in the chart represents the median RTT of an inter-
val of 100 measurements. On the x-axis the intervals [1:100]
to [4901:5000] are plotted, which represent measurements
in the warm-up phase. Afterwards, there are no significant
changes in the behavior. The red dots represent the standard
configuration of our measurement setup: 20 ms delay between
the single measurements and standard configuration of the
JVM. To get a better overview, we added a smooth line to
the chart. A significant reduction of the median RTT values
of the intervals can be seen from the start of measurements
approximately until 2,500 measurements. During this time the
values decrease by factor ~2.5. We investigated the memory
management of the JVM. As the used functional parts stay
the same over time and the GC will mostly have no de-
creasing time effort, the reason for this behavior is the JIT
compiler and its optimizations. JIT compiling means that the
JVM starts running applications by interpreting the bytecode.
During runtime critical parts of the code will be identified
and will be compiled. Running compiled code is typically
faster than running interpreted code. The observed issue is
that the JIT compiling causes a “warm-up phase”, which is a
well-known behavior of Java applications. A significant long
period of ~2,500 exchanged request/response messages for the
optimization is surprisingly long and has to be taken into
account for real-world applications. A reason for this behavior
could be the complexity of IEEE 11073 SDC middlewares and
their complex optimization process. Another explanation could
be, that it takes fairly long for the JIT to identify all routines in
the critical path of the middleware to trigger the compilation.

Our analysis that the increasing performance is caused by
the JIT compiler is supported by the green dots and smooth



line in Fig. 6. The green part presents the median RTT values
of the intervals of a length of 100 using the same measurement
setup with 20 ms delay between the single measurements but
starting the JVM using the flag “-Xcomp”. This flag forces
the JVM to compile the whole code during startup of the
application. No JIT compiling is done during runtime. Nearly
constant median RTT values can be seen over time. Typically,
it is not recommended to use the -Xcomp flag as the startup
process becomes longer (in this case from ~6 s to ~13 s) and no
further optimization happens during runtime. This can be seen
on the long run: Comparing the red and the green graph it can
be seen that RTT is slightly higher using the -Xcomp flag than
using the JIT compiler. For the whole 40,000 measurements
the median RTT using JIT compiler is 9.8 ms, for -Xcomp flag
usage it is 10.1 ms. Whether precompilation should be used or
not has to be decided according to the concrete application and
its requirements.

Additionally, we performed a measurement using a longer
delay between the single measurements of 1,000 ms. The
results are shown by the blue dots in Fig. 6. It can be seen
that the JIT compiling works significantly worse compared to
an inter-measurement delay of 20 ms. The median RTT values
are ~2.5 times higher. For the whole 40,000 measurements
the median RTT is 25.0 ms. This shows that the JIT does
not perform as well as it does for a higher communication
intensity. Thus, we draw the conclusion that the behavior
and efficiency of the JIT compiler unexpectedly has a strong
dependence on the amount and frequency of exchanged data.
This has to be taken into account for real-world medical
applications, as the traffic patterns may vary heavily.

V. RELATED WORK

There exist studies like [14], which support our methodol-
ogy regarding differentiation between JVMs, JIT compiling,
and GC tuning, but this meta study focuses on x86 architec-
tures and synthetic benchmarks on older JVMs. Also many
non-scientific reports reflect performance dependencies also
for ARM architectures as, e. g., Oracle’s comparison in [15].
However, it is not as systematic as the presented measurements
and it does not include Java 8 virtual machines. Since the
fairly recent nature of the implementations of IEEE 11073
SDC middlewares, to the best of our knowledge, there exist no
other performance studies focused on actual implementations
of a middleware in a similar setup.

VI. CONCLUSION AND FUTURE WORK

In this paper we presented latency measurements for
service-oriented medical device communication middleware
implementations being compliant to the new IEEE 11073
SDC family of standards. Therefore, we investigated the three
currently available middleware stacks: openSDC, SoftICE,
and OSCLib. We like to conclude the paper by deriving the
following theses from our investigations:
Conclusion 1: All investigated IEEE 11073 SDC compliant
communication stacks substantiate both their applicability and
the adequacy of the new communication concept.

Conclusion 2: The performance of one and the same Java-
based middleware implementation highly depends on the com-
bination of hardware platform, used JVMs, JVM configuration,
and traffic pattern. For each particular medical device and
its application, an adequate system configuration has to be
profiled. General recommendations are not possible.
Conclusion 3: For Java libraries, the traffic pattern and com-
munication intensity have a high influence on the JIT compil-
ing and therefore on the communication latency.
Conclusion 4: Validation of the complex IEEE 11073-10207
XML schema has a strong impact on the middleware latency.
Conclusion 5: Relating to the overall communication latency,
the main field for improvements is the concept and implemen-
tation of the middleware (mainly on application layer), as this
part causes the main portion of latency.

As we performed a generic evaluation, the results have to be
judged related to a particular medical application scenario. In
the future, traffic patterns should be derived from real medical
device ensembles for deeper performance analyses based on
realistic communication scenarios. Additionally, the available
libraries can be enhanced based on the presented results, like
reducing latency and improving real-time capability.
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