
An Approach for Precise, Scalable, and Platform
Independent Clock Synchronization

Henning Puttnies, Dirk Timmermann
University of Rostock

Institute of Applied Microelectronics and Computer Engineering
18051 Rostock, Germany

Tel./Fax: +49 (381) 498-7277 / -1187251
Email: henning.puttnies@uni-rostock.de

Peter Danielis
ACCESS Linnaeus Center, School of Electrical Engineering

KTH Royal Institute of Technology, Stockholm, Sweden
Email: pdanieli@kth.se

Abstract—Clock synchronization is an important issue in wired
and wireless networks as a common time basis is essential for
coordinated activities of nodes in distributed systems. Typical
applications demanding precise synchronization are Industrial
Internet scenarios having real-time constraints, Wireless Sensor
Networks (WSNs) where the nodes communicate only for a
short period and can sleep the remaining time to save energy,
approaches based on Time Division Multiple Access (TDMA),
and distributed measurements. The basic idea of our approach
is to estimate all delays in a network. As a result, we can estimate
the one-way delay between a reference node and all other nodes
in the network. Consequently, we can use broadcast messages to
synchronize the entire network. Utilizing a novel measurement
method and a Java prototype implementation, we show that our
approach achieves a high precision (≈ 123 µs). Furthermore, it is
highly scalable and platform independent. As our synchronization
approach operates at the application layer it is suitable for both
wired and wireless networks.

Index Terms—Synchronization, Internet of Things, Industrial
Internet, Quality of Service, Network Latency

I. INTRODUCTION

Clock synchronization, which is the provision of a common
time basis, is crucial for coordinated activity in distributed
systems: in Industrial Internet scenarios (Smart Factory, Smart
Power Plant), where hard or soft real-time constraints must be
met, a precise common time base is essential for an accurate
action of distributed systems composed of sensors and actors.
Furthermore, in Wireless Sensor Networks (WSNs), if the
communication follows a fixed schedule all sensors that do
not communicate at a specific point in time can fall into
sleep mode and save valuable energy [1]. Additionally, a
precise synchronization is important for all communication
approaches based on Time Division Multiple Access (TDMA)
as well as distributed measurements, where every sample that
is measured by a specific sensor needs an exact timestamp to
be comparable to samples from other sensors.

The Network Time Protocol (NTP) and the Precision Time
Protocol (PTP) are the established standards for clock syn-
chronization. NTP is implemented in Software, but is not
very precise (approx. 1 ms) [1]. PTP can reach a higher
precision (< 1 µs), needing specialized HW. As based on
hardware timestamps is it highly platform depended to reach

this precision. Software implementations of PTP have much
lower precisions [2].

Our approach bases on two considerations: the first con-
sideration is that the estimation of the delay between two
nodes N0 and N1 in a network and the synchronization of
these nodes are equivalent problems. If we know the delay,
we can take a timestamp0 at node N0, transmit it to node
N1 and adjust the local clock of node N1 by a value that
equals timestamp0− delay. On the other hand, if two nodes
are perfectly synchronized we can send a timestamp0 from
node N0 to node N1 and take a second timestamp1. The
delay between N0 and N1 equals timestamp1−timestamp0.
The second consideration is that various unknown parameters
compose the delay between two nodes. We can distinguish
between software-introduced delays (e.g., packet processing
on nodes) and hardware-introduced delays (e.g., packet pro-
cessing in switches, propagation delays on wires). Whereas
[3] describes that the software delays are variant and hard
to estimate, we can assume that the hardware delays are less
variant and much smaller (e.g., the delay in a switch is lower
than 50 µs according to [4]).

Based on this considerations, we developed an algorithmic
approach that reaches high precision, even though it is im-
plemented in software, because it utilizes an estimation of
the software delay. Moreover, our approach reaches a very
good scalability, because the delays in the network need to
be estimated only once and the synchronization as well as
every resynchronisation can use one-way delays. This is a very
strong point, as every network needs to be resynchronized after
a specific period of time that depends on the precision of the
clocks of the nodes [5]. The procedure of our approach is as
follows:

1) Determination of the hardware delays in the network.
These delays can be determined by measurements or
from the specification of the switches as well as from
the network topology using the Simple Network Man-
agement Protocol (SNMP).

2) We estimate the software delay of every node in the
network by measuring several round-trip times (RTTs)
to get a sufficient system of equations. Hereafter, we can
estimate the software delay as a probability distribution.



3) We use the estimated delay for a synchronization based
on one-way messages using the estimated one-way de-
lay.

Compared to the state-of-the-art standards and research
approaches, our method has the following advantages:

Scalability: if several nodes in the network have the same
software delay (e.g., many identical sensors in an industrial
network), we can reduce the number of packets to a theoretical
minimum. There are no further delay estimations needed
for the synchronization or the resynchronization. Instead, the
reference node can use broadcast messages to synchronize all
other nodes. Furthermore, every node has to save only one
delay locally: the one-way delay between this node and the
reference node.

High Precision: compared to other software-based ap-
proaches we reach a very high precision of the synchroniza-
tion. In contrast to the state of the art, we can determine the
software delay of a single node. In addition, we present a
novel and very precise method to state the precision of our
synchronization approach.

Plattform Independence: the proposed approach is in-
dependent of the physical layer (e.g., Ethernet, WIFI) as
we estimate the introduced delays at the application layer.
Moreover, we consider the software delay of the higher layers,
which is important for latency-sensitive applications (e.g.,
Telemedicine). And finally, there is no need for expensive
additional hardware.

The remainder of this paper is organized as follows: Sec-
tion II introduces technical basics and established standards in
the field of clock synchronization. Section III describes related
research works. Section IV presents the proposed approach
followed by Section V elaborating experimental results and
their evaluation. Finally, we conclude the paper in Section VI,
and present directions for future work.

II. TECHNOLOGICAL BASIS

First, we will examine established standard protocols as well
as technological basis as clock synchronization is a vital filed
of research.

To allow for a precise synchronization among devices, the
IEEE 1588 Precision Time Protocol (PTP) has been developed,
which exists as both a hardware and a software version [2].
The PTP synchronization starts with determining, which of the
devices has the most stable and accurate clock by means of the
Best Master Clock algorithm (BMCA) and selects this device
as master. Then, reference times are sent to the slaves, which
compare them with their own time. On uniformly distributed
intervals, slaves respond with their own time references to the
master. From the differences of the answers, the master-to-
slave delay and the slave-to-master delay can be determined to
be able to synchronize devices. The hardware variant achieves
an accuracy of nanoseconds in the best case. However, the
main disadvantages of the hardware variant are that dedicated
hardware has to be available and time stamps are taken in
lower layers thereby ignoring the delay introduced by higher
layers. The existing software version takes time stamps in

the application layer and achieves an accuracy on the order
of microseconds with a hardware-supported master clock. As
opposed to our approach, this version is subject to several
hardware and software restrictions and hence cannot be con-
sidered as platform independent. Furthermore, solely the sum
of the software delays of two devices can be determined and
it is impossible to distinguish between the particular delays
contributing to the RTT.

The latter disadvantages applies to the Network Time Proto-
col (NTP) as well [6]. NTP represents a standard that enables
the synchronization of clocks on devices in a distributed
system. Again, the principle of reference clocks is used.
Clients send a packet to the server at certain points in time
and wait for the answer. From the time of arrival of the reply,
the packet RTT can be calculated. From it, the latency can be
estimated assuming symmetric propagation delays. In the pub-
lic Internet, an accuracy of better than 10 ms can be achieved
with this protocol. At network level, there exists a hierarchy
of participating servers leading to a hierarchical structure of
time references. Thus, the accuracy can be decreased due to
possible error propagation along this hierarchy.

Wu et al. survey developments for the clock synchronization
of WSNs by exchanging timestamps between sensor nodes [7].
More specifically, the authors introduce the fact that due to
the imperfections of the clock oscillator, a clock will drift
away from the ideal time even if it is initially perfectly
tuned. Thus, the relative clock offset keeps changing with
time and therefore the network has to perform periodic clock
resynchronization to adjust the clock parameters. Moreover,
the work discusses network-wide synchronization. As opposed
to the synchronization between a pair of neighboring nodes,
network-wide synchronization makes use of a hierarchical
structure such as a tree and the synchronization is performed
between adjacent levels of this hierarchy.

In [8], the authors investigate to which extent clock syn-
chronization is even feasible. Thereby, they consider clocks
at a constant but not necessarily identical speed. Each clock
is an affine clock characterized by its skew and an offset
with respect to a reference clock. To establish fundamental
impossibility results, the unknown parameters skew and offset
are considered to be constant time-invariant parameters. The
main finding is that the skews can be determined correctly
but the determination of all clock offsets and link delays is
impossible without further simplification.

III. RELATED WORK

In [9], the authors present an overview of IEEE 802.1AS,
which is part of a set of standards originally developed by the
Audio/Video Bridging (AVB) Task Group. In 2012, this task
group has been renamed as Time-Sensitive Networking (TSN)
Task Group. The focus of 8021.1AS is on exact timing and
synchronization, reservation of resources and traffic shaping,
and queuing as well as data forwarding. Basically, IEEE
802.1AS bases its synchronization on IEEE 1588 PTP, uses a
modified version of PTP’s BMCA, and achieves an accuracy
of ±500 ns relative to the grandmaster clock. Each port of a



so-called time-aware system measures the propagation delay
to its neighboring time-aware systems in a way, which is
mathematically equivalent to the manner the IEEE 1588 peer-
to-peer transparent clock transports synchronization. A time-
aware system is referred to as a bridge or end-station that
meets the requirements of IEEE 802.1AS whereby all bridges
and end-stations in the 802.1AS network are required to be
such time-aware-systems.

As the accuracy of skew and offset estimations, the stability
of the slave clocks as well as the exchange intervals of timing
information affect the synchronization performance, Giorgi et.
al analyze the effects and interplay of these factors in [10].
The objective is to show how these may impact the design of
an IEEE 1588 synchronization scheme. The analysis is based
on a state-variable simulation model, which has been shown to
be able to model specific aspects of clock behavior. Further, in
these models Kalman filters are useful for the implementation
of the clock servo. Although a Kalman filter may not always
be realizable due to possible limitations of PTP devices like
the availability of floating-point processing, such a solution
improves synchronization capabilities since it provides optimal
estimates in the presence of measurement noise.

In [11], various measures are analyzed to mitigate asym-
metric delays with IEEE 1588 PTP without protocol changes
and any additional messages. The author proposes to correct
timestamps to the reference node at each egress and ingress
port by the device driver. Their software approach cannot reach
the precision of a hardware timestamping approach but anyway
can almost eliminate the clock offset in a single-hop WLAN
synchronization systems.

Nilsson et al. present a statistically robust method for
passive clock synchronization in sensor networks [12]. To
measure delays, messages are time stamped at the measuring
node, transmitted to a central node, and time stamped there
again with respect to the central clock. The timing is then
estimated by means of exploiting the heavy tailed likelihood
function to neglect outliers. Contrary to a Kalman filter, the
synchronization becomes more precise this way as outliers
basically falsify the Kalman filter estimates. The approach
works fine for a sequence of measurements by excluding large
outliers but does not investigate measures to avoid a central
node as a single point of failure.

In [13], a protocol called PulseSync is presented, which
aims at synchronizing large-scale networks. This protocol
floods the network with rapid, short pulses to be able to have
a short initialization phase and to quickly adapt to changes
regarding topology or drift. Thereby, nodes minimize their
offset and skew towards a root node. It is shown that PulseSync
outperforms the de facto standard protocol Flooding Time
Synchronization Protocol (FTSP) for WSNs. However, the
authors mention that they have to improve the robustness
of their protocol as the root node constitutes a single point
of failure. Also, as timestamps are taken at the MAC layer,
no consideration of the delay introduced by higher layers is
possible.

Mallada et al. propose a network clock synchronization

protocol without the need for skew estimation in [14] and show
the protocol’s supremacy over some existing solutions like
NTP. Timestamps are based on the Time Stamp Counter (TSC)
that counts the number of CPU cycles since the last restart and
can provide the timestamp at the application layer. The time
measurements are then carried out using an improved ping
pong mechanism [15]. The algorithm uses the obtained current
offset information and an exponential average of past offsets to
avoid keeping track of long offset history and expensive com-
putations on them. However, the authors propose an algorithm
comprising estimations of the clock offset between every node
and the neighbors of this node. For a network of n nodes this
introduces at least n estimations (assuming every node has
only one neighbor) for every resynchonization. In contrast,
the time for resynchronizations based on our approach is
independent of the number of nodes in the network.

A major enhancement compared to the state of the art is the
scalability of our approach: in the existing protocols, for the
execution time T the following equation holds: T ∼ n (n =
number of nodes in the network), if all nodes are synchronized
with one reference node. Alternatively, T ∼ log(n), if we have
a tree structure, with many reference nodes. Nevertheless, in
a tree structure the error is also proportional to log(n) due
to error propagation. In contrast, our approach scales with m
(m = number of unique platforms, m ≤ n). Thus, we need
the time T ∼ m to estimate the software delays of all unique
platforms in the network only once. Hereafter, we can use
broadcast messages for synchronization and resynchronization.
Thus, we need a Time T ∼ 1 that is independent of the number
of nodes for every (re-)synchronization.

IV. APPROACH

The proposed synchronization algorithm bases on the es-
timation of all delays in the network. Afterwards, we can
estimate the one-way delay between the reference node and all
other nodes in the network. Considering the delays, especially
the software delay is variant and hard to estimate [3]. There-
fore, we will focus on the estimation of the software delay in
the following.

A. Generating a Solvable System of Equations

As shown in Figure 1, if we estimate the RTTs separately,
we cannot distinguish between the delay d0 of the node N0

and the delay d1 of the node N1 both contributing to the RTT.
In contrast, if we employ a system of equations, it is possible
to estimate every delay separately. This leads to a more precise
estimation as the software delay is variant. Therefore, we
estimate one probability distribution for the software delay
of a particular node as it is less complex to estimate one
probability distribution compared to the estimation of the sum
of two probability distributions.

Every node in the network has a particular transmission
delay dt as well as a particular receipt delay dr. To generate a
solvable system of equations, we assume that the transmission
delay dt of a node is equal to the receipt dr of this node. This
simplification is essential to get a solvable system of equations.



N0

N1N2 RTT2

d2

d2 d1

d1

d0d0N0

N1
d1

d0

RTT

Fig. 1. Estimating the delay of network nodes using one RTT (left) or a
system of equations (right)

Otherwise, it is impossible to determine all unknown param-
eters as shown in [8]. Furthermore, we can precisely state the
error that this simplification introduces. If we have n nodes in
the network, we need n independent equations for a system
of equations of rank n. Hence, we first measure the n − 1
RTTs between the reference node and the n − 1 other nodes
in the network. Thereafter, we measure one additional RTT
between two nodes where none of these nodes is the reference
node. Since the delay of every node contributes twice to every
RTT, we get the following system of equations for three nodes
(corresponding to Figure 1):RTT0RTT1

RTT2

 =

2 2 0
2 0 2
0 2 2

 ·
d0d1
d2

+

c0c1
c2

 . (1)

RTTx is the x-th RTT that is measured, dx is the delay of
the node Nx and cx is the approximately constant hardware
delay. For a network of n nodes, the system of equations is
as follows:


RTT0
RTT1

...
RTTn

 =


2 2 0 . . . 0

2 0 2
...

...
...

. . . 0
2 0 . . . 0 2
0 2 2 0 . . .

 ·

d0
d1
...
dn

+


c0
c1
...
cn

 . (2)

When we measure the constant hardware delay once, we can
precisely estimate the software delay of a particular device by
solving this system of equations.

B. Synchronization Procedure

We conduct the synchronization of all nodes in a network
by executing several steps:

1) We select a reference node N0. The easiest way to select
this node is to introduce a random initial sleep time
and select the node that awakes first as reference node.
An alternative way to select the reference node is using

a BMCA similar to PTP, which determines the node
having the most precise clock.

2) The reference node N0 estimates the RTTs to all other
nodes (N1,N2). As we assume that the software delay is
variant, the RTT is measured and estimated afterwards
(e.g., by calculating the mean RTT).

3) The reference node N0 sends a token to one of the other
n− 1 nodes (e.g., N1).

4) The receiver of the token (e.g., N1) estimates one further
RTT to an arbitrary node (e.g., N2) and returns the result
back to the reference node (N0).

5) The reference node solves the introduced system of
equations utilizing the hardware delay as well as the
estimated RTTs.

6) The reference node sends the hardware delays and the
software delays of all nodes to the other n − 1 nodes.
Consequently, every node can calculate the one-way
delay between itself and the reference node.

7) The reference node synchronizes the entire network by
sending packets to all other nodes. These packets contain
a timestamp0 taken at the reference node and every
node Nx takes a timestampx after the receipt of the
packet. The clock offset between the reference node N0

and node Nx amounts to timestamp0− timestampx−
delay where delay is the calculated one-way delay.
Again, as we assume the software delay to be variant
the clock offset is estimated by calculating the mean of
multiple measurements.

8) For every resynchronisation, there is no need to estimate
the delay again (assuming a time-invariant system).
Thus, all nodes restart with step 6.

C. Conceptual Consideration of Error, Resiliency, and Scala-
bility

Error: we can state the maximal error that arises from
the assumed equality of the receipt and transmission delay:
Errormax = dx. Where dx is the estimated software delay
of a node x. Although, we cannot state the exact values of
the transmission and receipt delay, we can precisely state the
sum of both that equals 2 ·dx. Furthermore, we can formulate
the upper bound for the worst case transmission and the worst
case receipt delay of this node: Delayworst ≤ 2 · dx.

Resiliency: there is no single point of failure in the algo-
rithm as a dynamic selection of the reference node is possible.
Hence, the synchronization is still possible if we have at least
three nodes in the network.

Scalability is an important aspect in the IoT scenarios of
the future as there will be thousands of devices, which have to
be connected. The proposed method exhibits good scalability:
for the time T required to estimate the software delays of n
nodes in a network, the following formula applies:

T ∼ n. (3)

We always need n measurements to get a system of equations
of rank n composed by n independent equations. However,
the concept allows to reduce the number of unknowns. The



number of unknowns does not necessarily equal the number of
nodes in the network. Instead, different nodes having identical
platforms introduce identical delay distributions. Therefore,
the number of unknowns equals the number of unique plat-
forms in the network. We define a platform Px as a unique
pair of a hardware Hy and a software Sz:

Px = (Hy, Sz). (4)

Furthermore, we define the hardware as the quantity of all
hardware components (processor, memory, network interface
controller, ...) of a node and the software as the quantity of all
software components (operation system, drivers, applications,
network stack, ...) of this node.

Hy = {Processor,NIC,Memory, ...} (5)

Sz = {OS,Application,Drivers, ...} (6)

Consistently if two nodes have the identical software and
hardware setup, they must show the same delay distribution.
Even for thousands of nodes in an IoT scenario, we can assume
that the quantity of unique platforms is much smaller than
the number of nodes (e.g., if we have many sensors of the
same vendor in a smart factory application). If we can assume
time-invariance of the delay, we need only one estimation
for every platform. Consequently, every resynchronization can
use broadcast messages and thus the execution time for the
resynchronization is independent of the number of nodes. We
cannot assume the clock offset and skew of a node to be
time-invariant, which leads to the need of resynchronizations.
Nevertheless, we can assume the distribution of the software
delay to be time-invariant utilizing a statistical sufficient
estimation. Moreover, if new platforms join the network we
only need to estimate the software delay of these.

V. MEASUREMENTS AND EVALUATION

For the evaluation of our approach, we developed a Java
prototype implementation. A simulation would not be reason-
able as many parameters contributing to the software delay
are unknown and thus have to be determined in a real test-bed
first. We implemented the approach in Java to achieve high
platform independence. In [16] the authors show that Java can
even meet hard real-time requirements.

As experimental setup, we used three Intel Galileo boards
[17] and a 1 GBit/s switch to connect these devices. To
measure the precision of our synchronization, we developed
a novel method to determine the offset between two clocks.
Figure 2 exhibits the results of the FPGA-based reference
measurement. We use an FPGA to generate a square-wave
signal with a period of approx. 0.67 s (226 · 10 ns). The
rising edges of this signal are time stamped by two nodes (the
Galileo boards) and the timestamps are compared with each
other. Although the time stamping of a GPIO pin introduces
a software delay, we mitigate this influence by averaging over
multiple timestamps as we assume that the jitter of the time
stamps is introduces by the software processing of the GPIO
signal and not by the FPGA. The clock offset calculated using

these time stamps is exhibited in blue in Figure 2. Further-
more, we subtract out the clock skew that was approximately
21 µs∓1 µs per period (0.67 s). Additionally, we average over
the skew-compensated clock offset and thus calculate a precise
reference value. As the last step, we compare the calculated
reference value for the clock offset of the two nodes with the
estimation done by our software implementation. We applied
the measurement twice: we achieve a difference of 386 µs
between the FPGA-based reference value and the software
estimation if we have an open SSH connection to all devices
that affects the synchronization. Moreover, we achieved a
difference of only 123 µs using an isolated network without
any interference. In both measurements the software uses only
10 RTTs to estimate the software delay and the clock offset.

Fig. 2. FPGA-based reference measurement of the clock offset between two
nodes

To evaluate the scalability of our approach, we emulate
100 nodes on one physical device utilizing the loopback IP
Address. We generate a single thread for every node where
all nodes use the same IP Address (loopback) but a different
UDP port number. Figure 3 shows that the execution time is
proportional to the number of unique platforms in the network.
To estimate all n unknown parameters (the software delay of
every unique platform), we need a system of equations of
rank n. Therefore we have to estimate n RTTs and assume
that the execution time is proportional to the number of
unique platforms, which is lower or equal to the number of
nodes. In contrast to the state-of-the-art, our approach needs
to estimate the delay only once for every unique platform.
Every resynchronization can use broadcast messages and is
therefore independent of the number of nodes or unique
platforms. Moreover, we examine the synchronization time
in dependence of the number of RTTs used to estimate
every unknown parameter. Figure 3 shows that the execution
time is proportional to the number of RTTs used for every
estimation. If we use more RTTs this results into a more
precise estimation of the software delays and thus, a more
precise synchronization. The number of packets needed for a
statistical sufficient estimation of the software delay depends
on the delay distribution of this platform. Hence, our approach
supports the adaption of precision and execution time to the



requirements of the application.

Fig. 3. Emulation-based investigation of scalability: synchronization time as
a function of the number of unique platform in the network and the number
of RTTs used for every estimation

VI. CONCLUSION AND FUTURE WORK

In this paper, we present a highly precise, highly scalable,
and platform independent approach for clock synchroniza-
tion in networks, based on the estimation of all unknown
delays in the network. We exhibit precision measurements
where our approach outerperforms all existing software-based
synchronization approaches. Furthermore, we expose that our
approach outerperforms all exsiting methods in terms of scal-
ability since we need to estimate the software delay only once
and all further synchronizations and resynchronizations can
use broadcast messages being independent of the number of
nodes in the network. In our future work, we will consider the
compensation of the clock skew as well as a precise estimation
of the hardware delay. Furthermore, we will investigate several
methods (e.g., Kalman filters) to get even more precise delay
estimations.

ACKNOWLEDGMENT

The authors would like to thank the German Research
Foundation (DFG) (research fellowship, GZ: DA 1687/2-1)
for their financial support.

REFERENCES

[1] M. Akhlaq and T. R. Sheltami, “Rtsp: An accurate and energy-efficient
protocol for clock synchronization in wsns,” IEEE Transactions on
Instrumentation and Measurement, vol. 62, no. 3, pp. 578–589, 2013.

[2] K. Correll and N. Barendt, “Design considerations for software only
implementations of the ieee 1588 precision time protocol,” in In Con-
ference on IEEE 1588 Standard for a Precision Clock Synchronization
Protocol for Networked Measurement and Control Systems, 2006.

[3] A. Beifus, D. Raumer, P. Emmerich, T. M. Runge, F. Wohlfart, B. E.
Wolfinger, and G. Carle, “A study of networking software induced
latency,” in 2015 International Conference and Workshops on Networked
Systems (NetSys), pp. 1–8.

[4] E. Schweissguth, P. Danielis, C. Niemann, and D. Timmermann,
“Application-aware industrial ethernet based on an sdn-supported tdma
approach,” in 2016 IEEE World Conference on Factory Communication
Systems (WFCS). IEEE, 2016, pp. 1–8.

[5] I. Bojic and K. Nymoen, “Survey on synchronization mechanisms in
machine-to-machine systems,” Engineering Applications of Artificial
Intelligence, vol. 45, pp. 361–375, 2015.

[6] D. Mills, J. Martin, J. Burbank, and W. Kasch, “Network time protocol
version 4: Protocol and algorithms specification,” Tech. Rep., 2010.

[7] Y.-C. Wu, Q. Chaudhari, and E. Serpedin, “Clock synchronization of
wireless sensor networks,” IEEE Signal Processing Magazine, vol. 28,
no. 1, pp. 124–138, 2011.

[8] N. M. Freris, S. R. Graham, and P. Kumar, “Fundamental limits on
synchronizing clocks over networks,” IEEE Transactions on Automatic
Control, vol. 56, no. 6, pp. 1352–1364, 2011.

[9] M. D. J. Teener and G. M. Garner, “Overview and timing performance
of ieee 802.1 as,” in 2008 IEEE International Symposium on Precision
Clock Synchronization for Measurement, Control and Communication.
IEEE, 2008, pp. 49–53.

[10] G. Giorgi and C. Narduzzi, “Performance analysis of kalman-filter-based
clock synchronization in ieee 1588 networks,” IEEE Transactions on
Instrumentation and Measurement, vol. 60, no. 8, pp. 2902–2909, 2011.

[11] R. Exel, “Mitigation of asymmetric link delays in ieee 1588 clock
synchronization systems,” IEEE Communications Letters, vol. 18, no. 3,
pp. 507–510, 2014.

[12] J.-O. Nilsson and P. Händel, “Robust recursive network clock synchro-
nization,” in Electronics, Computing and Communication Technologies
(IEEE CONECCT), 2014 IEEE International Conference on. IEEE,
2014, pp. 1–5.

[13] C. Lenzen, P. Sommer, and R. Wattenhofer, “Pulsesync: An efficient
and scalable clock synchronization protocol,” IEEE/ACM Transactions
on Networking (TON), vol. 23, no. 3, pp. 717–727, 2015.

[14] E. Mallada, X. Meng, M. Hack, L. Zhang, and A. Tang, “Skewless
network clock synchronization without discontinuity: Convergence and
performance,” IEEE/ACM Transactions on Networking, vol. 23, no. 5,
pp. 1619–1633, 2015.

[15] S. Froehlich, M. Hack, X. Meng, and L. Zhang, “Achieving precise
coordinated cluster time in a cluster environment,” in 2008 IEEE
International Symposium on Precision Clock Synchronization for Mea-
surement, Control and Communication. IEEE, 2008, pp. 54–58.

[16] B. Konieczek, M. Rethfeldt, F. Golatowski, and D. Timmermann, “Real-
time communication for the internet of things using jcoap,” in 2015 IEEE
18th International Symposium on Real-Time Distributed Computing
(ISORC), pp. 134–141.

[17] “Intel galileo board.” [Online]. Available:
https://www.arduino.cc/en/ArduinoCertified/IntelGalileo


