Evaluation of a Formalized Encryption Library
for Safety-Critical Embedded Systems

Thorsten Schulz, Frank Golatowski, Dirk Timmermann
Institute of Applied Microelectronics and CE, University of Rostock,
{Thorsten.Schulz,Frank.Golatowski, Dirk. Timmermann } @uni-rostock.de

Abstract—Complex safety-critical devices require dependable
communication. Dependability includes confidentiality and in-
tegrity as much as safety. Encrypting gateways with demilitarized
zones, Multiple Independent Levels of Security architectures and
the infamous Air Gap are diverse integration patterns for safety-
critical infrastructure. Though resource restricted embedded
safety devices still lack simple, certifiable, and efficient cryptogra-
phy implementations. Following the recommended formal meth-
ods approach for safety-critical devices, we have implemented
proven cryptography algorithms in the qualified model based
language Scade as the Safety Leveraged Implementation of Data
Encryption (SLIDE) library. Optimization for the synchronous
dataflow language is discussed in the paper. The implementation
for public-key based encryption and authentication is evaluated
for real-world performance. The feasibility is shown by execution
time benchmarks on an industrial safety microcontroller platform
running a train control safety application.

I. INTRODUCTION

Security is an essential building part of dependable comput-
ing. While past critical systems focused on the other important
aspects of Reliability, Availability, Maintainability and Safety
(commonly referred as RAMS). Integrity and confidentiality
were usually covered with physical barriers (see "The Air
Gap" [1]) to prevent malicious attacks to critical infrastructure.
But the connected infrastructure is not only limited to process
data messaging. With the incline of technical complexity
contained in current industrial automation systems, reliability
and availability are challenged by difficult failure scenarios.
Maintenance more often needs assistance by telemetry data
collection systems. Therefore systems become increasingly
interconnected and offer interfaces for control, update and
diagnostics beyond system borders. Input from these interfaces
must never change the system into an unsafe state. This
requires the device’s safe certified software to assure that any
message from an input communication channel must come
from an authentic peer with provable integrity. As such, we
propose an implementation of the cryptography algorithms to
be an integral part of the qualified safe software.

In contrast, current security is often integrated into systems
by including common libraries such as openSSL or imple-
mentations of IPsec. Researchers in [2] also found outdated
implementations in proprietary products. This is due to the fact
that a lot of applications designers are no cryptography experts
and rely on these libraries to provide common functionality.
To cater for high levels of interoperability security libraries
like openSSL provide many algorithms and features also to
address legacy devices. Infrequently updated versions contain
algorithms with weak or broken security. Due to their massive
complexity these libraries are unable to be thoroughly verified

by formal methods. For example memory leaks, exploited by
the recent Heartbleed Bug, must be formally inhibited in the
development process for safety qualified systems.

Other approaches use encrypting gateways for outbound
communication, as proposed in the early 2000s (see [3]) and
before. This tends to provide acceptable protection together
with the Demilitarized Zone (DMZ) pattern. But other attacks
like Stuxnet have shown that an attacker may manipulate
SCADA systems beyond these gateways or by compromised
service computers. While these scenarios require much more
attention than "just" integrated communication encryption, it
shows that separating security and safety measures leaves open
gaps for attacks.

This paper presents the results from implementation of
a proven cryptography algorithm for the domain of safety-
critical devices. By integrating the cryptography algorithms
as part of the overall control model software, mandatory
exhaustive software tests can be executed to the full depth. As
a result, certification of safety-critical software using secure
communication interface decreases in complexity. In the next
sections, the application background of safety-critical control
systems is illustrated and important basic requirements for
an implementation are enumerated. The chapter III contains
details about the implementation. Since using formal methods
requires special attention in coding, an approach to optimizing
the implementation is discussed in an extra section. Chapter
V contains results collected from execution of the implemen-
tation on a physical system. The results are compared and
discussed with respect to their application related real-time
properties. The discussion finalizes with an outlook of further
implementation work. The presentation of a holistic security
concept including a wire protocol, certificates, random number
generation, key storage and exchange are greatly beyond the
scope of this paper and were not considered.

II. APPLICATION BACKGROUND

A train control system (TCS) module will serve as an
example for a complex safety-critical control application. Mal-
function of the TCS must not cause uncontrolled movement
beyond safe limits which could endanger passengers of a train
by, e.g., starting to move while the doors are open. Availability
requirements on the other hand set very strict maintenance
or down times. Preventative maintenance by evaluation of
abnormal real-time sensor data could be a suitable solution.
The data is sent via public carriers to the central maintenance
system and corrective parameters can be sent back to the
control device to circumvent a current issue. This is impossible

(c) 2017 IEEE, see http://ieeexplore.ieee.org once published

thorsten
Text-Box
(c) 2017 IEEE, see http://ieeexplore.ieee.org once published

[Speciﬁcation } { Validation }

\ /

Developmentof | | >
a Scade model

\

[Code generator

Integration

- J

ui Simulation +
model/code coverage

Code
Analysis/Design ‘

Testing/Integration

Figure 1. Implementation life-cycle phases in SCADE related to the
recommended life-cycle in [4]. SCADE Suite provides phases of the shaded
boxes. Redrawn work from [5] "Figure 8.7 SCADE as a design environment".

without strong reliable security that is leveraged to the safety
standards.

Systems that execute safety-critical functions have to com-
ply to the norm [EC 61508 by law of liability. IEC 61508
is the generic standard, which is then refined for the spe-
cific domain, such as aerospace, industrial processes, machine
safety, automotive, and railway. For example, the (European)
railway domain requires the norm series CENELEC 5012x
to be applied. Here CENELEC 50126 defines the overall
systems engineering process and how failures are classified
and handled.

Within these norms the Safety Integrity Level (SIL) is
declared in the range of 1 to 4, with four being the level
of most confidence. It is derived from the statistical rate of
systematic failures and random failures. Confidence in safety
integrity can also be reached by effective combination of
special architectures, processes, tools and techniques. To give
an orientation, German national law typically requires high-
speed trains to provide a SIL 4 control systems, whereas
freight, commuter and regional trains with a maximum speed
of 160 km/h or less suffice with SIL 2 control systems.

Specifically, the norm CENELEC 50128 ("software for
train control systems") defines goals, conformity rules, and
the software safety integrity level (SSIL). It also proposes the
software life-cycle (see Fig. 1) including its documentation
and the development process: tests, verification, validation,
assessment, quality assurance, change management and tools
and programming languages. Depending on the role and the
result of action of a train’s device’s software, not all on-board
devices in a high-speed train must conform to the strongest
safety standards. For example a passenger information screen
is classified as a non-critical device unless it is part of the
emergency evacuation plan.

Safety Leveraged Implementation of Data Encryption
(SLIDE) aims to provide an implementation with methods
required by higher safety devices with a non-zero SIL. There
are several ways and methods to comply with the related
norms. Known security libraries are generally available in
the C language. But the C language is only allowed with
restrictions to be used in critical applications (see [5] Chpt. 7).
Without going into this detail, the recent prominent Heartbleed
Bug is a result of unrestrained use of the C-language. As an

alternative, the CENELEC 50128 norm "Highly Recommends
(HR)" the use of formal methods ([4] Table A.17). [5] in-
troduces several tools from this domain. We chose ANSYS
SCADE as a proven qualified toolchain for CENELEC 50128-
SIL 4 (and other IEC 61508) applications for the exemplary
implementation. Figure 1 shows which parts are covered by
SCADE Suite. The commercial tool-suite contains additional
applications to also cater for specification and validation phase
of the software life-cycle, but this not in the scope of this paper.

SCADE Suite is a commercial modelling tool for its own
language Scade that has evolved from the language LUSTRE.
As Boulanger describes in [5]: "It facilitates modeling based
on the concepts of functional block diagrams and dataflow
diagrams". An excerpt is shown in Figure 3. Scade is a syn-
chronous reactive programming language, that is executed in
cycles. On each cycle all inputs stay constant and each output
has to compute a defined value. Outputs derive their value from
dataflow from inputs through operators. Feedback of data can
only be achieved with special memorizing operators.

One major prerequisite that plays into the evaluation of
the proposed implementation, is the execution time. TCS
typically have real-time application cycles of 50..200 ms. For
example the openETCS model, a research project for an open-
source safety supervision system [6], is targeted to run on
a 100 ms cycle. The evaluation reference setup for a TCS
with encrypted in- and outputs includes the brake-distance
supervision module from openETCS. With a powerful safety
microcontroller hardware, as used in the following tests, up to
27 ms are required to execute the TCS module within the test
bench. The "spare" time can be used for encryption-jobs. The
preliminary test results for feasibility on this TCS application
conclude the measurements before the discussion section.

III. IMPLEMENTATION

An open and standardized encryption library, that is for-
mally verified for use in high safety-critical applications, is not
known. Though related modelling approaches are proposed in
[7]. The implementation gap is even underlined in [8] with
differentiating between non-encrypted safety-critical and non-
safety messages in vehicular ad-hoc networks.

To prove the applicability of authenticated encryption in
hard real-time dependable systems the approach was to im-
plement a proven library using a qualified tool-chain from the
safety domain. Due to the reasoning explained in the previous
chapter II and existing experience, ANSYS SCADE Suite R16
was chosen.

As a publicly available, sophisticated but simple open
source cryptography library, the Network and Cryptography
library (NaCl, pronounced "salt") by D. J. Bernstein [9] was
chosen. It represents state-of-the-art crypto-algorithms, that are
actively used in a variety of applications. There are also a
number of implementations in many programming languages
available, of which uNaCl, for 8 bit-microcontrollers [10] and
a native Java implementation have been used in a preceding
project for public-key-signature based Bluetooth low-energy
beacons, see [11].

SLIDE is a Scade implementation of NaCl with the al-
gorithmic scope of TweetNaCl [12]. It contains all high-level

T ! ! . |
| | Y 1[Snd. Receiver ||
| . . N ! key key

| - bl private (Y}
! | " ; 1 =

! | i | |
\Diffie-Hellman- ! *0On channel |/ ! !
iPrecomputation | initialization ¥ | DH-precomp.,

Sender side
al

stream key

I
isecret key

decryption

Receiver side

iencryption

,,,

,,,,,,

Figure 2. Overview of public key based message exchange. Transmission of the senders public key is only done on channel initiation. Each following message
below contains the encrypted data, the MAC and the nonce (a "number-used-once", unique per message and per key).

crypto-primitives (functions) of NaCl necessary to establish se-
cure data transfer based on public-key-cryptography schemes.
Public-key cryptography (PK) divides into Authenticated En-
cryption (see Figure 2) and Signatures'. PK authenticated en-
cryption builds upon secret key generation from public-private
key-pairs with the Diffie-Hellman-Function (DH) "X25519"
on the "Curve25519" (a Montgomery curve) and secret key
authenticated encryption primitives. The input to the DH-
function are the private key of the sender and the public key
of the receiver and on the receiver side vice versa (top half
Figure 2). The derived secret key can be used for multiple
messages, as long as each pass is encrypted with a unique
number, a "number-used-once" or "nonce". The nonce can be
consecutive, randomness is not required.

Secret key authenticated encryption, as drawn in Figure
2, consists of a stream-cipher and an Authenticator. The
stream-cipher (here "XSalsa20") generates a stream key that is
XOR’ed with the data to encrypt the message. The Message
Authentication Code (MAC) produced by the Authenticator
(here "Poly1305" algorithm) is a cryptographically secure
checksum calculated from the encoded message data and
initial part of the stream key, to assure the message was not
modified along the transport. Decryption on the receiver side
results in almost the same algorithm, since XOR’ing with the
same secret key will produce the original message. The MAC
computed from the received encrypted message must equal the
received MAC to verify the authentication.

The DH-function is a mathematically complex trap-door-
function and uses most of the execution time. It is only required
on channel initiation or key-renewal. The secret key algorithms
run on every message iteration and are highly dependent on
the message length. The two aspects of the library will be
analyzed in the results section. From the analysis the most
critical bottle necks, that were introduced through a naive
Scade implementation, were selected for optimization and the
findings are detailed in the following section.

IV. OPTIMIZATION

The goal of the initial SLIDE implementation is a proof of
concept without finalized optimization. Mislead optimization
can lead to unnecessary obfuscation which makes verification
harder. On the other hand, there are challenges and common
pitfalls that can render the result unusually inefficient. Most

IThe Ed25519-Signatures based on scalar multiplication and SHA2-512
hashing are implemented, but not evaluated in the concluding results section.

performance penalties come from using patterns that are for-
eign to the implementation language.

The synchronous dataflow paradigm of Scade does not sup-
port free formed instruction loops known from the C-language.
In dataflow an operator is defined to be applied to all elements
of an array in parallel (map) or in an iteration (fold). Most
for-loops in the encryption library have a constant length by
design either due to the algorithm or to avoid side-channel
timing attacks. But some encapsulated loops represent awk-
ward constellations that are hard to clarify into linear dataflow
structures. The goal was to keep the SLIDE implementation
as close to the TweetNaCl library as reasonable to also be
able to verify intermediate results. This section contains an
example of resolving the field multiplication M, as part of the
scalar multiplication of DH, into a high-performance Scade
implementation.

The M-operator uses most processing time of the
Curve25519 algorithms. The C-function is shown in Listing 1
as follows:

void M(gf o, gf a, gf b) {
ie4 i, j, tl[31l];
for (i=0; i<31; i++) t[i] = 0;
for (i=0; i<16; i++)
for (J=0; j<16; J++)
tli+]] += alil = b[J];
for (i=0; i<15; 1i++)
t[i] += 38 » t[i+l6];
for (i=0; i<16; i++)
o[i] = t[i];
car25519 (o) ;
car25519 (o) ;
}
Listing 1. Excerpt from tweetnacl14.c by Daniel J. Bernstein [12]

A naive, direct implementation of the imperative algorithm
to a dataflow model would lead to many, apparently non-
sequential array accesses (see t [1+3] += al[i] * b[J]).
Each of those will be subsequently guarded by range checking
code. Additionally, writing to an array non-sequentially, also
generated a full array copy per assignment. As a result the
complete cryptographic primitive took about 4 seconds on
the TI Hercules microcontroller to generate a Curve25519
key-pair. That is twelve times the original C-TieetNaCl-
implementation.

The revised operator implementation (see Figure 3) lin-
earizes the dataflow to generate the output sequentially. This

° >_ ;::]_l_ map<<15>>
]

M_it4

mapi<<16>> i i> _> - flow input, output
+
+

fofa car25519 o

Basic arithmic,
] ‘Z opr 0|> custom operator

a car25519 o >°

...:l Subsection [1-15]
of array

PSSl

(M_ita

b I: Concatenation
L

of arrays

foldi<<16>>

Connect input to
1 all ('15') output
" array elements

to _> to i mapi<<n>>| APply ("map") ‘opr'
!) for n elements of

' a opr fof 'a', 'b" into 'to’

il with index in y.

VT Select element

v Ok (index results 'y-x')

i from array. Set def.

) “. '0' on out-of-range

Figure 3. Optimized Scade implementation of operator M leading to satisfactory performance. This is an assembled screen-shot from the ANSYS SCADE
modeller of the M-operator and its iteration operators. foldi extends mapi that it accumulates the first input-output flow (here ’t’->’to’) along all array

elements.

is achieved by transposing the original algorithm. Then the
inner iteration only accumulates into a single t-field with the
outer loop mapping this operation sequentially over the length
of the array t. This corrected design led to a speed up by
factor 15 down to an execution time of 270 ms as shown in
the results section.

Another major impact to execution times are compiler
and Scade-code generator options. The compiler optimization
options heavily depend on specific application domain’s safety
requirements, compiler maturity and the compiler verification
results and are out of scope of this paper.

ANSYS SCADE’s C-code generator (KCG) has the option
to expand model operators. Initially each non-expanded op-
erator will generate its own C-function. Expanding a Scade
operator is comparable to in-lining a C-function. As this is
not part of the model domain but of code generation, there is
no final penalty on creating sub-operators to keep the model
simple for reuse, traceability and certification. After the model
design phase, sophisticated tools such as stack- and timing-
analyzers by Absint (qualified) or callgrind from the valgrind
tools (open-source) can highlight bottle necks, where operator
expansion is worth evaluating. Too much expansion leads to
untraceable C-code, increases code size and stack usage and
may even become uncompilable due to complexity. In fact, the
Texas Instruments ARM code generation toolchain was unable
to parse a fully expanded SLIDE library. As a result, there
is only one code generation version of the SLIDE library in
the results section that employs only selected expansion after
analysis.

V. EVALUATION

Commercial-Off-The-Shelf (COTS) Rugged PC systems
with good processing power have gained wide popularity
in the critical systems domain. But also embedded devices
with limited resources System-on-Chip (SoC) microcontrollers
have gained sophisticated computational capabilities. To verify
the feasibility of data encryption using a certifiable formal

methods implementation, the tests were executed on the safety
microcontroller platform Hercules by Texas Instruments (TI).
Typical applications are distributed automotive, railway and
industrial control with network-based data bus.

A. Measurements

The TI Hercules platform implements an ARM Cortex R
core with max. 330 MHz, ECC protected 512 kByte SoC-RAM
and 4 MB Flash ECC-ROM. The high safety certification of
up to IEC 61508 SIL 3 is based on the LockStep-CPU concept:
A hardware comparator checks the outputs of two cloned CPU
cores on every clock cycle. The specific test hardware is the 77
RM57Lx LaunchPad Development Kit. The core is configured
to run at 300 MHz. This board has only SoC-Memory, so cache
will not affect Worst Case Execution Time.

To keep the effort for the proof-of-concept reasonable and
the code base clear, the minimalist TweetNaCl-implementation
(see [12]) was used as reference. Since it is a pure C implemen-
tation, it is platform independent and can be used as a reference
for the measurements. For comparison with a production-ready
library the high-performance implementation libsodium (ver-
sion 1.0.10 [13]) was also chosen. All implementations use
similar interfaces with only minor specific adaptations to types
and external data structures to equally fit the test bench. The
specific encryption parameters were passed individually and
without any sort of protocol. Actual network transmission was
not used for the tests in the results section.

The tests were compiled using a current Texas Instruments
ARM compiler toolchain (TI-CGT 15.12.3.LTS). The TI-CGT
is advertised to be certifiable but it was not investigated
to what extend and under which conditions. TI-CGT brings
an extensive set of tunable options and generation switches.
Required settings for certification are very application specific
and were not taken into account for the performance tests. A
single configuration setup was chosen favoring speed.

The encryption model was linked and flashed to the 77 Her-
cules evaluation board directly without operating system. The

[ms] execution time [kB] stack
350-E] 35+ — ;TweetNaCI
| —
250+ 2.5+ i
F E Olibsodium
200 2.0 H
150+ 1.5-F H
100-¢ 1.0£ H
Ha | IS | i
07: ’_‘ - . :
precomputation precomputation stream crypt.
Figure 4. Left: measured execution time of the key precomputation (left)

of the different implementations. Right: the stack memory requirement for
the precomputation algorithm and the authenticated encryption algorithm (not
including the external message buffers).

[ms] execution time =

10.07 B TweetNaCl -

9.04 @ SLIDE v0 — —

8.0-| O SLIDE -

7.0 O libsodium _ 1 [|

6.0 —

5.0— —

4.0+ e

3.0+— —

2.0+

ol -1 H

0.0 A = - [T I T T

0 1 20 120 160 320 1458

Figure 5. The cyclic authenticated encryption run time dependent on the

payload length. The quantization due to block-based (64 byte) handling is
noticeable. The SLIDE implementation improved over SLIDE v0 especially
due to optimization of the Message-Authentication operator.

results were first recorded, and printed to the embedded serial
debug channel after actual model processing. The run time was
measured using samples from the real-time counter unit at a
sub-microsecond resolution. Since no interrupts were enabled,
no caches involved, the measurements were reproducible con-
stant through consecutive executions within the resolution of
the real-time counter.

The tests compare the stack usage and the run time of
different primitives that were run consecutively. First shown
in Figure 4 is the precomputation, which is used to derive
the secret encryption key from the public-private key-pair (see
top left in conceptual overview Figure 2). The run time of
the authenticated encryption depends on the message length.
The tests were executed for message payload lengths of [0, 1,
20, 120, 160, 320, 1458] bytes (see Figure 5). The keys and
nonces were always derived from the same fixed data source
to provide verifiable results. Stack-usage estimation was done
via "memory coloring". More sophisticated stack-analysers are
available but this was no current focus.

All graphs line-up the four implementations that have been
introduced earlier in the paper. TweetNaCl is the original
one-file-of-C-code version extended with wrapper functions
for the test-case. "SLIDE v0" is an intermediate version of
SLIDE. The libsodium was included mostly unmodified, up

to minor unneeded parts that were not compilable on the
bare-metal platform. Figures 4 and 5 show the improvement
from SLIDE vO to SLIDE in terms of execution time. Not
shown for readability is the very first attempt of SLIDE
with a precomputation time of 4 seconds. The model-based
optimization as explained in section IV could well identify
and diminish performance problems of early versions.

To round up the initial exemplary application background
(see IT) of a TCS module, the execution times of the encryption
algorithms are compared to the execution of a computationally
complex control application. The European Train Control
System (ETCS) contains the on-board component Speed and
Distance Monitoring to supervise the safe braking distance of
a moving train, under consideration of track gradients, multiple
sections of different speeds with a complex characterization of
the train’s braking system. The module is known to consume
a larger part of the execution time of the ETCS-kernel. Even
though in the real-world this is an internal module, for a
demonstration system (see [14]) the component was interfaced
directly with a display system (HMI), a physical model and
a data source. The required inputs are packets of size 32, 4
and 912 Bytes. The outputs are 12, 1400 and 308 Bytes long.
The results are shown in Figure 6. The execution time was
27 ms for the Speed and Distance Monitoring module, 13 ms
for adaptation to the simulation environment and 19 ms for
decryption of the inputs and encryption of the outputs. The
execution time of 60 ms fits well within a 100 ms cycle period.

‘ decrypt ‘ process ‘ encrypt J idle ‘
\ N
RN o &
(\06\ (;Q'6 & &@vé
<@ o & Q}é‘o N \§ %
R CARS) o\) Oo

Y 7 PO

—

\ \ \ \ ™ [ms]
0 10 20 30 40 50 60 70 80 90 100

Figure 6. Experimental execution time within the period of the openETCS
Speed and Distance Monitoring with encrypted in- and outputs in a test setup.

B. Discussion

The advantages of software based solutions are architec-
ture independent implementations and easier maintainability
throughout the system life-cycle. The testing can start earlier
and there is less risk of interfacing a proprietary hardware so-
lution. A disadvantage over hardware solutions is the demand
for processing power.

It must also be noted that the precomputation of the
secret symmetric encryption key (the Curve25519-scalar mul-
tiplication) takes notably longer, here 44 times more than
the per-cycle authenticated data en-/decryption. Though this
functionality is only required on channel establishment or on
key-renewal. On the investigated T1 Hercules board the SLIDE
execution time of 270 ms is larger than typical train control
application periods of 100 ms. A functional extension was
added successfully to statically break the scalar multiplication
across multiple execution cycles, but the results are not yet
reflected in the preceding section.

Very interesting research in [15] investigates the safety
properties, i.e. hazard rate of undetected message corruption,
of current (symmetric) cryptography algorithms AES and DES.
The algorithm XSalsa20 used in NaCl (and as such in SLIDE)
has a comparable strength to AES. Since our approach uses
the Polyl305-MAC in each message additionally to underlying
OSI layer codes of Ethernet like CRC-32 or even CRC of the
UDP packet, it should surpass reliability rates. The SLIDE
implementation does not yet provide any such safety related
evaluation neither does it provide any safety protocol related
fields. Though the conclusion is, that a cryptographically
secure message transport may also be a safe transport.

VI. CONCLUSION AND OUTLOOK

The results demonstrate that software based hard-realtime
implementation of data encryption within the higher safety
domain is a viable option for industrial applications. Under
consideration of cycle periods of 50..100 ms, this can also
be performed by resource restricted safety microcontroller
platforms. Excerpts from the implementation process have
shown that not respecting divergent coding paradigms of a
safety programming language results in inefficient code.

What was disregarded for explicit proof, was whether the
SCADE-KCG generated code provides the same resilience to
side channel attacks as the original implementation. The qual-
ification of KCG guarantees, that the generated code behaves
identical to the model. So, obeying to the same algorithms
and precautions (e.g. no branches on secret data) is expected
to propagate to the code.

The property of the NaCl algorithms to be completely
deterministic is essential for verification and validation. For
further implementation, quality randomness for key generation
and secure storage of secret keys need to be added. By
definition this requires external hardware support, e.g. trusted
platform modules, cryptography chips (e.g. Atmel CryptoCom-
panion) or potentially microcontroller internal peripherals. The
examined 71 Hercules did not provide any Hardware Security
Module, but a computationally comparable Infineon AURIX
safety platform is equipped with such.

Concerning encrypted communication, the examined test
cases are fairly limited. The next step is to implement a
communication protocol to pass multiple messages. The "min-
imal’T" concept in [16] proposes a simple and efficient ap-
proach, but it still lacks acceptance. The DTLS protocol on
the other hand has been recently advanced with the RFC 7905,
adding the authenticator Poly/305 (as used in SLIDE) and
the stream cipher ChaCha20 which is a recent successor of
Salsa20. Focus will subsequently shift towards implementation
of ChaCha20 and the DTLS protocol to make an integrated
SLIDE device talk to COTS DTLS implementations.

Another recently added aspect is to use the signature
and verification algorithms of the SLIDE library for Se-
cure Boot/Update purposes in Multiple Independent Levels
of Security (MILS) high-assurance systems. It can provide
additional algorithms if a hardware implementation is missing
specific support or is found vulnerable during the life-cycle.
As discussed earlier, further research must assure that security
properties of the abstract software library hold for refinement
on specific hardware.

ACKNOWLEDGMENT

This work has been partially funded by the German Federal
Ministry of Education and Research (BMBF) under reference
numbers 01IS13019H and 011S13019B as part of the European
ITEA project "Building as a Service" (BaaS).

Extensive thanks to the authors of the NaCl Networking
and Cryptography library for their excellent work!

REFERENCES

[1] E. Byres, “The air gap: Scada’s enduring security myth,” Commun.
ACM, vol. 56, no. 8, pp. 29-31, Aug. 2013. [Online]. Available:
http://doi.acm.org/10.1145/2492007.2492018

[2] A. Guarino, “Information security standards in critical infrastructure
protection,” in ISSE 2015. Springer, 2015, pp. 263-269.

[3] E.Byres and J. Lowe, “The myths and facts behind cyber security risks
for industrial control systems,” in Proceedings of the VDE Kongress,
vol. 116, 2004, pp. 213-218.

[4] C.E. de Normalisation Electrotechnique, “Railway applications - Com-
munication, signalling and processing systems - Software for railway
control and protection systems, EN 50128, EUROPEAN STANDARD.

[S] J.-L. Boulanger, CENELEC 50128 and IEC 62279 standards. John
Wiley & Sons, 2015.

[6] D. P. Mahlmann, B. Hekele, A. Mohammed, M. Behrens, D. H.
Hungar, D. M. Jastram, S. Karg, U. Steinke, J. Welte, D. C. Konig,
D. C. Stahl, and T. Schulz, “openetcs: Design and implementation of
open-proof-concepts for the european train control system etcs,” 2016.
[Online]. Available: http://github.com/openETCS/Dissemination

[71 A. Motii, A. Lanusse, B. Hamid, and J.-M. Bruel, Model-Based
Real-Time Evaluation of Security Patterns: A SCADA System Case
Study. Cham: Springer International Publishing, 2016, pp. 375-389.
[Online]. Available: http://dx.doi.org/10.1007/978-3-319-45480-1_30

[8] C. Biittner and S. A. Huss, An Efficient Anonymous Authenticated
Key Agreement Protocol for Vehicular Ad-Hoc Networks Based on
Ring Signatures and the Elliptic Curve Integrated Encryption Scheme.
Cham: Springer International Publishing, 2015, pp. 139-159. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-27668-7_9

[9] D. J. Bernstein, T. Lange, and P. Schwabe, “The security impact of
a new cryptographic library,” in Progress in Cryptology — LATIN-
CRYPT 2012, ser. Lecture Notes in Computer Science, vol. 7533,
2012, pp. 159-176, document ID: 5f6fc69cc5a319aecbad3760c56fab04,
http://cryptojedi.org/papers/#coolnacl.

[10] M. Hutter and P. Schwabe, “NaCl on 8-bit AVR microcontrollers,” in
Progress in Cryptology — AFRICACRYPT 2013, ser. LNCS, vol. 7918,
pp. 156-172, document ID: cd4aad485407c33ecel7e509622eb554,
http://cryptojedi.org/papers/#avrnacl.

[11] T. Schulz, F. Golatowski, and D. Timmermann, “Secure privacy
preserving information beacons for public transportation systems,”
in [EEE International Conference on Pervasive Computing and
Communication. 1EEE, 2016, pp. 190-195. [Online]. Available:
http://dx.doi.org/10.1109/PERCOMW.2016.7457096

[12] D. J. Bernstein, B. van Gastel, W. Janssen, T. Lange, P. Schwabe, and
S. Smetsers, “TweetNaCl: A crypto library in 100 tweets,” in Progress
in Cryptology — LATINCRYPT 2014, ser. LNCS, vol. 8895, 2015, pp.
64-83, document ID: c74b5bbf605ba02ad8d9e49f04aca9a2.

[13] F Denis, D. J. Bernstein, P. Schwabe, and Community, “The sodium
crypto library (libsodium),” May 2016, https://libsodium.org.

[14] P. Gorski, M. Ozer, T. Schulz, and F. Golatowski, “A modular train
control system through the use of certified cots hw/sw and qualified
tools,” pp. 42-49, September 2016.

[15] M. Franekova, P. Luley, and T. Ondrasina, “Modelling of failures effect
of open transmission system for safety critical applications with the
intention of safety,” Elektronika ir Elektrotechnika, vol. 20, no. 1, pp.
19-24, 2014.

[16] W. M. Petullo, X. Zhang, J. A. Solworth, D. J. Bernstein, and T. Lange,
“Minimalt: Minimal-latency networking through better security,” in
Proceedings of the 2013 ACM SIGSAC Conference on Computer &
Communications Security, ser. CCS ’13, 2013, pp. 425-438. [Online].
Available: http://doi.acm.org/10.1145/2508859.2516737

