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Abstract—Inverse problems in plasma physics commonly face a trade-
off between approximated real-time schemes or post-processed rigorous
uncertainty handling.
Bayesian analysis allows parameter and uncertainty estimation as well
as joint analysis of multiple diagnostics in a strict mathematical way. It
also improves the inference from correlated measurements but with long
processing times.
For linear and non-linear problems, many optimal and sub-optimal
Bayesian online algorithms are available but generally targeted at
dynamic systems and introducing some level of approximation.
Given plasma physics time-independent non-linear inverse problems,
several Wendelstein 7-X diagnostics use a Bayesian inference framework.
This research focuses on accelerating this type of mathematically intense
standard Bayesian analysis for such inverse problems. We show a signifi-
cant acceleration for the estimation of electron density and temperature
profiles. The approach maintains a floating-point double precision while
reducing the processing time useful in applications where a reliable error
estimation is required together with a fast processing time.

Keywords: Bayesian analysis, data fusion, hardware acceleration,
inverse problems.

I. INTRODUCTION

When dealing with inverse problems in modern scientific research
experiments it is common to have a problem of dual nature. In the
case of parameter estimation there is a need for a fast processing of
specific parameters in the studied phenomena for control and safety
purposes. Nevertheless the typical aim of the experiment is to perform
scientific inference in order to measure and understand phenomena
that is not yet completely understood. This introduces the need for
an analysis with the least amounts of approximations to understand
and observe the behavior of the parameter of interest.
Current parameter estimation has been widely developed to suit
specific needs of timing, time dependence and uncertainty estimation.
One of the most transcendent current techniques is Bayesian analysis.
It provides a rigorous handling of the uncertainty and the simplicity
of introducing our knowledge or lack thereof, into the analysis.
For this paper the analysis will be applied to magnetic confinement
devices. These devices are used to confine high temperature plasmas
by magnetic fields. They are used to study and understand nuclear
fusion as a new primary energy source.
Plasma diagnostics are sometimes used only for scientific inference
in order to study the physical processes occurring in the plasma and
estimate the most important plasma parameters [16]. In other cases
they are used to protect the device from damages, control positioning
of the plasma and other purposes requiring a real-time system [8].
For the special case of the magnetic confinement device of the
stellarator type, its design provides inherent plasma stability that
makes rigorous inference more important than fast control systems.
The evolution of the plasma parameters and processes tends to be
highly non-linear with complex models as well as extensive analytic
expressions. It is also the case that variables in these models are also

not known with certainty. This makes the niche of plasma physics in
a stellarator favorable for standard Bayesian analysis where the least
amount of biasing and approximations is preferred [17]. Nevertheless,
fast parameter estimation and control for plasma stability is also
important for machine protection. This drives the need to have a
system that allows unbiased Bayesian inference in a faster time scale
than the typical post-processing approach.
Bayesian inference for Wendelstein 7-X (W7-X) diagnostics is done
with Minerva, a Bayesian modelling framework that generalises
model description and inference [18]. The framework has for example
the ability to use a set of optimizers and samplers, reusable for
any given model. The framework has the flexibility of changing
parameters from ”known” to ”free parameter”. Another key advantage
is the joint analysis of multiple diagnostics that are measuring one
plasma parameter in common [15]. Nevertheless, Minerva is not
designed for real-time capabilities and, therefore, has processing
times that are suitable for post processing only.
Finally, it is also important to state that given the lack of knowledge
of the dynamic behavior in many plasma processes, this Bayesian
analysis is typically done for single observations and not for time-
dependent models.
Typically, these types of inverse problems for complex physics
models with several data sources and free parameters require a big
amount of computation time and processing power. Model dimensi-
onality can also grow to a point where the full posterior distribution
is intractable and not of a standard analytic form. For this, various
iterative sampling algorithms such as Markov Chain Monte Carlo
(MCMC) are used to find proper (generally non-Gaussian) parameter
distributions of interest, often taking minutes or hours on regular
CPUs.
With this motivation, the question arises of whether it is possible to
devise an accelerated form of this standard time-independent non-
linear Bayesian analysis. This would bring parameter estimation to
a faster time scheme while maintaining the rigor of the analysis.
Maintaining Minerva’s advantages like its modularity, reusability of
optimizers and flexibility of redefining parameters as free is also
desired.
This work intends to show how this type of generic Bayesian analysis
for the described variety of inverse problems can benefit from the
development of FPGA architecture and its advances in resource
availability as well as double precision floating point architecture. An
accelerated version of the forward modeling combined with modern
FPGA implementations of inversion algorithms can bring many of
these inverse problems calculations closer to a real-time scheme. This
would not only serve as a faster tool for interpretation of diagnostic
data but also as a signal for control systems that do not require a
sub-microsecond time resolution.

For this paper, an FPGA post-implementation simulated design
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for an accelerated plasma electron density and temperature profile
estimation is presented. The profile is determined by the joint analysis
of two ubiquitous diagnostics in magnetic confinement device: the
Dispersion Interferometer (DI) and the Thomson Scattering (TS)
diagnostics. The acceleration of the DI model alone was demonstrated
already in [11].

II. MODELING

Among the plasma parameters that are typically measured, electron
density and electron temperature tend to be important for several
reasons going from quality of a plasma to safety limits of the
machine. Examples of this are plasma positioning or determination
of a time window to stop heating.
To estimate both of these parameters the two physical phenomena
measured are refraction index and Thomson scattering. In the case
of W7-X, these are measured with a Dispersion Interferometer and
a Thomson Scattering diagnostic which have a coinciding Line of
Sight (LoS). From the latter we can infer both parameters with some
limitations. If we introduce the DI to the analysis, we can improve
our inference for cases where TS under-performs.

A. Thomson Scattering Diagnostic at W7-X

The Thomson Scattering is a typical and well developed diagnostic
used in many fusion devices. In the case of the W7-X, it measures
light from a Nd:YAG laser that is scattered by the electrons in the
plasma in order to determine electron density and temperature. The
laser, while crossing the plasma, will accelerate free electrons in the
plasma making the electron emit a scattered photon at a Doppler
shifted frequency. This scattered wave’s spectrum is proportional
to the electron velocity distribution, that is its temperature, and its
intensity is proportional to the electron density. The scattered light
is picked up by two sets of lenses that observe the whole plasma
cross-section. The light is collected and transported by fiber bundles
to polychromators with 5 filters. These measure spectral intervals
with different width due to signal to noise considerations. The light
intensity is then detected by avalanche photodiodes. For the scattered
power Ps the analytical expression for incident and observed light
polarized perpendicular to the scattering plane is [12]:

d3Ps
dεdΩdr

= r2ene〈Sl〉S(ε, θ, α) (1)

where re is the classical electron radius, ne the electron density, Sl
the Poynting vector for the incident laser light beam, θ the scattering
angle, ε the normalized wavelength shift (λs − λl)/λl and α the
normalized inverse temperature mec

2/(2Te).
For each polychromator, the ith spectral interval signal measured

by the avalanche diode can be modeled as(∫
sdt

)
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where El is the laser energy, S(ε, θ, α) the spectral density
function, δΩ is the solid angle of the system, gi(λ) the absolute
sensitivity, the left hand side a time integration and the right hand
side a length of observation volume and a wavelength integration
respectively [S. Bozhenkov, to be published]. In this case, where
plasma parameters don’t change significantly with respect to di-
agnostic resolution, the length integration can be simplified to a
multiplication with the volume length.
A majority of the calculation of S(ε, θ, α) is stated below in order to
represent the complexity of the forward model and show how modern
FPGA have enough resources to handle such models. The rest can
be found in [12].

S(ε, θ, α) = Sz(ε, θ, α)q(ε, θ, α) (3)

where we know that Sz(ε, θ, α) and q(ε, θ, α) are
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B. The Dispersion Interferometer

The Dispersion Interferometer is a diagnostic that, in the case of
the W7-X, allows the indirect measurement of line integrated electron
density due to its proportionality with the phase shift introduced by
the plasma refraction index [5], [7].

The DI works by frequency doubling and polarizing an amount
of the incident 10.6 µm wavelength CO2 laser light. This beam
crosses the plasma with two different frequency and polarization
components, each receiving a different phase shift. After crossing
the plasma twice, the base frequency component gets doubled and
shifted before filtering the base-band frequency and leaving just the
interference pattern. This is then measured by a photo-diode. The
recorded signal can be modeled as:

V = I1 + I2 + 2
√
I1I2 cos(mπ sin(ωt) + ∆ϕ), (9)

where m is the modulation depth set by a photoelastic modulator
at ω = 50kHz, I1,2 are typically constant along period of the signal
and ∆ϕ is the phase difference between the two wave components
in the beam path. The phase difference is proportional to the line
integrated electron density

∫
nedl of the plasma along the crossed

LoS.

C. Bayesian Model

In order to tackle this problem with Bayesian analysis we can
formulate Bayes' theorem with the parameters of interest. In this case,
the parameters of interest are the density and temperature values of
each TS channel. The integration of these points along the plasma
cross-section joins the TS points to the DI’s line integrated electron
density measurement and can be expressed as,

p( ~ne, ~Te | ~DTS , DDI) =
p( ~DTS , DDI | ~ne, ~Te)p( ~ne)p( ~Te)

p( ~DTS , DDI)
, (10)

where ~DTS is the data vector from all TS channels, DDI , the
data from the interferometer, p( ~ne, ~Te | ~DTS , DDI), is the posterior
probability density function (pdf). The likelihood, p( ~DTS , DDI |
~ne, ~Te), is defined by a normal distribution of the data set around the
predicted forward modeled values. Finally p( ~ne) and p( ~Te) are the
priors of the selected parameters and p( ~DTS , DDI) is the evidence.
For this parameter estimation the evidence factor can be disregarded
given that it is constant for every given data set. For the prior, given
the natural limits of temperature and density, values lower than 0
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and an upper limit are not expected. This allows a truncated normal
distribution to be selected and can be expressed for density as:

p(nei) =

{
1

Aiσnei

√
2π
exp(− 1

2

(
nei
−µnei

σnei

)2
) 0 ≤ nei ≤ b

0 otherwise
(11)

where i is the channel number of the TS diagnostic, A is the
normalization value for the truncated normal and µnei the mean value
for the density value of that specific channel.

For the likelihood with data coming from different sources, we can
write it as [14]:

p( ~DTS , DDI | ~ne, ~Te) = N ( ~DTS ; ~VTS , ~σ
2
TS)N (DDI ;VDI , σ

2
DI).
(12)

Here, the normal distributions N of the data DTS/DI over the
predicted forward modeled value V are multiplied. σ2

TS/DI repre-
sents the covariance matrix and variance value of the TS and DI data
respectively, representing the noise level of the data. The resulting
posterior pdf is 20 dimensional.
Given that this analysis was partially selected due to the proper
handling of the uncertainty, besides the most likely value an un-
certainty estimation is desired. Thus the posterior distribution, which
is the full description of the parameters given the data, needs to
be consequently explored. The Metropolis-Hastings Markov chain
Monte Carlo (MCMC) method was selected which samples the
posterior iteratively.
The iterative nature of MCMC makes it hard for a real-time solution
since it depends on the value of the previous sample point during
iterations. The MCMC requires a burn-in period of the chain to
enter a high probability region representative of the distribution, plus
a number of representative samples of the distribution around this
point.
In order to limit the number of burn-in iterations, a good initial
point for each free parameter is required. This will assure a faster
convergence of the chain and therefore requiring less iterations.
Amongst the many optimizer algorithms Hooke and Jeeves was
selected for this work to find a good initial point of the Maximum a
Posteriori (MAP).
The analysis was done with real data from the first operation
campaign of W7-X and validated against analyzed data of the TS
diagnostic.

After testing several possible combinations, a minimum of 10
rounds of Hooke and Jeeves and 40000 rounds of MCMC were
required. When compared to the reference analyzed data, Figure
1 was generated and describes the desired density and temperature
profile to be achieved in a real-time frame.

III. ACCELERATION WITH FPGA ARCHITECTURE

Previous works in the field of Bayesian filtering has been very
successfull in bringing Bayesian analysis to a real-time scheme
with different filtering techniques. The majority are for analysis of
time-dependent models where the state-space approach and Bayesian
filtering and smoothing are used for control systems [13]. Linear
problems with Gaussian noise can be solved with the Kalman filter,
which is achieved by reformulating Bayes' theorem [3]. Many others
have also been developed to deal with non-linear problems on time-
dependent models that reduce the volume of calculations through
sub-optimal algorithms and linearizations while following a Bayesian
approach. Some of these are: particle filters, extended Kalman filters
(EKF), grid based algorithms as well as variational Bayes techniques.
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Fig. 1. Temperature Profile. 40,000 MCMC iterations, 10 MAP iterations.

Most of these are Bayesian solutions to time-varying inverse problems
formulated as stochastic state-space models [1], [2], [4], [6], [9].
For many cases, this is the best way to reach real-time solution in
a control theory frame and dynamic model state-space approach.
Unfortunately, for the discussed scenario they do not completely
satisfy the aforementioned requirements. Therefore an FPGA design
was selected to accelerate this type of analysis.
To find possibilities for acceleration, the analysis can be divided
into tasks. These are: the inversion algorithm, the calculation of
Bayes' theorem and the forward model. The results of this paper
focuses on the latter and how the processing time of models with
complex mathematical operations can be reduced using a dedicated
FPGA architecture.

A. Architecture Design

The first acceleration possibility of an FPGA architecture is paral-
lelism. For this inverse problem, as well as many others with several
data sources, this is an immediate advantage. The forward model of
each channel as well as the spectral integration in (2) for each of the
5 filters can be parallelized. Besides this, (3) shows that Sz(η, θ, α)
and q(η, θ, α) can also be parallelized.
To meet the required precision, double precision floating point
architecture was selected. Previous FPGA generations would have
presented resource difficulties to implement a model of this size
with the aforementioned precision. Nevertheless, current resource
availability in modern FPGA and optimized reconfigurable IP Cores
makes this no longer an issue.
Typically operations like divisions, exponentials and square root
require more resources compared to the other arithmetic operations.
These can be modified to reduce the resources used. Multiplications
with the inverse of a constant replace more costly divisions over
a constant. Also, for equations like (5), factors like 1/2α can be
calculated through one division and the rest of the equation with
multiplications and sums. This reduces the sheer volume of the
resources required for a forward model of this size.
The second acceleration possibility gained through dedicated har-
dware is pipelining. The main critical path is the calculation of
the forward model for 3700 wavelength values before the spectral
integration. This iterative process can benefit from the pipelining of
all arithmetic operations. For this initial design, a test clock frequency
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TABLE I
ACCELERATION VS CPU TIME (0.8± 0.1µs)

CPU Freq.(MHz) FPGA(ns) Acceleration(N-fold)

100.0 10.48 81

200.0 5.24 162

300.0 3.49 244

of 100 MHz was selected. To avoid FPGA timing violations for the
design placing and routing, a minimum initial latency of 5 clock
cycles for operations like sums and multiplications was applied. For
slower and resource demanding operations like divisions, exponenti-
als and square roots, a latency of 20 clock cycles was selected. This
allows for several wavelengths be calculated simultaneously in the
pipeline. Figure 2 describes this proposed architecture.

Fig. 2. FPGA Architecture. 10 ne and Te Channels.

IV. RESULTS AND ANALYSIS

As mentioned before, this paper focuses on the immediate advan-
tages of FPGA dedicated hardware architecture for acceleration of
the forward model.
To compare against FPGA performance, a Java profiling of the
Minerva calculation of the forward model over 20 runs resulted on
an average of 0.8 ± 0.1µs duration for each value of wavelength.
This was tested on a Intel Xeon E3-1505M CPU running at 2.8GHz
with 16 GB of RAM memory. The critical path in this architecture
belongs to the TS forward model, specifically the branch calculating
(6). Post-implementation simulations of the TS forward model shows
how the critical path requires 180 clock cycles for a single value of
wavelength. If we consider a wavelength resolution of 3, 700 we can
then calculate a duration for each wavelength and the acceleration
compared to CPU code in Table I.
Here we can see the achieved ≈ 80 Fold acceleration for a single
wavelength calculation as well as other frequencies well within the
limits of operation of the IP Cores. Since the algorithm needs to
calculate this for each channel, a parallelization of the forward model
could result in another tenfold reduction of processing time without
considering DI’s forward model gain.
Profiling also showed that the forward model represents the bulk of
the full analysis. Considering the achieved results, 40,000 iterations
of this fully parallelized forward model would require ∼ 1.5s for the
slowest clock frequency, which indeed brings the analysis closer to
a real-time frame.
Regarding resource availability, for this first implementation the

TABLE II
RESOURCE CONSUMPTION FOR A SINGLE TS CHANNEL

Resource Utilization Available Utilization %

LUT 61035 433200 14.09

FF 39269 866400 4.53

LUTRAM 3143 174200 1.8

DSP 721 3600 20.03

Virtex 7 xc7vx690tffg1761-2 was selected. For a single channel of
the TS, Table II shows that the most used resource is the DSP slices
which, if necessary, can also be traded for logic within the IP Core
configuration.

V. CONCLUSIONS

Compared to the number of calculations needed for each inversion
iteration and application of Bayes' theorem, the forward model takes
up most of the processing time. An 80-fold acceleration of the
forward model was achieved with dedicated FPGA architecture, reuse
of architecture through pipelining and a parallelism for each channel
and spectral integration. This type of acceleration is ideal for inverse
problems with several channels using the same forward model but not
limited to those. Complex calculations can be branched, parallelized
and gain from pipelining.
It is important to state that this paper only covers the part of the
project that addresses the forward model, while inversion speed
is also of importance and the current step being developed for
the full solution. The field of statistical signal processing has also
made significant advances in this area that can be used together
with forward model acceleration. From the many optimizers and
samplers accelerated on FPGA architecture, one good example is the
acceleration of Parallel-Tempering MCMC [10]. This clearly shows
how, by combining these solutions, there is enough development and
algorithms to bring full Bayesian analysis closer to real-time frame
using modern FPGAs. Besides this, reconfigurable hardware provides
a suitable environment for the fast modification of these models,
addition of new free parameters and exchange of models or optimizers
to keep the flexibility of the analysis. If applied to time-independent
inverse problems, as shown in this paper, a robust analysis tool like
Bayesian analysis can be beneficial for scientific inference in modern
physics experiments.
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