
Optimization of a novel WLAN Simulation Framework for
Prototyping Network Applications and Protocols

Benjamin Beichler, Michael Rethfeldt, Hannes Raddatz,
Björn Konieczek, Peter Danielis, Christian Haubelt, Dirk Timmermann

University of Rostock
Institute of Applied Microelectronics and Computer Engineering

18051 Rostock, Germany, Tel.: +49 381 498-7278
Email: benjamin.beichler@uni-rostock.de

Abstract. Over the last few years, various types of wireless local area network (WLAN) in-
frastructures have been developed and established, taking into account the requirements of
different kinds of applications and features, like scalability, robustness, energy-efficiency, and
flexibility. The development of software applications, which depend on collaborating services
on nodes, becomes more challenging, especially, due to an increasing number of device classes
leading to heterogeneous architectures of communication nodes in wireless networks. In this
paper, we present several optimizations of ViPMesh, a novel virtual prototyping framework for
applications and protocols in IEEE 802.11 networks. We identified limiting issues regarding
the guest VM boot time and frame exchange mechanism between guest VM and host system.
By implementing a dynamic approach to switch the alternative clock source, we reduce the
boot time to a reasonable level. Our second improvement introduces a shared memory buffer
as a replacement for virtual serial channels and thus, the precision and performance of the
simulation is significantly enhanced. Moreover, we add the capability to manage the emula-
tion of nodes with different instruction set architectures, creating a testing and development
environment for applications in wireless networks with heterogeneous platforms.

1. Introduction

Over the last few years, various types of wireless local area network (WLAN) infrastructures
(such as centralized, ad hoc, and meshed) have been developed and established, taking into ac-
count the requirements of different kinds of applications and features, like scalability, robustness,
energy-efficiency, and flexibility. With this move into new fields of applications and the further
development of electronics, the number of device classes (e.g., smartphones, tablet computers,
sensor nodes) has increased as well. Today, a more heterogeneous set of communication nodes is
present in wireless networks. Moreover, the development of software applications, which depend
on collaborating services on nodes with different hardware architectures, becomes more challeng-
ing. Without an appropriate testing and development environment, it is hard to comply with the
need for a decreasing time-to-market of consumer hardware and software. Thereby, we pursue
the evaluation of network applications as well as the prototyping of own optimization algorithms
for IEEE 802.11 WLAN communication protocols. However, the setup of real-world test beds



is costly, impracticable, or simply not possible for increasing network sizes and dynamics. Net-
work emulation or simulation allow for reproducible measurements and for flexible setups with a
large number of nodes [8]. Above all, emulation permits software design and analysis on top of
an unmodified protocol stack to leverage the comparability with real-world test beds. However,
it still needs to be combined with simulations that account for wireless channel effects, different
propagation environments, or dynamic network topologies due to node mobility. Furthermore, the
integration of comprehensive simulation models is desirable to investigate the influence of modern
WLAN technology parameters, such as IEEE 802.11 MIMO techniques, or high throughput (HT)
configurations. As a result, the considerable computational effort of complex simulation models
leads to the requirement of synchronizing both simulation and system time of emulated network
participants.

We denote the combination of node emulation and network simulation as a virtual prototyping
approach for the evaluation of applications and algorithms for WLAN networks. In [5], we pro-
posed a framework for virtual prototyping of homogeneous WLAN networks, which combines a
full system virtualization provided by QEMU and Linux container virtualization for executing real
application software with an extended simulation solution called wmediumd for modeling radio
channel effects. The simulation of multiple nodes in [5] was achieved exclusively by adding more
containers within one virtual machine, which naturally need to share the same software instruction
set. Therefore, this paper presents necessary optimizations of different parts to enable the exist-
ing framework to perform a more precise and faster simulation. This is achieved by employing
technologies like shared memory and high resolution timers. Furthermore, additional changes to
enable support of multiple instruction set architectures are introduced.

The remainder of this paper is organized as follows: In Section 2, we provide an overview of
previous work in the field of combined simulation/emulation. Section 3 introduces the WLAN
stack infrastructure of the Linux kernel and is followed by an overview of the ViPMesh framework
in Section 4. Afterwards, Section 5 describes the revealed issues in detail and presents our proposed
optimizations. Finally, we conclude our work in Section 6.

2. Related Work

In [7], the authors propose an approach to include real implementations of TCP/IP stacks and appli-
cations in a wireless network simulation. By using virtual machines (VMs) that are controlled by
the event calendar of the network simulation process, a continuous time wall clock is not required
but event-driven simulations are run. Thereby, simulations can be run that are slower or faster than
real-time. For the implementation of the simulation framework proposed in [5], we adopt this con-
cept of time decoupling. In [8], the authors extend their approach and present VMSimInt, which is
a framework that integrates VMs into a network simulation tool to provide realistic OS behavior.
Thereby, the focus is on providing a realistic TCP implementation. In their approach, each node
is placed in its own VM, so the number of nodes corresponds to the number of required virtual
machines. As opposed to our approach of isolating several nodes sharing the same instruction set
architecture (ISA) in a single VM, using lightweight nested container virtualization, the concept
of [8] does not scale well in terms of memory requirements as well as communication overhead.
In their design, the addition of several nodes requires the same number of additional VMs. A vir-
tual time system for OpenVZ-based network emulations is presented in [9]. The authors modify
OpenVZ and its schedulers to be able to provide VMs each with their own virtual time, running on
a single OS. As opposed to heavy-weight systems like Xen whose VMs contain both OS and appli-



cation, this approach scales better with an increasing number of VMs. VMs and their virtual times
are managed by a control application running on the host OS and simulating a network of choice.
The approach currently solely features container-based virtualization for Linux but prospectively
the authors aim at developing a virtual time system for QEMU to support a larger number of plat-
forms. In contrast, we combine Linux containers with a time-controlled QEMU-based system
virtualization. Moreover, we integrated comprehensive physical-layer simulation models for IEEE
802.11 WLAN networks.

The work [6] addresses the problem of time divergence in hybrid network emulation by introduc-
ing a system called TimeSync that uses discrete-event simulation time to control and synchronize
time advance on VMs. The core idea of TimeSync is to create a simulator-driven virtual timeline
in the VMs participating in emulation. Although the core idea is similar to our approach, the focus
of TimeSync is different as it uses stationary nodes connected by a wired Ethernet network rather
than supporting IEEE 802.11 WLAN networks consisting of both stationary and mobile nodes.

In summary, the WLAN simulation framework in [5] improves the state-of-the-art by a first
approach that complements a real protocol stack, as applied in practical systems, with a set of
comprehensive simulation models that allow for the early design evaluation of real applications and
algorithms in WLAN networks with IEEE 802.11 MIMO techniques, multi-channel operation, and
mobility. However, the proposed implementation is limited to a single instruction set architecture
for all communication nodes and provides limited simulation performance.

3. WLAN Infrastructure of the Linux Kernel

User 
Space

Kernel 
Space

mac80211 

Configuration
Software / Tools

Network
Application

Socket API

TCP/IP

mac80211_hwsim Device Driver

HW DeviceVirtual Device

Figure 1: Linux kernel with mac80211 and mac80211_hwsim

The Linux kernel includes a sophisticated infrastructure mainly provided by the kernel module
mac80211 for the usage of IEEE 802.11 WLAN components, as depicted in Figure 1. Apart from
the integration with the TCP/IP protocol stack, a socket API provides direct access for userspace
software, e.g., to configure device or MAC layer parameters. From the view of a device driver, the
module also provides a standardized interface to leverage code sharing for highly recurrent tasks
in drivers for WLAN devices.

The module mac80211 is used either by real WLAN hardware, or by emulated virtual WLAN
devices, created with the help of kernel module mac80211_hwsim. In the basic mode, designed



for functional testing of mac80211, frames generated by mac80211_hwsim devices are assumed
to be sent over a perfect channel, i.e., transmissions are always successful and issued immediately.
Additionally, mac80211_hwsim implements an advanced mode, which provides an interface to
forward encapsulated WLAN frames via a netlink socket. This socket interface mainly behaves like
network sockets but is used for a request/response-based communication with the Linux kernel.

The solution presented in [5] uses this interface and therefore greatly extends the timing behavior
simulation by applying a full medium access model and radio channel model to all transmitted
frames while annotating resulting transmission latencies.

4. ViPMesh Framework Overview

The basic architecture of ViPMesh is shown in Figure 2. It is divided into an emulation part, based
on a nested virtualization approach, and a simulation part modeling radio channel effects. Addi-
tionally, the time synchronization and data exchange between both parts are realized via virtual
serial channels.

HostkOS

GuestkOSk.QEMUkVMW Simulationk.wmediumdW

Emulation

Frames

StatuskNkDelay

ClockkSource

Host-Guest
Interface

Application

Network
Stack

Virtual
Device

Application

Network
Stack

Virtual
Device

...

Emulated

Mesh Node 1
Simulated

Network Effects

WallkClockkTime QEMUkSystemkTime SimulationkTime

Emulated

Mesh Node n

Figure 2: Architectural concept of ViPMesh

To virtualize the guest OS, building the emulation part of our framework, we rely on the open-
source software QEMU [1]. This first virtualization step is needed to decouple wall clock and
simulation time, as detailed in Section 5.1.

Inside the guest VM, we run an unmodified mainline version of the Linux kernel within a Debian
distribution that emulates an arbitrary number of mesh nodes with real protocol stacks and appli-
cations. Using the same concept as of Linux containers (LXC), we assign each virtual device to
a separate network namespace and thereby obtain isolated protocol stacks and applications while
keeping nearly the same performance as without isolation, as shown in [3]. Consequently, we place
every virtual WLAN device created by mac80211_hwsim into such an isolated environment.

On the one hand, this allows only the emulation of nodes with the same (or at least compatible)
Instruction Set Architecture (ISA), but on the other hand the lightweight virtualization scales better



for large node counts. To explore setups with nodes of heterogeneous (or not compatible) ISAs,
the framework architecture needs to be extended to create at least one QEMU VM per ISA.

On the guest VM, a program called emuAdapter is executed with real-time priority, which
records timestamps, re-encapsulates all WLAN frames received from mac80211_hwsim and
sends it via virtual serial connections provided by the QEMU framework to the host. Since
mac80211_hwsim multiplexes all frames from all virtual interfaces, only one emuAdapter in-
stance is needed per VM.

The framework’s simulation part is realized in a daemon called wmediumd within the host OS,
which is responsible for all radio channel effects, as shown in Figure 3. All models are applied
in the shown order to each frame generated by the emulation, as described in [5]. Thereby, each
model adds a virtual delay and/or attenuation of the signal-to-noise ratio (SNR) as well as bit errors
to the simulated frame transmission.

Generated
Frames

MediumSAccess
Mobility,SPathSLossS

andSInterference

MIMOSChannel
andSPropagationS

Environment

Transm/R
StatusR-
Delay

AccessSDelay SNR
SNR
Transm.SDelay

- CarrierRSense
- CollisionRDomains
- IEEER8zq/OOe

EDCARProtocol
- RetransmissionR

Handling

- qDRNetw/RTopology
- Step4wiseRMobility
- Free4spaceRPathR

Loss
- Co4 -RAdjacent4

ChannelR
Interference

- q/v5)GHzRChannels
- IEEER8zq/OOa5g5nR

OFDM
- MIMORTechniques
- HTRModes
- Small4scaleRFadingR

bEnvironmenth

Em
u

la
ti

o
n

Em
u

la
ti

o
n

Figure 3: Simulation models of ViPMesh

Starting with a Medium Access model to derive the random back-off delay caused by contention-
based channel access, SNR attenuation effects depending on spatial and spectral distance are de-
termined by the Mobility, Path Loss and Interference model.

As a last step, technology-specific effects as well as scenario-specific multi-path fading charac-
teristics are applied by the MIMO Channel and Propagation Environment model, and transmission
status as well as overall delay are annotated in the frames and transmitted back to the emulation.

On this back path, the frames processed by the simulation are handled by the emuAdapter in-
stance and forwarded to mac80211_hwsim after the annotated time in the QEMU VM has elapsed.
Handling the communication with an userspace process has the advantage that the Linux kernel
does not need to be modified for our simulation and could easily be exchanged or updated.

The simulation process (wmediumd) keeps track of all mesh nodes according to their position
and other physical conditions and maps all incoming frames based on the MAC address of the
transmitting mesh node. Beside the actual data exchange between wmediumd and emuAdapter,
a separate communication channel for the time synchronization between simulation and QEMU
instance is needed, which is described in section 5.1.



5. Detailed Problem Identification and Proposed Optimizations

The following sections focus on the description of identified issues within the ViPMesh framework
and present our solutions. Our improvements focus on:

• the speedup of the guest VM boot time

• a more reliable and efficient data transfer between guest OS and simulation daemon

• extension of the simulation interfaces to multiple QEMU VMs with heterogeneous ISAs

5.1. Decoupling of Wall Clock and Simulation Time

To prevent the computing performance of the host system from affecting the combined emula-
tion/simulation process, a decoupling of wall clock and simulation time is necessary. We adopt
an approach originating from Werthmann et al. [8], comprising the control protocol IKR SimLib
along with a corresponding patch for the QEMU emulator.

The original idea of the QEMU patch of IKR SimLib bases on an alternative clock source for the
QEMU emulation. This clock source is used to emulate the precise time measurement devices of
an emulated system. In the case of an x86-PC, this is the programmable interrupt controller (PIC)
or, more recent, the advanced programmable interrupt controller (APIC). The emulated interrupt
controllers within QEMU serve a standardized interface for target code and post the corresponding
timed events to the inherent platform-independent timing infrastructure of QEMU. The standard
QEMU clock source looks up the most recent event and uses the POSIX alarm signaling system of
the host operating system to measure time. If an alarm signal is raised, the corresponding interrupt
will be triggered and the execution of the simulated CPU is interrupted. The alternative clock
source of IKR SimLib instead is keeping a list of all pending events and waits for a state of the
CPU, in which all processes are blocked or paused by waiting on I/O requests or timed events.

Figure 4 shows the process flow of the guest and host interaction while using the alternate
clock source. We illustrate the discrete advance of simulation time (green) and guest system time
(blue) as arrows whereas the host OS wall clock time (red) is displayed as continuous timeline.
Additionally, the processing times needed by emulation and simulation, as related to the wall
clock time without influence on simulation and guest time, are expressed as bars.

When an idle state is reached, a message containing the current simulation time and the absolute
timestamp of the next event of the clock source is transmitted over a unix pipe to the simulation
process on the host system (solid arrow named "Waiting" in Figure 4). The simulation process will
then respond a message with the new simulation time, which is greater than the received simulation
time but smaller than or equal to the transmitted next time event (solid arrow named "Advance
Time" in Figure 4). Afterwards, QEMU sets this new simulation time to its alternate clock source,
resumes CPU execution and raises the corresponding interrupts. In this execution model, the
QEMU VM in cooperation with the simulation daemon will act as discrete-event simulator.

A side effect of this behavior is the removal of the influence of computation time within the
guest OS. In theory, every computational task could be processed between two timed events of
the QEMU system. This could lead to problems with code, which is executed in an indefinite
loop without a proper blocking condition. Therefore, the IKR SimLib defines an experimentally
determined upper bound of executed blocks of translated target code, which also triggers a pause
of the CPU emulation.



Guest

Host

Processing

Simulation

Wall Clock Time Guest System Time Simulation Time

Waiting
Advance

Time

1 2

2

Frame Status &
Delay

1
...

...

Advance
Time

Figure 4: Emulation/Simulation Procedure of ViPMesh

The original QEMU is emulating a target architecture on a best-effort basis, i.e., after translation
from target code to host code, no time annotation is done. Therefore, depending on the host per-
formance, a simulated target could be faster or slower than a real target platform and no realistic
performance estimation is possible. Removing any influence of the host performance on the target
execution time emphasizes the impact of timings of the communication technology, channel ef-
fects, and network topology and suppresses influences of processing times. Moreover, we assume
these network effects to dominate the overall communication latency.

Boosting VM Boot Time

The proposed modification by IKR SimLib has the downside, that in their work specialized kernels
were used. Especially, the Advanced Configuration and Power Interface (ACPI) of the Linux
kernel was deactivated in former works. Unfortunately, this prevents the Linux kernel from using
high precision time sources, which need to be discovered via ACPI. On the other hand, the ACPI
and connected Peripheral Component Interconnect (PCI) discovery function, extensively use the
interrupt controller. This manifests in a small step size of, e.g., 10 ns in our emulation environment,
for several seconds of simulation time, which results in a huge amount of wall clock time needed
by the simulation.

On the one hand, the overhead introduced by communicating each time synchronization step
through an operating system pipe as well as the alternating activation of simulation thread and
QEMU VM thread, heavily increases the boot time of the QEMU VM. This results in a large
delay on every start of the ViPMesh framework and strongly degrades its practical usage. On the
other hand, without the high precision event timer (HPET) of the Linux kernel, it is impossible
to establish a simulation with nearly real network latencies. A decreased precision of waiting
functions in the C-API is caused by the absence of the HPET. This leads to inaccuracies of several
100 µs, which is the same order of magnitude as a complete transmission of a WLAN frame. Thus,
the version of ViPMesh in [5] is negatively affected by this precision loss as the frame delivery often
happens later as given in the time schedule determined by the simulation.

To circumvent this problem, we extended the alternative clock source from the IKR SimLib with
the possibility to change the behavior of the alternative clock source at run-time. During boot up of
the QEMU VM, the alternative clock source uses the same infrastructure as the traditional QEMU



event system and posts alarm signals to the operating system. When the QEMU VM is booted and
an userspace shell is ready, the simulation daemon sends a newly defined message via the control
pipe and the callback queues the request for activating the alternative clock. If the system gets into
a suspended state, QEMU will consistently change the clock source.

This allows us to boot and setup the guest VM with the normal performance of a stock QEMU
in several minutes and then switch to our intended behavior, which slows down the execution but
greatly increases precision.

5.2. Frame Exchange Mechanism between Guest VM and Simulation

In Figure 4 (see Section 5.1), the basic emulation/simulation procedure for a discrete advance
of simulation time including a frame transmission is depicted, showing the relation between the
simulation time of the host OS and the system time of the guest VM.

A frame generated by an emulated node of the guest VM is passed to the host OS, along with
further transmission information required, such as the current data rate and WLAN channel. On
the host side, the annotated frame travels through several simulation steps. Results of the simu-
lation are an information message, denoting transmission status (success or failure) to the frame
originator, and a message containing the actual frame for the destination node. Moreover, overall
frame delay for transmitter and receiver is included in the messages and reported back to the em-
ulation. The guest VM then applies the actual delivery of all successful frames to the emulated
nodes, as determined by the simulation.

The original approach in [5] used serial channels for all data exchange between guest and host.
Especially, the communication of data frames (arrows with dashed lines in Figure 4) turned out to
be a bottleneck for the simulation performance, caused by input/output latencies of the emulated
serial connection in the host system. This is mainly caused by the high data amount (WLAN
frames with message size of up to 1.5 KByte and a target bandwidth of several MBit/s), which
needs to be transmitted, in comparison to the relative small message (8 byte timestamp plus 8 byte
header) of the time synchronization protocol (solid black arrows).

Another problem we observed is a latent deadlock situation caused by the design of the patched
QEMU VM. When the simulation triggers a new time advance, it needs to wait for new frames from
the guest VM. Without an extra flow control mechanism, it is not easily determinable, whether the
emuAdapter process has sent frames via its output connection. So, introducing a flow control (e.g.,
the emuAdapter sends 10 concurrent frames to the simulation) tends to create a deadlock as the
emuAdapter may block while sending all frames (e.g., any buffer of the virtual serial connection
fills up). Afterwards, the simulation also blocks after receiving the "waiting" message in Figure 4.
This results from the fact that it tries to read all announced frames from the VM. Introducing a
thread for continuously reading on the serial line may alleviate this problem but adds notable syn-
chronization effort to the simulation. Also, increasing all buffers of the serial connection may help
but since the data is passed through several layers (emuAdapter process → guest OS → serial
connection device → host OS → wmediumd process), it is not easy to configure this consistently.
Therefore, we use another solution for host/guest communication presented in the following.

Improvement of Frame Exchange Mechanism

To create a more reliable and faster communication mechanism between the emuAdapter process
and the simulation process, we propose the usage of a shared memory segment between these
two entities. The work of [4] proposed a nahanni device mechanism to share memory segments



between a QEMU VM and the host system. On the host, the POSIX shared memory API is used
for memory accesses. On the guest OS, the shared memory segment is accessible via a generic
PCI device, which exposes a device memory region to the corresponding shared memory. This
would allow for the implementation of a PCI device driver in kernel space or an userspace based
PCI UIO driver, as described in [2]. However, for the current implementation, we use only parts
of the generic PCI driver, which provides a special file in the /sys/ filesystem, representing the
actual memory region. Such a memory region file can be simply mapped into the userspace virtual
memory of the emuAdapter using the mmap() systemcall. This is possible because one of the
main responsibilities of a PCI UIO driver is to serve as an easy interface for interrupt callbacks,
but our shared memory implementation, described in the following paragraph, can act without such
a signaling mechanism.

Guest

Host

Processing

Simulation

Insert 
Frames

...

...

...
Shared 

memory

References

Status &
Delay

Delete 
Frame

Wall clock time

Figure 5: Usage of Shared Memory in ViPMesh

In Figure 5, a more detailed view on the frame exchange between guest VM and simulation
process is given. The shared memory is split into a static array of WLAN frames with maxi-
mum size (including additional header and processing information), e.g., 1024 · 1600 byte. If the
emuAdapter process receives a new frame from the guest kernel, a free slot in the array is chosen
and the corresponding frame is written to the shared memory. When the guest VM suspends its
execution, the simulation iterates over all shared memory slots, searching for new frames and pro-
cesses them. After that, all receivers are notified about a new frame by handing over a reference
to the shared memory. Finally, the transmitter is informed about the transmission status and the
frame data is deleted by the emuAdapter from the shared memory.

Due to the mutually exclusive execution of guest VM and simulation process, there is no write
lock or semaphore needed for the shared memory. However, since the guest VM could be pre-
empted while writing to the shared memory (caused by the defined upper bound of execution
blocks, see Section 5.1), we need to ensure that the simulation only considers consistent frames,
already completely written. This is done via an atomic write of a flag to the shared memory, which
will be evaluated by the simulation.

Besides the saving of IO operations to deliver frames to the simulation, the shared memory
enables a nearly zero-copy implementation of all frame analysis and forwarding functions and
enhances simulation performance. Although a similar shared memory could be used also for the
backward delivery of status information to the guest VM (dashed lines upwards), we did not iden-
tify this as a significant bottleneck and leave this as a subject for future optimization. Also, the
search for unprocessed frames currently checks every entry for a valid frame and could be im-
proved by smart reference structures to search only in important slices of the shared memory.



5.3. Extensions for Heterogeneous Simulation

The architecture of the ViPMesh framework in [5] shows the general possibility to extent the ap-
proach to manage multiple QEMU instances. However, as we have shown in this paper, the orig-
inal architecture performs mediocre with the set of virtual serial channels of one QEMU VM. An
upscaled approach with several new virtual serial channels is expected to perform proportionally
worse. Therefore, the already proposed optimizations are necessary to allow a practical use and
extension of our prototyping framework.

Obviously, the simulation process needs additional extensions to the management of time events,
since not only one QEMU VM sends its next scheduled activation point but rather multiple VMs.
Due to the architecture of the IKR SimLib patch, we are allowed to always set the simulation time
between the current time and the next activation point. Consequently, we only need to take the
minimum value through all activation points of all QEMU machines. The problem of keeping the
simulation time of all QEMU machines synchronous has already been solved as well, since the
simulation process always sends the same simulation time to all VMs concurrently.

Upscaling the shared memory for multiple VMs seems to be the easiest way to create multiple
shared memories and keep the current implementation on the guest side. However, on the one
hand, this will break the zero-copy approach because if a frame is sent from node A on VM 1 to
node B on VM 2, it will be saved in the shared memory of VM 1 and a reference to the frame is
not sufficient to deliver the frame on VM 2. On the other hand, one shared memory between all
VMs breaks the assumption of only one writing process existing per time, when all VMs actually
execute in parallel.

Therefore, we propose an additional modification of the management of the shared memory.
After a proper configuration of all nodes, we presume that every MAC address simulated by a
mac80211_hwsim device will only exist once over all VMs. This assumption inhibits the occur-
rence of MAC address collisions. Despite the fact that MAC addresses should be collision-free
by definition, it may be interesting to investigate the robustness of an implementation according
to MAC address collisions. This is usually not the focus during the development of network ap-
plications, and thus allows us to subdivide the shared memory into exactly one region for every
emulated node. Other mechanisms, which hide the permanent MAC address of a transmitting
node, e.g., anonymous WLAN probing, are not affected, since mac80211_hwsim always adds the
unique ID of a transmitting node to a corresponding frame.

6. Conclusion

In this paper, we presented several optimizations of our virtual prototyping framework ViPMesh
for applications and protocols in IEEE 802.11 networks. ViPMesh relies on WLAN interface emu-
lation and QEMU-based system virtualization with nested container isolation to support the early
design analysis of real software implementations on top of an unmodified network stack and OS.
Adopting an alternative time source approach for QEMU, ViPMesh acts as discrete-event simula-
tor. Furthermore, it integrates comprehensive medium access, channel, and environment models
with support for interference effects, IEEE 802.11 MIMO, multi-channel operation, and device
mobility. We identified issues regarding guest VM boot time and the frame exchange mechanism
between guest VM and host system, which have limited the practical operation of our proposed
framework. By implementing a dynamic approach to switch the alternative clock source, we re-
duced the boot time to a reasonable level. Our second improvement introduced a shared memory
buffer as a replacement for virtual serial channels, and thus the precision and performance of the



simulation was significantly enhanced.
Moreover, we added the capability to manage the emulation of nodes with different instruction

set architectures, creating a testing and development environment for application development in
wireless networks with heterogeneous platforms.

Acknowledgment

The authors would like to thank the German Research Foundation (DFG), RTG 1424 (MuSAMA)
for their financial support.

References

[1] F. Bellard: QEMU, a Fast and Portable Dynamic Translator. In Proceedings of the USENIX
Annual Technical Conference, ATEC ’05, pages 41–41, Berkeley, USA, 2005. USENIX Assn.

[2] J. Corbet: Uio: user-space drivers, 2007. https://lwn.net/Articles/232575/.

[3] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio: An updated performance comparison of
virtual machines and Linux containers. In IEEE ISPASS ’15, pages 171–172, March 2015.

[4] A. C. Macdonell: Shared-memory Optimizations for Virtual Machines. PhD thesis, Edmonton,
Alta., Canada, 2011, ISBN 978-0-494-89468-2. AAINR89468.

[5] M. Rethfeldt, H. Raddatz, B. Beichler, B. Konieczek, D. Timmermann, Ch. Haubelt, and P.
Danielis: ViPMesh: A Virtual Prototyping Framework for IEEE 802.11s Wireless Mesh Net-
works. In 12th IEEE International Conference on Wireless and Mobile Computing, Networking
and Communications (WiMob), pages 688–694, NY, USA, 2016. ISBN 978-1-5090-0724-0.

[6] F. Sultan, A. Poylisher, C. Serban, J. Lee, R. Chadha, C. J. Chiang, K. Whittaker, Ch. Scilla,
and S. Ali: Timesync: Virtual time for scalable, high-fidelity hybrid network emulation. In
IEEE MILCOM, 2012.

[7] Th. Werthmann, M. Kaschub, Ch. Blankenhorn, and Ch. M. Mueller: Approaches for evaluat-
ing the application performance of future mobile networks. European Cooperation in the Field
of Scientific and Technical Research, COST IC1004 TD (11), 1038, 2011.

[8] Th. Werthmann, M. Kaschub, M. Kühlewind, S. Scholz, and D. Wagner: VMSimInt: A Net-
work Simulation Tool Supporting Integration of Arbitrary Kernels and Applications. In Pro-
ceedings of the 7th International ICST Conference on Simulation Tools and Techniques, pages
56–65. ICST, 2014.

[9] Y. Zheng and D. M. Nicol: A Virtual Time System for OpenVZ-Based Network Emulations. In
Principles of Advanced and Distributed Simulation (PADS), 2011 IEEE Workshop on, pages
1–10, June 2011.


