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Abstract—WLAN mesh networks are one of the key technolo-
gies for upcoming smart city applications and characterized by a
flexible and low-cost deployment. The amendment IEEE 802.11s
(.11s) introduces low-level mesh interoperability at the WLAN
MAC layer. However, scalability limitations imposed by manage-
ment traffic overhead, routing delays, medium contention, and in-
terference are common issues in wireless mesh networks and also
apply to .11s networks. Possible solutions proposed in research
recommend a divide-and-conquer scheme that partitions the
network into clusters and forms smaller broadcast and collision
domains by assigning different channels. We present CHaChA,
a distributed cross-layer approach for clustering and channel
assignment that directly integrates the default .11s mesh protocol
information and operation modes, retaining unrestricted compli-
ance to the standard. The practical performance and implied
benefits of CHaChA are demonstrated in a real-world testbed.

Index Terms—WLAN Mesh Network, IEEE 802.11s, HWMP,
Airtime Link Metric, Clustering, Channel Assignment.

I. INTRODUCTION

WLAN mesh networks are characterized by their flexible and
fail-safe network topology. Featuring spontaneous interconnection
and multi-hop forwarding they allow for low-cost increase of
wireless coverage, e.g., in access networks, backbones, or
service infrastructures in the urban sector and public facilities
[1]. However, the current trend towards proprietary commodity
solutions impedes the large-scale deployability of wireless mesh
networks in prospective IoT scenarios. To overcome this vendor
lock-in, it is required to leverage standard technologies that
enable low-level interoperability. Since 2011, the IEEE 802.11s
(.11s) amendment standard integrates mesh mechanisms directly
into the WLAN MAC layer [2]. It is subject to ongoing research
that aims at optimizing its scalability and interplay with existing
higher-layer applications and protocols. One main challenge is
the design of interoperable optimization approaches that directly
integrate the default mechanisms and metrics provided by .11s,
without introducing MAC layer modifications or depending on
specialized hardware and unavailable protocol features.

Typical scalability limitations of wireless mesh networks arise
from management traffic overhead, routing delays and error
rates that increase with node count and path length. Devices
within radio range and on the same channel form a collision
domain and are subject to medium contention and co-channel
interference. Subsequent frame forwarding steps are required
during multi-hop data delivery, which are again subject to
possible transmission errors and collisions. These limitations
also impair the performance of applications operating in the
wireless mesh network. As an example, we previously developed
a centralized status monitoring framework for .11s networks [3].
However, real-world evaluation proved that decentralization is
necessary to ensure its scalability and robustness [4].

Common approaches in research propose network partitioning
with the election of distributed cluster heads, each being
responsible only for a specific network region, assigned to a

non-overlapping channel [S], [6]. Such a clustering and channel
assignment approach allows for improved utilization of the
available spatial and spectral resources and implies particular
performance benefit for distributed applications when mapped to
appropriate clusters. Nevertheless, to the best of our knowledge
no specific solution for .11s exists that directly integrates its
default mechanisms without further modifications. Particularly
the .11s routing protocol HWMP and its metric ALM, available
on every standard-compliant node, offer the potential to derive
topology information to serve as basis for cluster formation.
Consequently, we present CHaChA (Clustering Heuristic and
Channel Assignment). The resulting solution is used to perform
distributed clustering and channel assignment in .11s networks,
maintaining unrestrained interoperability to the mesh standard.
We validate the practicability of our method in a real-world
testbed and demonstrate its potential performance benefit by
means of an exemplary mesh network monitoring application.

Summarized, the key contributions of CHaChA are:

Clustering and channel assignment in .11s mesh networks
Compliance to standard hardware and .11 protocol stack
Integration of .11s standard mesh features and metrics
Flexible underlay-aware application layer approach
Scalable distributed and heuristical clustering

Practical prototype and testbed evaluation

II. IEEE 802.11s WLAN MESH NETWORKS

As the first common industry WLAN mesh standard, the
amendment .11s was ratified in September 2011 [2]. It enables
vendor-independent infrastructure-less multi-hop communication
based on the widespread .11 technology. Mesh functions like
peering and routing are directly integrated into the MAC layer
specification. Thus, .11s comes as promising alternative to
former, non-interoperable network-layer mesh routing protocols.

To ensure interoperability, every .11s node must support the
Hybrid Wireless Mesh Protocol (HWMP) and Airtime Link Metric
(ALM) for mesh routing [7]. The default reactive mode of HWMP
is based on the Ad-Hoc On-Demand Distance Vector (AODV)
routing protocol and determines a path as soon as it is needed.
Path information is updated periodically unless it expires with an
inactivity timeout. Optionally, HWMP supports using a tree-based
proactive routing mode alongside the reactive mode. Nodes that
will be contacted frequently can use this mode to periodically
announce themselves in the network and enforce determination
of path information to them in advance. This reduces routing
latency at the expense of additional message overhead [7].

Path information are maintained as forwarding rules. For each
destination node, the address of the best neighbor is stored to
which forwarding results in the smallest ALM. Each node only
calculates the ALM to its neighbors and individual link costs
are accumulated and disseminated during path discovery. Due
to this cumulative characteristic, the ALM of a multi-hop path



represents the overall average estimated time to transmit a single
frame from source to destination. The airtime cost ¢, (in us)
is calculated per link as follows:
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O is a constant for the channel access and MAC protocol
overhead. B; is the test frame size, specified as 1kB in the
standard. r denotes the test frame data rate, given in Mbps,
whereas e, denotes the expected frame error rate. The estimation
of ef, and the value O are not predefined by the .11s standard
but left open to vendor implementations.

The Linux kernel module mac80211 currently contains the
most sophisticated implementation of .11s and HWMP [§]. By
default, path information expire after 5s and are refreshed 1s
in advance of a timeout. In proactive mode, a node announces
itself every 5s via broadcast, triggering a path discovery or
update on all other nodes. Since some parameters in ALM
calculation are left open to vendor implementations, Linux
provides own variants for error rate estimation and overhead
constants. While O is set to the constant value 1, data rate r
is estimated by the rate control algorithm (RCA). The error rate
ey is updated on every frame transmission and calculated by
a moving average filter. Depending on the WLAN hardware and
driver, this estimation is often provided by the RCA as well.

III. RELATED WORK

The surveys [5], [6] provide an overview of different central-
ized and distributed clustering and channel assignment schemes.
However, no approaches are discussed in these surveys that use
at least a part of the .11s standard such as [9]-[11]. Besides the
support and integration of .11s for unrestrained interoperability,
we further aim at a distributed solution. Compared to centralized
schemes, distributed approaches exhibit a higher scalability
and robustness and are feasible even when no global network
knowledge is available [5]. Lastly, we focus on the evaluation
in a real-world testbed which validates practical applicability.

In Table I, we briefly summarize clustering and channel assign-
ment works that are related to our approach and utilize standard
.11. All works are grouped in the rows of the table by whether
they also use standard .11s, present a distributed clustering
approach, and whether the results were captured in a testbed.

In contrast to the related work, our approach CHaChA
presents a distributed clustering solution that is fully compliant
with standard .11 and .11s, directly integrates .11s MAC-layer
protocol information, and is evaluated using a realistic testbed.

IV. CHACHA CONCEPT
A. Overview & Terminology

The two main tasks of CHaChA, the clustering and channel
assignment, are performed in a sequence of phases, as shown in
Fig. 1. The design choice for operating in phases avoids the need
for a precise time synchronization in the network. We assume
all nodes to be equipped with at least two physical WLAN
interfaces. The dedicated primary interface remains on a fixed
default channel for unrestricted connectivity and inter-cluster
communication, as proposed in other works [11], [13]. All
control messages, maintenance operations, and metrics of our
approach are exclusively retrieved and exchanged via the primary
interface. After cluster formation, the secondary interface is
activated and used for intra-cluster communication only.

TABLE II: CHaChA Node Roles

Node Role [

Cluster-Free Node (CFN)
Cluster Member (CM)
Cluster Head (CH)
Proposed CH (PCH)
Master CH (MCH)

Description

initial role, not in a cluster yet
member of a cluster

leader of a cluster

temporary CH candidate
central CH and phase coordinator
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Fig. 1: Phases of the CHaChA Algorithm

Along the phase progression, nodes take different roles which
are summarized in Table II. An initially dynamically selected
master cluster head (MCH) is responsible for guiding the phase
progression by announcing transitions via control messages.
Phases 0 to 4 divide the network into non-overlapping clusters by
considering the network topology. Each cluster represents a new
mesh network on the secondary interface and comprises a leading
cluster head (CH) and multiple cluster members (CMs). Clusters
represent smaller broadcast domains in comparison to the default
channel base network on the primary interface. This bears the po-
tential to decrease network-wide load by mapping network appli-
cations to suitable clusters. If more than two interfaces are avail-
able, multiple applications in the same cluster could receive a dif-
ferent mapping. However, currently CHaChA does not prescribe
the utilization of such additional interfaces. Phases 5 and 6 per-
form the channel assignment and configuration of the secondary
interface. Spectral separation mitigates interference between adja-
cent clusters and the default channel and leverages parallel trans-
missions. A detailed phase description follows in Section IV-B.

A main goal of CHaChA is to be applicable with commodity
hardware and an unmodified .11/.11s protocol stack for maximum
interoperability and practical deployability. However, as a
consequence of the .11s distance-vector routing protocol HWMP,
every node has only incomplete knowledge of the network
topology. Therefore, our approach implements a clustering
heuristic, relying on the default .11s link and path information
and metrics derived from it. This local MAC-layer knowledge
is integrated into our application-layer algorithm. During the
phases of CHaChA different metrics are used, which are listed
in the following without particular order:

Airtime Link Metric (ALM): airtime cost of a frame
transmission to a destination node, directly provided by the .11s
standard routing protocol HWMP (see Section II). Due to its



TABLE I: Comparison of Related Work (*: Incomplete or Modified .11s without ALM)

l Works

| Standard .11s Utilization

Distributed Approach [ Testbed Evaluation

CCAS [12], ISC [13], MCI [14], MCCA [15] — — —
CCA [16], CoMTaC [17], DCITCA [18], Max-Min-D [19] — v —
CGCA [9] * — _
Kapse et al. [10] * v —
JRCAP [11] * v v

per-hop accumulation during path discovery, ALM denotes both
the communication performance and path length between two
nodes. In CHaChA it is used as distance measure, e.g., to let
nodes join a proximate CH.

Centrality (CENT): estimate of the centrality of a node’s
position in the network. The node with highest centrality will
become MCH. In a setup with homogeneous WLAN hardware
and equal transmission parameters, the ALM cost of a mesh path
is mainly affected by its length, unless individual link conditions
manifest in a continuously high error rate. Therefore, it can be
reasonably assumed that the most central node of an arbitrary
mesh topology has the lowest mean ALM to other nodes as it
communicates over the shortest path length on average. After
having determined the ALM to all other nodes by (temporarily)
activating the proactive mode of the .11s HWMP (see Sectlon 1),
each node can calculate its centrality as CENT = A 7

Neighbor Count (NC): number of active .11s mesh connec-
tions. Nodes with maximum link count among their neighbors
can reach the highest share of nodes directly and have the lowest
probability of getting isolated in their respective network region.
They are assumed proper CH candidates and will compete as “pro-
posed” CHs (PCHs) until being sorted out further. The NC metric
has also been proposed in many other research works under a dif-
ferent name, such as Highest Connectivity (HC) metric [13], [16].

PCH Neighbor Count (PCHNC): number of neighbors
that are currently in the PCH role.

NC-to-PCHNC Ratio (NPR): ratio of NC and PCHNC. To
obtain a value between 0 and 1, NPR is further normalized to
the overall number of nodes, network size /N, which is derived
from the number of mesh paths that are known after a proactive
HWMP discovery. In the progress of CH election, those PCHs
with highest NPR will be given a higher chance to win because
they occupy a neighborhood with less PCH redundancy All
PCHs calculate this metric as NPR= 1+PC+NC)N

Weighted NPR (WNPR): a node’s NPR multiplied
with its centrality CENT, normalized to the maximum
centrality among all nodes, CENT,,,, (centrality of the
MCH). All PCHs co Epete based on this metric, calculated as
WNPR=NPR- 52—

By introducing a centrality weight factor to the NPR, PCH
competition finds a compromise between the sparseness of
surrounding CH candidates and the proximity to the MCH in
the network center. The motivation for this is two-fold: firstly,
the centrality weight avoids plain NPR to overly prefer PCHs
at the outward rims and corners of network regions, which are
in general sparsely populated with CH candidates. Secondly,
preserving a certain proximity to the central MCH implies
benefit for distributed applications that perform inter-cluster
communication and inter-CH synchronization.

Numeric Value of MAC Address: In a tie situation, i.e., if
metrics of two nodes match exactly, the node with larger MAC
address value wins the comparison. This supports fast and clear
decision-making in several competition stages of our approach.

The control messages defined as part of the CHaChA protocol
are given in Table III. They include unicast messages that are
mainly exchanged between neighbors and broadcast messages
that announce information to all nodes. Lastly, several timing
parameters and thresholds are summarized in Table IV. The
given example configuration corresponds to that used in our
practical prototype evaluation, described later in Section V-B.
A detailed description of the message and parameter utilization
follows in Section IV-B.

B. Phase Description

In the following, we attribute the metrics, messages, and
parameters of CHaChA to its different phases, shown in Fig. 1.

Phase 0 - Initialization & MCH Selection: All nodes
start as CFN and are connected on the default channel via their
primary interface. Firstly, a CFN checks for the reception of CH
announcements for CH_THRESH multiples of CH_PERIOD.
Reception indicates that the network was clustered previously
and the CFN may directly join a CH. Otherwise, the CFN hooks
into an already running later phase, if announced by a respective
message, or continues in phase 0.

During phase 0, all CFNs periodically unicast NC messages
every NC_PERIOD to their neighbors, for a later NC metric
comparison in phase 1. Every CEN further temporarily activates

TABLE III: CHaChA Unicast (UC) and Broadcast (BC) Messages

l Message Type [ UC/BC [ Description ]

CENT BC carries centrality metric

NC ucC carries NC metric

WNPR ucC carries WNPR metric

PCH ucC PCH role announcement

CH BC CH role and cluster info announcement

JOIN ucC join a new cluster

LEAVE ucC leave a previous cluster

CHAN_SEL ucC carries pairs of CH MAC and channel

PHASE_# BC phase no. # announcement

TABLE IV: CHaChA Timing Parameters and Thresholds
[ Parameter Value Description

CENT_PERIOD 500ms | CENT message sending interval
CENT_THRESH 20 consecutive CENT messages threshold
NC_PERIOD S5s NC message sending interval
CH_PERIOD S5s CH message sending interval
CH_THRESH 4 no. of periods to wait for new CHs
PHASE_#_PERIOD | 500ms | PHASE_# message sending interval
PHASE_#_TRIES 20 PHASE_# message repetition count
PHASE_#_DELAY 10s delay before announcing phase no. #




the proactive mode of HWMP for a network-wide path discovery.
As result, each CFN knows the current network size N as well
as ALM costs to all other nodes. The CFNs now calculate
their centrality and broadcast it via CENT messages every
CENT_PERIOD to contend for the MCH role. Gradually,
CFNs with smaller metric (or smaller MAC address on a tie)
lose comparison and withdraw. Finally, the CFN with highest
centrality becomes MCH after having sent CENT_THRESH
consecutive CENT messages without receiving any.

An MCH in perfect central position induces only minimum
mesh forwarding overhead when sending broadcast control
messages. The MCH will act as CH of one of the resulting
clusters and now handles the subsequent phase progression. To
trigger transition to phase 1, it broadcasts PHASE_1 messages for
PHASE_# TRIES times every PHASE_#_PERIOD before ad-
vancing its own state. This procedure is analogous for phases 1-5.

Phase 1 — PCH Selection: All nodes compare their NC
with that of their neighbors. The nodes with highest NC in their
neighborhood become PCHs (a tie of metrics is permitted in
this case). The PCHs announce their role to their neighbors via
unicast PCH messages. After a PHASE_# DELAY the MCH
triggers transition to phase 2.

Phase 2 — CH Selection: All PCHs calculate their WNPR
and unicast WNPR messages to their neighbors. Those PCHs
with highest WNPR metric in their neighborhood (or highest
MAC on a tie) become CHs. The remaining PCHs switch to the
CFN role again. After a PHASE_# DELAY the MCH triggers
transition to phase 3.

Phase 3 — CH Announcement: All CFNs deactivate the
proactive HWMP mode and operate in the more resource-saving
reactive mode again. Only the CHs (including the MCH) keep
this mode active to ensure that every node knows ALM costs
to them at any time. Additionally, CHs and MCH now activate
the periodic broadcast of CH messages to announce their role
and cluster information to all nodes in the network. After a
PHASE_#_DELAY the MCH triggers transition to phase 4.

The CH message also carries the cluster parameters which
are used for configuration of the secondary interface. In phase 3,
prior to initial cluster joining and channel selection, the message
only carries the cluster’s mesh SSID, generated from the CH’s
MAC address. Since .11s mesh routing is handled at the MAC
layer, nodes may communicate over multiple hops using only
their link-local IPv6 addresses, which are derived from MAC
address information. Thus, we consider further concepts for IP
configuration to be out of scope of CHaChA.

Phase 4 — CFN Cluster Joining: All CFNs determine their
most proximate CH in terms of ALM cost with a preference
of CHs in their neighborhood. Additionally, if the MCH is a
neighbor, it will be prioritized over other neighboring CHs. This
strategy is motivated by distributed application scenarios that
perform frequent synchronization of cluster information with the
MCH. This way, information exchange can be saved for all nodes
that already belong to the MCH’s cluster. For joining a cluster,
CFNs send a unicast JOIN message to their respective CH. After
a PHASE_# DELAY the MCH triggers transition to phase 5.

Phase 5 — CH Channel Selection: In this phase, a greedy
channel selection sequence is performed, using a predefined
pool of pairwise orthogonal channels. The MCH starts the
sequence and claims the first channel from the pool. It appends
the pair of own MAC address and selected channel to the
payload of a CHAN_SEL message and sends it to its closest

CH, according to ALM. This procedure is repeated by the next
CH until all CHs have claimed a channel. If the channel pool is
used up, a CH re-uses the channel of the most faraway previous
CH, according to ALM. This heuristic proactively mitigates
interference between adjacent clusters. The last CH sends a
message with all MAC-channel pairs back to the MCH, which
triggers transition to phase 6.

Phase 6 — CH/CM Cluster Interface Configuration:
Starting in phase 5, the CH message broadcasts also carry the
cluster’s channel and the current number of joined CMs. In phase
6, all nodes configure the secondary interface according to the
parameters advertised for their respective cluster. CHs activate
the proactive mode of HWMP on the cluster interface as well.
As result, paths between CMs and their CH are always refreshed
and node failures can be mutually detected by checking the
local .11s path information. After cluster interface configuration,
nodes directly switch to phase 7.

Phase 7 — Distributed Operation & Cluster Maintenance:
Having reached phase 7, initial clustering of the network is
complete. Distributed applications can benefit from increased
performance due to parallel operation on non-overlapping
channels with reduced broadcast domain size. Note that
unrestrained inter-cluster network connectivity is always ensured
via the primary interface, configured on the default channel.

While we consider strategies for coping with network
dynamics, we have not yet practically evaluated CHaChA
under dynamic topology changes. However, the described
protocol mechanisms and integrated .11s HWMP information
allow for continuous cluster maintenance. The information
included in CH announcements can be considered by CMs
or newly arriving CFNs as criteria to join and roam between
clusters, closely following the strategy described in [11]. While
an unsupported channel prevents a cluster from being chosen,
more proximate CHs with fewer CMs have to be preferred for
long-term cluster balancing. For this, CMs observe the ALM
distance to all CHs as well as their current CM load. CH or CM
node failure can be detected on a timeout of path information or
a sudden absence of periodic CH announcements. In most cases,
a failed CH is likely to be replaced by a CM of the same cluster.
However, severe topology changes might also let CHs enforce a
re-clustering of the network by triggering a transition to phase 0.

V. EXPERIMENTAL VALIDATION
A. CHaChA Prototype and Testbed Setup

We implemented a Java prototype of CHaChA that runs
on Linux .11s mesh nodes. It executes the described phase
progression in a state machine. TCP is used for sending all
unicast and UDP for all broadcast messages, respectively. To
retrieve the mesh link and HWMP information on each node,
we rely on existing operating system interfaces accessed via
process calls. The Linux .11s implementation maintains /ink
list and path list data structures on kernel level that can be
inspected via the command-line utility iw [8].

We evaluated our CHaChA prototype in a practical testbed,
comprising 25 Intel Galileo single-board computers. Based on our
approach “Mini-Mesh” [20], using RF attenuators and reduced
transmission power, we achieve a substantial reduction of trans-
mission range. This allows us to create indoor multi-hop setups
in a scale of approx. 1:560. Our device configuration is given
in Table V. Besides an on-board Ethernet interface, attached to a
wired control network, each node is equipped with a dual-antenna
.11n mPCle card. All cards operate at a fixed transmission rate



TABLE V: Testbed Configuration

Parameter [ Value ]
Device Intel Galileo Board (Gen. 1)

CPU Quark X1000 (Single-Core 400 MHz)
RAM 256 MB DDR3

oS Debian 8 (Linux Kernel v4.9)

.11 NIC Compex WLE200NX .11a/b/g/n (mPCle)
NIC Chipset Atheros AR9280 (ath9k driver)

Antennas 2 x 5dBi Dual-Band Omni-Direct.
Attenuators 2 x Mini-Circuits VAT-30+ (30dB)
Default Channel | 149 (5745MHz, HT20, Long GI)

TX Rate MCS 3 (16-QAM 1/2, 26 Mbps)

and start on a default channel, not used otherwise in our institute
building. While each node could be equipped with a secondary
WLAN interface via USB, there are no products available that
use the same chipset and support external RF attenuators. We
therefore avoid a mixed hardware setup and analyze CHaChA
and the performance benefit of multi-channel clusters by using

only the primary interface, as described in the following sections.

We arranged our testbed in a regular 5x5-node grid setup,
offering a network diameter of 4 hops and a symmetric center
position. Fig. 2 shows the grid geometry.

After a performance analysis of CHaChA in Section V-B,
the potential benefit of our approach is demonstrated by means
of a network monitoring application in Section V-C. Here, a
distributed monitoring approach, utilizing the cluster topology
and CHs created by CHaChA, is compared to a centralized
reference scenario, where a solitary MCH gathers the status data
of all nodes. Fig. 2 marks the reference worst (node 1, red) and
best case (node 13, green) choice for the position of the solitary
MCH in terms of communication effort (average path length).

B. CHaChA Clustering Performance

We evaluated our CHaChA prototype in the 5x5-node grid
base topology w.r.t. resulting cluster constellation, clustering
duration, and induced traffic overhead. Algorithm parameters
were set as given in Table IV. In each measurement run, CHaChA
was started simultaneously on all devices of the unclustered base
topology. A clustering run was denoted complete as soon as
all nodes entered phase 7. By design, CHaChA communication
is performed exclusively via the primary network interface that
connects all nodes on a default channel. As indicated before,
we spared a secondary interface in our evaluation. Therefore,
all nodes executed phase 6 in a “dry” manner without actually
applying the respective cluster configuration but only saving it
for analysis. Besides log files generated by our prototype, each
node recorded its self-sent traffic using the tool tcpdump.

We conducted a total of 50 measurement runs and averaged
their results. Fig. 3 shows the different cluster constellations that
occurred across all runs. Note that the clusters and their nodes
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are highlighted in different colors, depending on the respective
channel selected in phase 5. MCH, CH, and CM roles are
marked as given in the top legend. All in all, only two different
cluster constellations were formed by CHaChA. As expected for
the static testbed setup, one variant was created predominantly,
having an occurrence rate of 94 % (47 of 50 runs). Considering
the phases described in Section IV, node 13 was chosen as
MCH in phase 0 according to the centrality metric. In phase
1, the inner 3x3 grid nodes promoted as PCHs, all having a
maximum NC metric (8 neighbors). Among these, corner nodes
7,9, 17, and 19 expectably won the WNPR metric competition in
phase 2, becoming final CHs. The neighborhood- and ALM-based
joining of CMs in phase 4 already led to nearly balanced clusters.
Prospectively, a CM roaming strategy will provide for full cluster
balancing after reaching phase 7. Constellation 2 mainly differs in
the position of the MCH, caused by temporary ALM fluctuations
that affect the centrality metric in phase 0. The slightly different
clusters are a direct result of the displaced MCH and the
preference of CMs for joining the MCH’s cluster in phase 4.

We further determined the average clustering duration and
traffic overhead induced by CHaChA. For our very generous
choice of default timing parameters (see Table IV), clustering
took approx. 155s. This was expected and closely corresponds
to the given configuration. During phases 0-7, a total amount of
1.1 MB TCP and 630 kB UDP data were sent across the network,
including forwarded multi-hop frames. TCP unicast traffic makes
up the greater share due to its inherently higher protocol overhead
compared to UDP. Consequently, unicast messages for metric
exchange are kept local and are limited to a node’s neighborhood
in our approach. Additionally, all broadcast messages only
originate from the MCH and CHs, except for CENT messages in
phase 0. This design implies low long-term overhead after initial
clustering as only these nodes will send periodic announcements.
Apart from this, CMs may occasionally unicast LEAVE/JOIN
messages if they decide to roam between clusters.

Generally, CHaChA parameters need to be chosen depending
on the required robustness and overhead tolerance for an expected
network size and transmission error probability. In future investi-
gations we will analyze how small parameters can be set for differ-
ent scenarios and how duration and traffic overhead are affected.

C. Example Application: Mesh Status Monitoring

A potential use case for CHaChA is the optimization of a
municipal wireless mesh backbone or access network. Within this
context, administrative tasks such as fault management and status
monitoring need to scale accordingly in terms of performance and
robustness. By means of an exemplary monitoring application,
we demonstrate the benefit of clustering, as done by CHaChA.
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A distributed single- and multi-channel monitoring approach are
compared to a centralized single-channel worst and best case.
We consider the monitoring cycle time as performance metric,
which denotes the duration of bulk retrieval of all CM status
data and their aggregation at the MCH. In our experiments, all
CMs provided exemplary fixed-size status information (file of
250kB random data), hosted by a ucspi-tcp tcpserver instance.
On the MCH (and the CHs in the distributed scenario) netcat
was used as client-side application. A separate client process
was started for every CM and all status data were requested
simultaneously via TCP at the start of each cycle.

1) Centralized Monitoring of an Unclustered Network
In the centralized reference scenario, we distinguished a worst
and best case, as marked in Fig. 2. In both cases, the network
was considered as one cluster and all CM data were gathered
by the solitary MCH. Node 1 in the network corner was set as
worst case and node 13 in the center as best case MCH. As
a simplified theoretical consideration, we sum up the minimum
number of 1-hop transmissions required to deliver the status data
of each CM to the MCH. We assume a fixed .11 data rate on all
links and that one transmission is performed for each constant
status data size. Note that this estimation neglects any client-side
requests, error-related retransmissions, or TCP-specific effects.
With node 1 as MCH, the number of 1-hop transmissions is
70. Contrary, with node 13 as MCH in the grid center, the sum
is 40, a reduction of approx. 43 %.

We measured the individual download duration of every
netcat instance on the MCH via the Linux time command
in millisecond precision. Timestamps before start and after
successful termination of all downloads were taken via the date
command, respectively. The overall download duration was
calculated as the timestamp difference between the last returned
netcat instance and the beginning of the experiment and includes
the scheduling impact for all netcat processes.

Fig. 4 shows the average cycle and per-CM download duration
for the centralized worst (a) and best case (b). All results are
averages of 50 monitoring runs and plotted with their standard
error. The individual download times are shown as blue bars.
The total CM data download duration “CM DL” is shown by the
green bar. In the centralized scenario, this directly corresponds
to the cycle time, which is highlighted further as red dashed
horizontal line. With the fixed 26 Mbps transmission rate in our
testbed and node 1 set as MCH, cycle time was approx. 15s.
With node 13 as MCH, a cycle time reduction of 35 % was
observed, an 8 % deviation from our rough estimate (43 %). As
expected, individual download times were predominantly shorter

for proximate CMs in each case. The best case cycle time serves
as reference benchmark for the distributed monitoring approach.

2) Distributed Monitoring of a Clustered Network
For the experiment in a distributed monitoring scenario, we
used the CHaChA-generated cluster constellation 1, consisting
of one MCH and four CHs. This constellation was evaluated
in a single-channel (all clusters set to the same channel) and
in a multi-channel setup, as given in Fig. 3.

As opposed to the centralized scenario, the monitoring cycle
time was composed of two subsequent steps. In step 1, MCH and
CHs concurrently gathered the CM status data within their cluster,
which results in a per-cluster “CM DL” as in the centralized sce-
nario. As soon as each CH finished downloading, it immediately
uploaded its cluster information (CM data set complemented by
the CH’s own status data) to the MCH. Like in the centralized
scenario, a cycle was denoted complete after all data were
received by the MCH, i.e., a current snapshot of the global
network status was obtained from an administrator’s viewpoint.

As indicated before, we used only the primary mesh interface
per node. Normally, two separate interfaces would provide
simultaneous connection to a default channel and to a cluster.
However, our experiment could be exceptionally run with one
interface only as we performed the intra- and inter-cluster
communication in sequence and the CHs were in 1-hop distance
to the MCH. In the single-channel setup, interfaces of all nodes
were configured on the same channel and logical separation of
clusters was achieved by using different mesh SSIDs only. To
enable cluster data upload in step 2, CHs temporarily changed
their SSID to that of the MCH cluster. In the multi-channel
setup, additional spectral separation of clusters was achieved by
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Fig. 5: Comparison of Centralized and Distributed Monitoring Performance



using different channels. Here, CHs temporarily changed both
their SSID and channel to that of the MCH cluster in step 2.

Fig. 5 compares the cycle times of the distributed monitoring
in single- and multi-channel cluster configuration with that of
the centralized single-channel worst and best case. All results are
averages of 50 measurement runs and shown with their standard
errors. For the distributed scenarios, the per-cluster download
step duration (CM DL, green) and the sum of download and
upload step (CM DL + MCH UL, orange) are given. The
distributed monitoring cycle time directly corresponds to the
maximum DL+UL duration among all CHs. We relate the time
differences between the clusters to the respective cluster sizes
and unfairness effects of TCP. Since the MCH only performs
step 1 and receives cluster information from the other CHs in
step 2, Fig. 5 only shows the CM DL time for it.

Compared to the centralized worst case, distributed monitoring
in the single-channel cluster configuration exhibited a cycle time
reduction of approx. 34 %. This improvement is comparable to
that of the centralized best case and can again be confirmed
by our simplified theoretical estimation. Summing up all 1-hop
transmissions in step 1 and 2, a minimum of 40 transmissions
is needed, equal to the centralized best case. Moreover, parallel
transmissions are limited here as in the centralized single-channel
scenario. With all clusters set to the same channel in step 1, con-
current CM data download suffers from mutual interference in the
edge regions of adjacent clusters. Note that in step 2 concurrent
upload of cluster information to the MCH is subject to inevitable
co-channel interference. Therefore, despite an inherent increase of
robustness achieved by distributing the monitoring application, cy-
cle time showed no improvement to the centralized best case yet.

Contrary, utilization of a different channel per cluster revealed
a clear reduction of download time already for our medium-sized
testbed. The improvement in step 1 directly corresponds to a
48 % and 21 % improvement of overall cycle time compared to
the centralized worst and best case, respectively. Now using the
full potential of clustering and channel assignment as provided
by CHaChA, per-cluster CM data retrieval was performed
in non-overlapping collision domains and drew benefit from
increased concurrency. In a practical use case, even greater
long-term improvement can be expected. Subsequent monitoring
cycles can be interleaved, i.e., CHs may start a new intra-cluster
download while still uploading data to the MCH on the default
channel. Depending on application requirements, upload to
the MCH may also be performed less frequently and cluster
information may be preprocessed or compressed in advance.

VI. CONCLUSION

In the paper at hand, we introduce CHaChA, a scalable
distributed approach for clustering and channel assignment in
802.11s (.11s) mesh networks. To the best of our knowledge, the
presented solution is the first approach that integrates unmodified
.11s HWMP and its routing metric ALM while no changes
to the MAC layer are required. The default .11s information,
retrievable via existing system interfaces on every node, are used
to derive the clustering metrics for our approach. Additionally,
we propose reasonable combination of the reactive and proactive
HWMP mechanisms in a clustered mesh network.

We validate the applicability of our approach in a static 25-
node real-world testbed. Results show that CHaChA forms a well-
balanced initial cluster constellation at a 94 % reproducibility rate.
With a very generous choice of timing parameters for the given
network size, clustering takes approx. 2.5 minutes at a traffic
overhead of circa 1 MB. We further demonstrate the benefit of
multi-channel clusters using the example of a network monitoring

application. A distributed approach, utilizing the clusters formed
by CHaChA, is compared to the worst and best case of a
corresponding centralized approach. Besides the inherent increase
of failure resilience, average monitoring cycle time is reduced by
more than 20 % w.r.t. the centralized best case, already for a 5x5-
node setup. In future research we will analyze CHaChA in larger
and more dynamic scenarios, exploring further base topologies
and parameter choices. For this, we will use a combined emula-
tion/simulation framework that we developed at our institute [21].
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