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Abstract: Piecewise linear approximation of sensor signals is a well-known technique in the fields
of Data Mining and Activity Recognition. In this context, several algorithms have been developed,
some of them with the purpose to be performed on resource constrained microcontroller architectures
of wireless sensor nodes. While microcontrollers are usually constrained in computational power
and memory resources, all state-of-the-art piecewise linear approximation techniques either need
to buffer sensor data or have an execution time depending on the segment’s length. In the paper at
hand, we propose a novel piecewise linear approximation algorithm, with a constant computational
complexity as well as a constant memory complexity. Our proposed algorithm’s worst-case execution
time is one to three orders of magnitude smaller and its average execution time is three to seventy
times smaller compared to the state-of-the-art Piecewise Linear Approximation (PLA) algorithms
in our experiments. In our evaluations, we show that our algorithm is time and memory efficient
without sacrificing the approximation quality compared to other state-of-the-art piecewise linear
approximation techniques, while providing a maximum error guarantee per segment, a small
parameter space of only one parameter, and a maximum latency of one sample period plus its
worst-case execution time.

Keywords: piecewise linear approximation; segmentation; sensor data abstraction; sensor signal
compression; CPLR; wireless sensor networks; embedded sensor processing

1. Introduction

Within the last two decades, different Piecewise Linear Approximation (PLA) techniques,
sometimes also called Segmentation Algorithms, have been developed and studied by different
researchers. The applications include data mining [1], data collection in wireless sensor networks [2,3],
and several activity recognition applications with wearable sensor nodes [4–6]. The reasons
are two-fold: Firstly, approximating sensor signals with linear segments creates an alternative
representation of the characteristic shape of that signal. This is exploited by classification approaches
like motif discovery [6] or trajectory-based distance metrics [4,7]. Secondly, a reduced amount of
data is required to represent a signal and to process it further. This is important for data mining
when huge amounts of data have to be processed. Furthermore, in activity recognition settings with
wearable sensor nodes, data collected at sampling frequencies of e.g., 100 Hz has either to be stored for
longer periods of time or transmitted via wireless interfaces. The motivation to reduce sensor data
already on the wearable sensor node results from the significant energy consumption introduced by
either transmitting raw sensor data wirelessly [5,8] or by storing it to flash memory for later offline
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processing [9]. Both consumes a significant amount of energy on wearable sensor nodes. Since PLA
techniques allow a reduction of sensor data while providing a signal representation that has shown to
be well suited for activity recognition and data mining purposes, our focus within this paper is on
PLA algorithms.

While the most optimized state-of-the-art PLA algorithm [5] has been designed for embedded
wearable devices with limited processing power, it still needs a buffer for sensor data in order to achieve
a good compression. Such buffer-based PLA techniques can only produce segments with a maximum
length of the buffer size. In situations where the sensor signal has no fluctuations (e.g., an accelerometer
which is not moved over a longer period), many segments as small as the buffer size would be created
instead of a single long segment. Therefore, the segment’s length is constrained by the memory
budget of the architecture. Furthermore, the execution time of most state-of-the-art PLAs depends
on the segments’ lengths. This in turn requires a small buffer or a limit on the segments’ length to
fulfill possibly existing real-time requirements. Limiting the buffer size in turn decreases the possible
compression and thus the reduction of energy consumption due to wireless transmissions.

In the context of activity recognition, a PLA algorithm has the following constraints when
performed on a wireless sensor node:

• a maximum segment error guaranty must be ensured,
• an execution time that is guaranteed to be smaller than the sampling period in order to fulfill

real-time requirements,

while targeting the objectives:

• minimal memory consumption,
• low latency of segment creation,
• high compression ratio, and
• small average computation time, preventing high energy consumption of the processing unit.

Although many online PLA approaches have been reported in literature for compressing sensor
data or time series data in general [1,4,10,11] and even some of them already introduced PLA
approaches to reduce energy consumption in WSNs (Wireless Sensor Networks) [2,3,5], none of
them can fulfill the all constraints without compromising the objectives.

To the best of our knowledge, our proposed algorithm introduced by the paper at hand is the
only existing PLA algorithm that offers both a computational complexity of O(1) and a memory
complexity of O(1). Moreover, our evaluations for an ARM Cortex-M4 microcontroller showed
a maximum execution time of at most 203 instructions per invocation, while having a memory
requirement of only 23 variables. This is a considerable reduction when compared to state-of-the-art
PLA algorithms. Furthermore, our algorithm provides comparable approximation quality to existing
solutions, a maximum least-squares error guarantee per segment, as well as a low latency and a small
parameter space.

Our paper is structured as follows. In Section 2, related work is discussed and differences to our
approach are elaborated. This is followed by a thorough description of the mathematical basics to
reproduce our algorithm in Section 3. In Section 4, our algorithm is explained in detail, including
a version for multi-dimensional signals. An implementation of our algorithm is compared to two
other existing state-of-the-art PLA techniques in Section 5, which is followed by a discussion of basic
properties of our algorithm in Section 6. Conclusions are drawn in Section 7.

2. Related Work

There are several online PLA algorithms available in literature, also referred to as segmentation
algorithms. In [1], the SWAB (Sliding Window and Bottom Up) algorithm has been introduced, which
is a combination of the offline Bottom-Up segmentation and the Sliding Window (SW) approach,
to create an online algorithm. A conceptual optimization of this algorithm has been introduced in [4]
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called mSWAB, which was further improved for resource constrained wearable sensor nodes in [5],
called emSWAB. All the aforementioned approaches require to buffer data, which in turn constrains
the segment length with the maximum buffer size. Furthermore, even including the most optimized
version emSWAB, the aforementioned approaches have worst-case execution times depending on
the length of the current segment within the buffer. This results from the iterative computation of
the residual error of that segment, which has to be completely recalculated when a new sample is
added. In contrast, our proposed approach has a small and data independent worst-case execution
time, especially regarding the current segment’s length, as, for a new sensor sample, the segment and
its error can be iteratively updated without the need of iterating over all samples covered by that
segment again.

Furthermore, all the aforementioned approaches are based on linear interpolation, while our
approach is based on linear regression. In [1], it was reported that linear regression based segmentations
of time series lead to a disjoint look of the approximated signal since the segments are not connected.
In the paper at hand, we show that this can be avoided by calculating a linear regression without an
intercept term, allowing a segment originating in the previous segment’s endpoint.

In [2,3], PLA algorithms have been introduced to reduce the amount of data collected in WSNs
by approximating the signals. Both algorithms are buffer-based with a worst-case computation time
depending on the buffer length as well. In [10], a fast alternative for time series segmentation is
reported, which trades computation time with a drastic increasing memory consumption. The authors
argue “that we will soon have infinite storage so that trading storage for speed is a good choice” [10].
This obviously does not apply for resource constrained architectures like wearable sensor nodes.
In contrast, our proposed approach has a constant computation and memory complexity at the
same time.

In [11], another segmentation approach based on Polynomial Least-Squares Approximation with
polynomials of arbitrary order is introduced. Since these also include first order polynomials that
leads to linear segments, they need to be considered here as well. While their approach leads to a fast
computation time for each new data point independent of the segment’s length, they still need to buffer
data, if a piecewise linear approximation is targeted, which requires both segmentation points and
slopes. In their experiments, it can be seen that their approach using first order polynomials basically
leads to similar results with respect to approximation error and compression rate when compared
to SW.

Another PLA algorithm with a constant update time has been introduced in [12]. However,
again their approach is buffer-based as well with a worst-case space complexity of O(n) and uses in
their experiments around 1 KB memory. Furthermore, their approach is a mixture between connected
and non-connected piecewise segments. With our algorithm, we address the problem of approximating
sensors signals with connected piecewise segments, which is fast and small enough to be performed
on processing and memory constrained architectures.

3. Simple Linear Regression

Before describing our approach, we want to recap some basics on simple linear regression first.
Simple linear regression is a linear regression model that explains the relation of a dependent variable
as a function of an independent variable as best in terms of the minimum sum of squared residuals
(SSR) error. Usually, the residuals are minimized by using the ordinary least squares method. The linear
model, in the following referred to as regression line, is usually described as y = α + βx, with α being
the intercept term with the y-axis and β being the slope of the regression line. As we focus on a signal
approximation by connected linear segments, we force the regression line to pass through the origin.
This results in a regression line without intercept term α:

y = βx. (1)
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In general, it is not possible to model a set of n observed data pairs {(x1, y1), (x2, y2), ..., (xn, yn)}
with a single value βn. Instead of deviations from this model, called errors, can be observed.
The underlying relationship between yi and xi including the corresponding errors ei is described by:

yi = βnxi + ei. (2)

For a given estimator β̂n, the SSR error is thus computed by:

SSRn =
n

∑
i=1

(yi − β̂nxi)
2 =

n

∑
i=1

e2
i . (3)

For the general case of linear regression with multiple independent variables, where Y is the vector
of responses yi for all i = 1, . . . , n, X is a so called design matrix with each row being the observation
vector xij with i = 1, . . . , n and columns j for each independent variable (regressors). For this case,
βn is a vector comprising the parameters of each regressor. Note that here the constant term is not
modeled explicitly, but included in the design matrix as one column xi1 = 1 for all i = 1, . . . , n.
Thus, the parameter β1n is the resulting intercept term. The well-known ordinary least squares (OLS)
estimator β̂n is:

β̂n = (XTX)−1XTy = (
1
n

n

∑
i=1

xixT
i )
−1 · 1

n

n

∑
i=1

xiyi , (4)

with (XTX)−1XT being the Moore-Penrose pseudoinverse of X. From Equation (4), it can be seen that,
in simple linear regression with only one independent variable and without the intercept term, xi is
a scalar and the scalar estimator β̂n is calculated by:

β̂n =
∑n

i=1 xiyi

∑n
i=1 x2

i
=

xyn

x2n
, (5)

with xyn = ∑n
i=1 xiyi

n and x2n =
∑n

i=1 x2
i

n denoting the mean of all xiyi products and the mean of all xi
squares up to the n-th observation, respectively.

In Section 4, we show that this allows us to quickly determine β̂n for a new data point by updating
xyn and x2n. In order to calculate the SSRn from the updated variables and the OLS estimator β̂n for
each new data point, we need to resolve Equation (3) with the binomial formula to:

SSRn =
n

∑
i=1

y2
i − 2β̂n

n

∑
i=1

xiyi + β̂2
n

n

∑
i=1

x2
i . (6)

Each sum can then be rewritten using the corresponding mean values multiplied by n:

SSRn = y2
nn− 2β̂nxynn + β̂2

nx2nn. (7)

Resolving β̂2
nx2n to β̂nxyn from Equation (5) gives:

SSRn = n(y2
n − β̂nxyn). (8)

Incremental Updating

By using Equation (5) for calculating the slope and Equation (8) for calculating the error, all the
necessary means x2n, xyn, and y2

n up to the n-th sample can be updated and the corresponding β̂n

and SSRn can be recalculated with a constant computational complexity independent of n for each
new data point. This is based on updating a mean zn with each new sample zi by:

zn =
∑n

i=1 zi

n
=

∑n−1
i=1 zi + zn

n
. (9)
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Substituting ∑n−1
i=1 zi with zn−1 · (n− 1) gives the equation updating the mean zn with the new

sample zn from [13]:

zn =
zn−1(n− 1)

n
+

zn

n
. (10)

We rearranged the equation to:

zn = zn−1 +
zn − zn−1

n
, (11)

which sacrifices slightly in numerical precision, which will be discussed in Section 6.1, but saves
a multiplication and a division, in order to reduce the processing time.

This equation can be used for updating all means x2n, xyn, and y2
n for each new sample to

recalculate β̂n and SSRn with Equations (5) and (8) in constant time, respectively.

4. Online Piecewise Linear Approximation

We now introduce a problem definition of online piecewise linear approximation of sensor signals.
Assume a sensor signal sampled at different timestamps, which leads to a series S of sensor samples
((s[1], τs[1]), (s[2], τs[2]), . . . , (s[n], τs[n])) where each sample (s, τs) consists of the signal value s and
the corresponding timestamp τs. A piecewise linear approximation of that signal is a series S̃ of
segment points ((s̃[1], τs̃[1]), (s̃[2], τs̃[2]), . . . , (s̃[n], τs̃[n])) where each segment point (s̃, τs̃) consists of
a signal value s̃ and its corresponding timestamp τs̃ and represents the end point of the previous
segment and the start point of the next segment. A segment is thus represented by a pair of consecutive
segment points ((s̃[k− 1], τs̃[k− 1]), (s̃[k], τs̃[k])). Furthermore, ∀τs̃|(s̃, τs̃)εS̃ : ∃(s, τs)εS|τs = τs̃ holds,
as the segmentation points are created at timestamps of the original sensor samples. Additionally,
a user-defined threshold TH on the SSR of a segment is given, which needs to be guaranteed for all
segments within the approximation process.

An example of a piecewise linear approximated Electrocardiography (ECG) signal can be seen
in Figure 1.

2,500 2,600 2,700 2,800 2,900 3,000
0

100

200

300
Original ECG Signal

2,500 2,600 2,700 2,800 2,900 3,000
0

100

200

300
Approximated ECG Signal

Time [Samples]

Am
pl

itu
de

Figure 1. Part of ECG signal from Section 5.1 approximated with our Connected Piecewise Linear
Regression (CPLR) algorithm.

Some PLA techniques use, for the approximation of a segment, the original sample values at the
beginning and ending of the segment. Similar to [12], our approach does also use approximations
of those values. We can not draw any advantage or disadvantage from this characteristic as can be
seen in Section 5. With growing segment sizes, the ratio of original values to approximated values
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would become fairly small, whereby the influence additionally decreases. Since the approximation of
the segment points’ values are included in the SSR calculation, the TH is guaranteed to be an upper
bound on the approximation error of a segment.

In order to achieve a piecewise linear approximation S̃ of a sensors signal S online, the sensor
signal needs to be continuously represented, i.e., the segment corresponding to the last sensor sample
needs to be outputted as soon as its end point is determined due to an exceeded threshold. Therefore,
online PLA algorithms perform a sample-based processing, which means that the algorithm is invoked
with each new sensor sample. The processing time for each invocation of the algorithm is referred to
as its execution time.

In the process of online approximation, the average execution time needs to be smaller than the
sampling period, in order to not lose any samples. In order to avoid additional latencies and additional
memory consumption due to input buffering, even the worst-case execution should be smaller than
the sampling period. Moreover, a data independent execution time is preferable, as this guarantees
a predictable maximum sampling period at which the algorithm is able to approximate the signal in
real time without compromising the compression abilities.

The SW algorithm for example adds a new sample to the current segment in its buffer, each time
the algorithm is invoked. It creates a segment from the previous segment’s end point to the newly
added sample and calculates the residual error of this segment. This error calculation involves n steps
for a segment length of n and has to be recalculated each time the algorithm is invoked, as the segment
changes with each newly added sample. If the calculated segment error is below TH, the routine
returns without outputting that segment and will be invoked with the next incoming sensor sample.
If the segment error is above TH, the segment from the previous invocation is recreated, which still
satisfied the maximum error guarantee and is outputted. A new segment is started from this point.
Due to the error calculation, the execution time of the SW algorithm depends on the current segment’s
length and increases with each invocation in which the segment error has not reached TH. Furthermore,
the memory consumption for buffering the last n sensor samples increases likewise. Thus, with longer
segments, both the execution time and the memory consumption of each invocation increases. In order
to guarantee a maximum execution time and memory consumption, the maximum buffer size needs to
be constrained to a possibly small size, which in turn limits the compression ability of the algorithm.

4.1. CPLR Approximation

In order to overcome this drawback, our algorithm makes use of the updating abilities of simple
linear regression as discussed in Section 3. Instead of recalculating the slope and the error between the
previous segment’s endpoint and the current sensor sample, our approach updates the slope β̂n and
the corresponding segment error (SSRn) of the regression line with each new sensor sample. Since the
regression line has its origin in the previous segment point, our algorithm is performing a Connected
Piecewise Linear Regression (CPLR) of the sensor signal.

This regression line and its error can be updated by a small number of calculations shown in
the previous section, independent of the segment’s length, while obtaining the minimal SSR to the
original data. The idea is as follows: the (k− 1)-th segment , which is the regression line of a simple
linear regression, starts at the end point of the previous segment (s̃[k− 1], τs̃[k− 1]). Thus, x2n, y2

n,
and xyn are updated by Equation (11) with yn being the difference between a new sample’s value s[n]
and the value of the previous segment point s̃[k− 1] and xn being the difference between the new
sample’s timestamp τs[n] and the previous segment point’s timestamp τs̃[k− 1].

Note that we do not require the sensor signal to be sampled at equidistant intervals for our
approach. However, without loss of generality, we will presume a constant sampling period in the
following for the sake of simplicity. Thus, the sample number n within the current segment can be
used for the xn values instead. The pseudo code for our CPLR routine is given in Algorithm 1.
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Algorithm 1 Connected Piecewise Linear Regression.

1: procedure PROCESS_SAMPLE(sample value s, segment array S̃[], index k)

2: n = n + 1

3: y = s− value(S̃[k− 1])

4: x2n = x2
n−1 + ((n · n)− x2

n−1)/n
5: xyn = xyn−1 + ((n · y)− xyn−1)/n
6: y2

n = y2
n−1 + ((y · y)− y2

n−1)/n
7: β̂n = xyn/x2n

8: SSRn = (y2
n − β̂nxyn) · n

9: if SSRn <= TH then
10: x2

n−1 = x2n

11: xyn−1 = xyn

12: y2
n−1 = y2

n

13: β̂n−1 = β̂n

14: return

15:

16: t = timestamp(S̃[k− 1]) + n− 1

17: s̃ = value(S̃[k− 1]) + (β̂n−1 · (n− 1))

18: n = 1

19: y = s− s̃
20: x2n = 1

21: xyn = y
22: y2

n = y · y
23: β̂n = xyn/x2n

24: SSRn = 0

25: x2
n−1 = x2n

26: xyn−1 = xyn

27: y2
n−1 = y2

n

28: β̂n−1 = β̂n

29: S̃[k] = (s̃, t)
30: return

The threshold value TH is set upon initialization and needs to be stored globally. When starting
the online approximation of a sensor signal, the signal’s very first sample (s[1], τs[1]) will be used as
the initial segment point (s̃[1], τs̃[1]) = (s[1], τs[1]). The routine PROCESS_SAMPLE is called for each
new sampled sensor value s, which is the first parameter given to the function along with the array S̃[]
for storing segments and the index k for specifying at which position in S̃[] the new segment will be
stored. Note that the array of segments S̃[] does not necessarily need to store all the created segments,
e.g., when always transmitting each new segment point to another device. However, S̃[] needs a size
of at least two: for the previous segment’s end point and the current segment’s endpoint, which will be
written to it when created. The variables n, x2

n−1, xyn−1, y2
n−1, and β̂n−1 need to be stored globally

and must be initialized with zero before starting the online approximation of a sensor signal.
At the beginning, the size n of the current segment is incremented by the new sample in line 2.

In line 3, the actual y value is calculated from the new sensor value s and the previous segment points
value s̃[k− 1]. The function value() returns the value part and timestamp() returns the timestamp part
of the segment point (s̃[k− 1], τs̃[k− 1]), respectively. From lines 4 to 8, the means x2n, xyn, and y2

n
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are updated from their previous values x2
n−1, xyn−1, and y2

n−1 with the new y value, respectively,
and the estimated slope β̂n and the new segment error SSRn is calculated. If the new SSRn is below
TH (line 9), the updated means x2n, xyn, and y2

n and the slope β̂n are stored for the next invocation
(line 10 to 13) and the routine returns without creating a new segment point. If SSRn exceeds TH
instead, a new segment point is created at the previous sample’s timestamp (line 16) by extrapolating
the value of the segment’s endpoint from the previous invocation’s slope estimate β̂n−1 (line 17) with
the following equation:

s̃[k] = β̂n−1(n− 1) + s̃[k− 1]. (12)

The newly started segment’s (s̃[k + 1]) size is updated in line 18, and the y value from the sample
s to the newly created segment’s value s̃ is calculated in line 19. From lines 20 to 23, the means
are initialized with the new y as the first sample of the newly started segment and the slope β̂n is
recalculated from them. The SSRn of the new segment is set to zero, as the new segment only consists
of two values, which introduces no deviations. From lines 25 to 28, the means x2n, xyn, and y2

n and β̂n

are stored and finally the new segment point (s̃, t) is written to the segments array in line 29. For the
sake of clarity, the principle including the SSRn exceeding TH is illustrated in Figure 2.
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Figure 2. Growing sum of squared residuals error per sample.

Note that the error metric per segment can easily be changed to an average per sample
approximation error metric by dividing the current segment’s SSRn error by the number of samples
n covered by that segment. This can be useful in applications that require a guaranteed relative
least-squares approximation error bound. Furthermore, an average per sample approximation error
allows for specifying a maximum error guarantee for a finite set of samples, if TH is chosen to be the
maximum error divided by the number of samples.

4.2. Multi-Dimensional CPLR Implementation

The algorithm can be implemented to approximate multi-dimensional signals with D dimensions,

by holding and updating the variables xyd
n, y2d

n, β̂d
n, and SSRd

n respectively for each dimension d and
the mean of the timestamps x2n for all dimensions together, as the value of each dimension is supposed
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to be sampled at the same time. As we use the sum of squared residuals error, the error of the resulting
D-dimensional segment can be calculated by summing up the SSRd

n of all dimensions. This is possible
due to the commutative property of summing up the squared residuals:

n

∑
i=1

D

∑
d=1

(yd
i − β̂d

nxd
i )

2 =
D

∑
d=1

n

∑
i=1

(yd
i − β̂d

nxd
i )

2. (13)

Thus, the residual error to the D-dimensional segment is calculated by:

SSRn =
D

∑
d=1

SSRd
n. (14)

Note, that using the sum of squared residuals error metric leads to a faster calculation on resource
constraint architectures, as no square root has to be calculated. However, other solutions to calculate
a multidimensional error are possible as well, e.g., sum of Euclidean distances.

5. Evaluation

In order to show the approximation quality of CPLR, we compared it to two other piecewise
linear approximation techniques from the literature. We decided to use the emSWAB implementation
from [5], as it was specifically designed for resource constrained architectures and we implemented the
SW algorithm as well. Since the emSWAB implementation is made for 8 bit data, we implemented our
CPLR algorithm and the SW approximation for 8 bit data as well to stay comparable, while internally
using single precision floating point data types for the variables like slope, error, and means.
This is a fair comparison as all implementations were tested on an x86-64 system, from which the
emSWAB implementation benefits in the same way as our implementations, as emSWAB does not
save intermediate results for slope and error calculation in 8-bit variables. The algorithms for our
experiments are implemented in C. Our implementations can be obtained by mailing the paper’s first
or last author. For the following experiments, we used emSWAB with a buffer size of 50 and SW with
a buffer size of 100. This is a fair comparison, as the emSWAB algorithm actually scales the buffer
size between half and double of the specified value. This means, in the following experiments, the
emSWAB’s maximum buffer size is 100 as well.

5.1. Data Sets

As the approximation quality of the algorithms depends on the actual data, we used different data
sets for the evaluation. In our first test, we recorded accelerometer and gyroscope data with a wireless
sensor node in two scenarios. In the Kitchen scenario, the sensor was attached to the wrist of a user,
while the user performed kitchen tasks like cutting carrots with a knife, stirring a bowl of ingredients
with a wooden spoon, blending ingredients in a bowl with a hand-held blender and using a hand mixer.
For both data (accelerometer and gyroscope), we used the vector lengths of the three-dimensional
signals, in order to derive one-dimensional signals. An example of the accelerometer signal is partially
shown in Figure 3.

In a second scenario, we recorded accelerometer and gyroscope signals of a Walking person.
The sensor was attached to the shoe of the user and sampled the data at 100 Hz. The walking dataset
includes straight paths, turns, walking upstairs and downstairs and also different walking speeds.
An example of the accelerometer signal is partially shown in Figure 3 as well.

As in the literature PLA algorithms are not only used for activity recognition scenarios, we also
included experiments on available data sets from literature, which were used for the evaluation of PLA
algorithms in other application domains. We used the timeseries data set (Timeseries) that came with
the implementation of mSWAB from [4] as well as the data sets from [14] including ECG signals (ECG),
valve time series of a Marotta Space Shuttle (Shuttle), and the time series of a patient’s respiration
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measured by the thorax extension (Respiration), which are freely available at [15]. These datasets are
shown in Figure 3 as well.
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Figure 3. Partially plotted data sets for evaluation.

5.2. Approximation Quallity

We found two criteria that are the most important to describe the approximation quality of a PLA
algorithm: the compression ratio and the resulting approximation error per sample, which is referred to
as average residual error in the following. Note that the average residual error needs to be distinguished
from the segment error. The latter is part of the PLA algorithms for calculating the absolute residual
error of a segment (SSR for CPLR), in order to guarantee a maximum error per segment, while the
average residual error is used for evaluation purposes: when a data set is approximated with one of
the PLA algorithms, the average sum of squares error per sample of the approximated signal to its
original signal is calculated, in order to evaluate the overall approximation error of that approximation.
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The average residual error of an approximated signal is its SSR to the original signal, divided by the
number of samples of that data set.

At different compression ratios, the average residual error differs accordingly. Although we
cannot assume monotonicity, as a general trend, the more the average residual error increases, the
more the data is compressed. In general, we want a small average residual error, while simultaneously
achieving a high compression ratio or a low inverse compression ratio (ICR), respectively. Thus, these
two criteria are conflicting.

At a certain threshold, a PLA algorithm produces an approximation with an average residual
error and an ICR. We refer to this pair of error and ICR as an operating point. While CPLR uses the same
segment error metric like SW (i.e., SSR), the authors of emSWAB decided to implement their segment
error metric as the sum of absolute distances, in order to avoid computationally costly square and
square-root functions. However, this causes a different behavior on the threshold. While CPLR and
SW reach an operating point at a certain threshold, emSWAB leads to a higher approximation error,
but also higher compression ratio at the same threshold, thus another operating point. The interesting
question is whether this operating point is also met by SW and CPLR at a higher threshold, or whether
their approximation error is smaller or higher at the same compression ratio. Thus, it is not sufficient
to compare two algorithms with the same threshold in order to compare the approximation quality.
Both algorithms might lead to the same operating point at different thresholds. Furthermore, as the
approximation of a time series for different thresholds is a discrete problem, it is not always possible
to find a threshold, which leads to the exact same ICR or average residual error, respectively, of two
PLA algorithms. In order to compare different PLA algorithms, we approximated the same time series
multiple times with different thresholds and plotted the the resulting average residual error over
the corresponding ICR (amount of compressed data to the amount of uncompressed data) for each
operating point controlled by the threshold. This leads to curves sketching the dependency between
both quality indicators of the PLA algorithms. Note that we used the ICR instead of the compression
ratio, as it gives an intuition about the resulting relative data size after approximating a sensor signal.
The nearer the curve is to the origin of the plot, the better is the approximation quality of the algorithm.

In our experiments, we evaluated 29 data sets with in total 536,175 samples, all of them
approximated 10,000 times with emSWAB from threshold 1 to 10,000 and 100,000 times with both SW
and CPLR from threshold 1 to 100,000. The range of thresholds at which emSWAB was performed
in our experiments is smaller than for CPLR and SW, as the error metric of emSWAB is a sum of
absolute distances. This is explained in the following. At a certain threshold, the emSWAB algorithm
might lead to an operating point that can be achieved with CPLR and SW at a much higher threshold,
since the sum of squares error in CPLR and SW reaches the threshold faster than the sum of absolute
distances used in emSWAB. Thus, the range of thresholds at which CPLR and SW were evaluated in
our experiments needed to be larger as for emSWAB in order to reach the same range of operating
points for comparisons. Note, that the segment error is an absolute error for a whole segment while
the average residual error is a per-sample error. Thus, the segment errors and correspondingly the
thresholds are higher then the resulting average residual error in the plots.

As can be seen in Figure 4, the general trend is a higher average residual error for lower ICRs.
Comparing the quality plots Kitchen, Walking, and Timeseries with ECG, the ICR of the latter is smaller
at similar average residual errors. This means for the ECG data set a higher compression rate for
comparable approximation errors can be achieved. This mainly results from the signal structure of the
ECG signal, which contains a higher amount of non-fluctuating signal parts compared to the other
data sets.
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Figure 4. Evaluation of different data sets.

For the respiration data set, the compression ability appears to be even higher. Note that, due to
the high compression of this data set, we plotted the quality curve of the Respiration data at a smaller
ICR range, in order to distinguish the curves. However, by having a closer look at the signal, the high
compression results out of an over quantization of the signal when converting it to 8 bit because of the
signal peak, which can be seen in Figure 3, representing the respiration of the person while waking up.
The over quantization leads to a signal mostly consisting of perfect straight parts, which can be seen in
Figure 5. Thus, the possible compression rate for this data set is much higher. Since for the Respiration
data set a significant compression is possible, the bound on the possible achievable compression of
SW due to its maximum buffer size can be observed in Figure 4. For SW, the ICR is bounded to 0.01
as a minimum, as the maximum buffer size is set to 100, while CPLR allows for unbounded segment
sizes and thus a higher compression or a lower ICR, respectively.
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Figure 5. Over quantization of partially plotted Respiration signal.

Note that the curves in Figure 4 represent operating points of different integer threshold values
starting from 1. Due to the nature of the error metrics implemented in the algorithms, the curves start
at different operating points for a threshold of 1. By using floating point thresholds, the operating
points below 1 could be reached as well, which are expected to follow the trend towards a lower error
and a higher ICR as well. However, this is not further investigated in our experiments, as the operating
points of interest with lower ICRs can already be seen in the conducted experiments. Furthermore,
we did not include TH = 0 in Figure 4, as it might cause misleading assumptions. In fact, CPLR as well
as SW will recreate the original signal at TH = 0, while compressing perfect straight parts of the signal
that can be approximated by a segment without any approximation error. However, the emSWAB
implementation from [5] does not behave in the same way and does not compress the signal at TH = 0.
This is basically caused by the implementation of emSWAB, which merges segments when the residual
error is below TH instead below or equal TH, which is too conservative. However, an emSWAB
implementation with the same behavior as our CPLR and SW implementations is possible, but was not
available for our studies. Furthermore, the ICR at TH = 0 is approx. 32% with CPLR and SW for the
Respiration data set shown in Figure 3. This is caused by the coarse quantization of the signal. In activity
recognition scenarios with MEMS (Micro-Electro-Mechanical Systems) accelerometers and gyroscopes,
the signals typically use 16 bit fixed-point data or floating point data and include significant noise on
the least significant bits. In such cases, we do not expect a significant compression at TH = 0, and thus
excluded TH = 0 from our evaluation in Figure 4.

In this experiment, we compared the approximation quality of our CPLR algorithm with SW
and emSWAB. In general, our evaluation shows no significant differences in the approximation
quality of the chosen algorithms, except the ability of CPLR to create much longer segments and
the approximation of the shuttle dataset, for which emSWAB slightly sacrifices in its approximation
quality. Thus, we can show, that although CPLR is calculated in a time and memory efficient manner,
its approximation quality is not compromised by this.

5.3. Execution Time

As a first evaluation of the execution time behavior on the introduced data sets in Section 5.1,
we used the x86-64 platform, as it allows a feasible evaluation of this amount of data. We decided to
use an emulative approach based on the Valgrind framework [16]. We did not include the simulation
of caching effects, although our algorithm would draw profit from it, as all calculation data will
fit in first level caches. We evaluated the binaries compiled with GNU C (GCC) compiler version
of 7.3.0 [17] with default configuration on an x86-64 system. As an evaluation metric, we use the
measured instruction count spent in the function, which is called for every new sample of an input
data series. By using the instruction count, architectural effects on the timing behavior like pipelining,
branch prediction, caching, out of order execution, and the processor frequency are avoided.

For these experiments, we created Callgraphs with the tool Callgrind [18] to evaluate CPLR, SW,
and emSWAB over all 29 data sets using the same buffer sizes as in Section 5.2, i.e., 100 for SW and
50 for emSWAB and a threshold of 100. The minimum, maximum, and average instruction count per
algorithm invocation as well as the standard deviation and the number of invocations can be seen in
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Table 1. The latter column only differs in the row emSWAB, as emSWAB handles the initialization of
the PLA within the same function used for approximation while CPLR and SW are implemented with
a separate initialization for the very first sample, for which they are not called in each data set.

Table 1. Instruction counts of CPLR, SW, and emSWAB at TH = 100 and a buffer size of 100 on
an x86-64 architecture.

Algorithm Min. Instr. Count Max. Instr. Count Avg. Instr. Count Std. Dev. #Invocations

CPLR 94 150 99.18 15.90 536,146
SW 46 5106 935.20 1115.92 536,146

emSWAB 53 812, 807 3423.60 26,628.49 536,175

By this experiment, we can show that our CPLR algorithm has a maximum instruction count
of 150. The best case is 94 instructions, which need to be executed when no segment is outputted.
Note that the average instruction counts for our algorithm depends on the actual signals, as the number
or length of segments respectively is decisive for the fraction and is bounded on 150 instructions in
case no compression is achieved and a segment is created for each sensor sample. The execution time
behavior of CPLR can be seen in Figure 6. This shows the worst-case execution time characteristic of
the CPLR algorithm.
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Figure 6. Execution time of CPLR with TH = 100.

For SW, we observe that the instruction count of each invocation grows by approximately
51 instructions for each new sample that is added to a segment. Thus, the execution time of SW
linearly increases with the current segment’s length. In the case, that a segment is created due to
an exceeding threshold, 26 instructions are needed additionally to the error calculation. If a segment
is created due to a maximum segment size, only 46 instructions have to be performed, because the
error calculation can be skipped. Therefore, the maximum and average instruction count depends
on the maximum segment’s length and can be bounded by bounding the buffer size. In Figure 7 the
execution time dependency of SW on the segment’s length is shown.
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Figure 7. Execution time of SW with TH = 100.

For emSWAB, the error calculation does not happen in each invocation and mostly the new sample
is simply added to the buffer. This is the best case for emSWAB with 53 instructions. The segmentation
within the buffer starts when the slope sign of the signal changes, and is not necessarily correlated
to segment points. In this case, the execution time drastically increases, as multiple segments within
the buffer are created and merged until none of them can be merged any further due to an exceeding
error threshold. Within this process, the segment error calculation similar as in SW (iterating over
all samples covered by that segment) is performed but repeatedly for multiple created and merged
segments. Thus, the execution time is highly data and buffer size dependent and is two orders of
magnitude higher than CPLR in this experiment. The execution time behavior of emSWAB is shown
in Figure 8.

From this experiment, it can be seen that our CPLR algorithm not only has the minimum average
computation time, but also a minimal guaranteed maximum execution time of 150 instructions on the
x86-64 architecture without compromising its compression abilities.

In order to be able to perform this experiment on a large amount and variety of signals, we used
the same threshold for all algorithms on all data sets. However, this is not a fair comparison, as the
algorithms might lead to different segment lengths for the same thresholds, which influences the timing
behavior of SW and emSWAB. Furthermore, among different data sets, the resulting compression
ratios can differ as well as the same threshold. Therefore, we performed a second experiment on one of
the data sets (i.e., the ECG signal from Figure 3) and chose the thresholds for CPLR, SW, and emSWAB
leading to approximately the same compression ratio. This was done by examining the results of
the in total 210,000 invocations at different thresholds on the corresponding ECG data set from the
quality evaluation in Section 5.2 and picking those thresholds for CPLR, SW, and emSWAB, which just
achieved an inverse compression ratio of at least 0.2. The chosen thresholds, the corresponding
compression ratios and the instruction counts observed in this experiment are shown in Table 2.
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Figure 8. Execution time of emSWAB with TH = 100.

Table 2. Instruction counts of CPLR, SW, and emSWAB on an x86-64 architecture at similar ICRs with
a maximum buffer size of 100, evaluated on the ECG data set from Figure 3.

Algorithm TH ICR Min. Instr. Count Max. Instr. Count Avg. Instr. Count Std. Dev. #Invocations

CPLR 8 0.1943 94 148 104.49 21.36 14,999
SW 10 0.1970 57 1154 306.74 180.26 14,999

emSWAB 8 0.1907 53 181, 506 7092.56 17,055.25 15,000

It can be seen that the maximum instruction count for emSWAB and SW decreased w.r.t the
results in Table 1, as the lower thresholds lead to shorter segments and thus lower execution times.
The average instruction count for CPLR has slightly increased, as at a lower threshold smaller and
thus more segments are created. As the segment creation needs additional instructions, the average
instruction count slightly increased. The maximum instruction count of 150 for CPLR does not appear
in this data set. This only happens due to the truncation to 8 bit, if the approximated segment point is
above 255 or below 0, which needs two instructions. Thus, the maximum instruction count of 148 in
this second experiment is less than in Table 1. Furthermore, it can be seen that the average instruction
count for emSWAB increased, although the maximum instruction count decreased. This is explained
by the fact of a smaller threshold leading to smaller segments, and thus the computationally costly
segmentation process within the buffer is faster but performed more frequently. For SW, the minimum
instruction count is 57 in this experiment. This is caused by the fact that the lower threshold leads to
shorter segments and no segment is created due to an exceeding maximum segment size, which needs
46 instructions. Despite the latter, an instruction count of 57 is the shortest execution time of SW,
which happens when only the first sample is added to a newly created segment. This small execution
time is only achieved at the very first invocation of the SW algorithm after initialization. In all
other invocations, the first sample is already added to the buffer upon segment creation, since a new
segment’s end point is always created for the previous sample.
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ARM Cortex-M4 Microcontroller Architecture

On the x86-64, we were able to show the execution times of CPLR, SW, and emSWAB on a large
amount and variety of data. However, as the target architectures of our algorithm are embedded
microcontrollers, we additionally analyzed the instruction count on an ARM Cortex-M4 microcontroller.
Due to the lack of an appropriate hardware setup on which high amounts of data can be approximated
while acquiring the execution time of each invocation in an automated manner, we performed a static
code analysis on the assembler code. We compiled emSWAB, SW and our CPLR algorithm for the
ARM Cortex-M4 microcontroller architecture using the Arm Embedded GCC version 7.3.0 of the
GNU Arm Embedded Toolchain. As compiler settings, we used Cortex-M4 as the target platform
with its included hardware floating point unit. From the produced assembler code, we extracted the
control flow graphs with corresponding instruction counts of each basis block. For SW and our CPLR
algorithm, the simplistic control flow allows for easily analyzing the worst-case instruction count and
its data dependency.

The best- and worst-case instruction counts per invocation for CPLR are 131 and 203 instructions,
respectively. For SW, the best case is 59 instructions when a segment is created due to an maximum
segment length. The data dependent worst case is 106 + n · 56 instructions with n being the segment
size. For a maximum buffer size of 100 samples as used in the experiments on the x86-64 architecture
(see Table 1), the maximum n is 100 and the worst-case instruction count of SW would be 5706 instructions
on the ARM Cortex-M4 microcontroller. For emSWAB, we were able to analyze the shortest path
consisting of 64 instructions, in which only a new sample is added to the buffer. However, when the
segmentation process within the buffer is performed, the control flow consists of several nested function
calls and nested loops, which makes a manual analysis infeasible. This data dependent behavior aligns
with the timing behavior observed on the x86-64 architecture in our experiments (see Figure 8) and
is not further investigated in this paper. The minimal and maximal instruction counts of CPLR, SW,
and emSWAB on the ARM Cortex-M4 architecture are summarized in Table 3.

Table 3. Instruction counts of CPLR, SW, and emSWAB on an ARM Cortex-M4 microcontroller with
a maximum buffer size of 100 for SW and emSWAB.

Algorithm Minimal Instruction Count Maximal Instruction Count

CPLR 131 203
SW 59 106 + n · 56

emSWAB 64 manual analysis infeasible

6. Discussion

Our evaluation in Section 5 shows that our CPLR algorithm achieves comparable approximation
quality while having a low computational overhead compared to the state-of-the-art solutions. In the
following, we want to discuss some basic properties of CPLR.

6.1. Numerical Precision

In general, the computations to update the mean x2n, xyn, and y2
n with the equations of [13] are

regarded as numerically stable. However, without a buffer, our CPLR algorithm does not constrain the
length of a segment by a maximum buffer size like all other existing solutions. As this is a desired
property for compressing long parts of a signal with no significant signal change, numerical precision
has to be considered for such cases. In Section 3, we mentioned the rearrangement of Equation (10)
for updating the means from [13] to Equation (11), in order to save a multiplication and a division,
by slightly sacrificing numerical precision. As we can see, both equations’ right sides can get very
small with long segments. Given the sensor values themselves are not next to zero, the right side of
Equation (11) possibly gets smaller than the right part of Equation (10) for signals without significant
changes, as the new sample and the previous mean are typically very similar values. This results in
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a small difference divided by a possibly large segment size compared to a sample itself divided by the
large segment size. However, for both versions, the numerical precision of the used data types have
to be considered for the targeted application and the expected segment length. If longer segments
are required, Equation (10) could allow for longer segments depending on the sensors range and
expected values, regarding the numerical precision, by trading a bit of processing time. However,
in any way, the precision of the data types and threshold value should be chosen according to the
desired application.

Another way of avoiding this problem can be achieved by implementing a maximum segment
size, which can be chosen according to the available precision of data types. By doing so, a new
segment could be produced when either the error value exceeds the threshold or the segment length
exceeds the maximum segment size. Note that this variation of the algorithm still does not require
a buffer for all sensor samples within a segment.

6.2. Computational and Memory Complexities

The computation time of our CPLR algorithm for updating the slope and the error of the
current segment for each new data point is independent of the length of the current segment and
its computational complexity for each new data point is O(1) with respect to the segment length.
As shown in Section 5.3, the processing for each new sample is limited to 203 instructions on an ARM
Cortex-M4 microcontroller.

Furthermore, our algorithm has a memory complexity of O(1), since it comes without a buffer.
The variables n, x2

n−1, xyn−1, y2
n−1, and β̂n−1 need to be stored globally. Together with TH and the

array of segments S̃[], which need to store two segmentation points, each consisting of a value and
a timestamp (four variables in total), 10 variables have to be stored globally. The algorithm additionally
needs 10 local variables for the means x2n, xyn, and y2

n, the current slope β̂n, the current segment
error SSRn, the new sample’s value y originating in the previous segment point, the new segments
point’s value s̃, and its corresponding timestamp t. Note that s̃ and t do not necessarily need to be
stored in extra variables, but can directly be written to the segments array (line 29). We left them in
Algorithm 1 for the sake of readability. Additionally, the new sample value s, a pointer to the globally
stored segments array S̃[], and the index k for indicating the position in S̃[] for the next segment point
are passed as arguments, which makes three additional variables be used. In total, CPLR needs 23
variables. If all integer values are assumed to be 32 bit integers and all floating point numbers are
assumed to be single precision floating point types, the data memory consumption is 92 bytes in total,
independent of the parameters.

Both aforementioned properties make it possible to implement CPLR on architectures with harsh
resource constraints regarding memory and computation time. Moreover, it does not need a maximum
buffer size to be specified compared to all other state-of-the-art segmentation algorithms. This reduces
the parameter space to be explored for an application specific configuration, i.e., finding an optimal
threshold value.

6.3. Latency

In real-time applications collecting sensors data online, latency is a crucial property as it directly
influences the responsiveness of the system. For online PLA algorithms, this means that a segment
approximating a set of sensor samples needs to be output as soon as possible after the corresponding
last sensor sample of that segment was sampled. As in emSWAB, only the leftmost segment within
the buffer is output, the latency of emSWAB is depending on the buffer size and can result in several
sampling periods plus the processing time, which depends on the buffer size as well. For SW, the
latency is a single sampling period, as the new sensor sample is decisive for creating a segment up
to the previous sample or whether the new sample will be included, plus the processing time of the
last sample, which depends on the segment’s length. Our algorithm basically has the same latency
behavior as for SW, which is one sample period, but with a constant processing time of the last sample,
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which involves 203 instructions on an ARM Cortex-M4 microcontroller. Thus, CPLR not only provides
a data independent worst-case execution time, but also a small worst-case latency.

7. Conclusions

In the paper at hand, we introduced our new CPLR algorithm that supports efficient online
piecewise linear approximations of sensor signals with connected segments. In our experiments,
we could show that our algorithm can compete with existing state-of-the-art PLA techniques regarding
approximation quality. Furthermore, to the best of our knowledge, our CPLR algorithm is the
only existing algorithm that provides both a small worst-case execution time with a computational
complexity of O(1) and a memory complexity of O(1) leading to the need of only a few variables.
These advantages mainly result from the absence of a buffer to store sensor samples.

Finally, due to a short and predictable latency, as well as the deterministic per sample processing times
and memory usage, our algorithm satisfies all necessary requirements for performing online piecewise
linear approximation on embedded processing units with harsh processing and memory constraints.
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Abbreviations

The following abbreviations are used in this manuscript:

WSN Wireless Sensor Networks
PLA Piecewise Linear Approximation
SWAB Sliding Window and Bottom Up
SW Sliding Window
SSR Sum of Squared Residuals
OLS Ordinary Least Squares
ICR Inverse Compression Ratio
CPLR Connected Piecewise Linear Regression
ECG Electrocardiography
MEMS Micro-Electro-Mechanical Systems
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