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Abstract—Industrial automation increasingly relies on the
automation and interconnection of formerly human operated
transport machinery. Products are already moved by automated
guided vehicles and machines like cranes may soon position
themselves just in time based on context information. Human
presence is however still required in some of these environments.
This raises the question how to allow machines to sense a human’s
presence to enable context awareness functions and safety around
autonomous machines. We propose a combination of Ultra-Wide
Band (UWB) localization and Pedestrian Dead Reckoning (PDR)
to achieve robust and reliable long- and short-term tracking of
humans in an industrial environment. We highlight advantages
and drawbacks of both localization methods, as well as current
approaches to increase tracking accuracy of the individual
technologies and their combination. Additionally, we present
measurements using a Zero Velocity Update assisted PDR system
and show that, under certain circumstances, the error of PDR
can be reduced from 5% to 2% of the travelled distance. We also
analyze the applicability of PDR correction methods in industrial
environments. Our results show the potential of PDR for accurate
short-term localization, supplanted by UWB to ensure long-term
precision.

I. INTRODUCTION

Industrial automation has been a driving factor for increased
productivity and wealth since the first industrial revolution
centuries ago. The initiative of Industry 4.0 aims to enable a
fourth revolution by increased digitization, inter-connectivity
and data aggregation in industrial spaces. This enables ma-
chines to be context aware and to coordinate without the
need of human intervention. Cranes or forklifts, for example,
may be automated to position themselves to a given location
without continuous human control or even move autonomously
in anticipation of subsequent tasks. However, machines lack
the multi-sensory perception of humans to move safely in a
factory full of independent mobile actors, including humans.
Mobile actors, especially human personnel, need to be reliably
localized to enable real time orchestration and avoid collisions.
Current infrastructure based approaches for localization have
limited accuracy and are prone to disturbance (Bluetooth, WiFi
fingerprinting) or require expensive specialized equipment, as
is the case with Ultra-Wide Band (UWB) localization. Pedes-
trian Dead Reckoning (PDR) based methods are comparably
inexpensive but exhibit degrading accuracy over time. We
propose a combination of PDR and UWB based methods to
achieve reliable, accurate and cost effective long- and short-
term localization in a factory environment. In this paper we

will outline the limitations of PDR based approaches in an
industrial context and present our own measurements. We
show an error of 5.11% relative to the travelled distance for
PDR can be corrected to 2.02% through map matching under
certain conditions. We also highlight current technologies and
methods for a fusion of PDR with UWB localization, that may
be used if map matching is not applicable.

This paper is structured as follows: Section II introduces
position tracking using UWB. The fundamentals of position
tracking by PDR are stated in Section III with a discussion
of correction methods in Section III-A. In Section IV we
present our findings regarding the feasibility of map matching
correction methods for PDR in industrial areas and present
a hybrid UWB and PDR approach as a viable alternative.
Section V describes related work on the combination of PDR
and UWB localization. Section VI concludes the paper.

II. POSITION TRACKING USING UWB

Unlike received signal strength indicator (RSSI) based
methods, UWB relies on short duration pulses which translates
to an ultra-wide band signal in the frequency domain. This
makes UWB localization comparably resilient to disturbances
and therefore a candidate for industrial environment localiza-
tion [1]. Single time instance localization with UWB relies
on methods like maximum likelihood estimation of several
noisy range or angle measurements between a moving target
and several anchor stations. Such measurements are commonly
known as Time of Arrival (TOA) and Time Difference of
Arrival (TDOA) for range estimation and Angle of Arrival
(AOA) respectively for angle measurements. At least four
measurements to different base stations are needed for 3-D
localization using TOA and TDOA.

The quality of localization can be improved by position
tracking, utilizing past noisy measurements with a Extended
Kalman Filter (EKF) [2]. The accuracy of tracking with an
EKF is depending on update rate and target speed, outper-
forming other localization methods like particle filters or least-
square methods at high update rates [3]. Continuous tracking
requires a high enough sampling frequency to register sudden
changes in motion. For battery powered base stations, this
means a short interval for generated pulses which in turn leads
to increased draining of the battery. Low update intervals are
preferable to increase battery life time of base stations.



Another factor for accurate tracking is the availability of
base stations in line of sight (LOS) of the tracked target. Non
line of sight (NLOS) base stations may lead to degrading
accuracy due to signal degradation and multipath effects
which affect the accuracy of range and angle measurements.
Sophisticated NLOS detection and mitigation methods may
not be suitable for resource constrained devices like wearable
receivers. A measurement campaign featured in [4] shows
that ranging errors above 2m occur in about 50% of NLOS
cases. The authors use a machine learning approach on the
received UWB waveform (namely support vector machines
or SVM) for NLOS classification and mitigation. However
this approach may not be feasible for resource constrained
embedded systems in heterogeneous environments because
of the high computational intensity of SVMs and the need
for training data. Compared to RSSI based ranging, like
utilizing Bluetooth beacons, UWB is still a good candidate
technology for accurate indoor positioning as it is less prone
to errors introduced by NLOS and multipath effects. However,
localization with UWB may involve a considerable investment
in hardware to ensure that multiple UWB anchors are in line
of sight in every relevant part of the building.

III. POSITION TRACKING USING PDR

Pedestrian Dead Reckoning (PDR) methods can be divided
into two categories: Inertial Navigation Systems (INS or Strap-
down Systems) and Step-and-Heading (SHS). Both methods
utilize relatively inexpensive wearable inertial sensors and gy-
roscopes to derive the user’s position relative to a given starting
position and direction. While INS integrates the measured
acceleration twice to calculate the user’s displacement, SHS
detects single steps and their direction. A gyroscope is used
in both cases to measure a change of direction. There is no
need for additional infrastructure [5], [6].

As an inertial sensor can only detect changes in acceleration
and direction with respect to its own coordinate frame, the
relation between sensor coordinate frame and real world
coordinates has to be established. The direction of gravity as a
low passed measurement of acceleration may be used to relate
one axis (commonly the Z-axis) of both frames. The initial ori-
entation around this axis remains to be established by either a
magnetometer (compass), which may be unreliable indoors, or
additional external knowledge like user input, alignment with
map data or calibration through parallel location tracking, for
example with UWB based localization. Permanent integration
of noisy sensor values like in INS is subject to drift, degrading
the accuracy of localization over time. This effect is mitigated
through Zero-Velocity-Updates (ZUPT) with foot mounted
sensors. This method uses the periods of standing when a
foot touches the ground, to stop and reset the integration of
sensor values or to analyze the accumulated error as the real
change of position and orientation is temporarily zero. This
method enables the detection of steps in any direction and their
individual displacement, independent from speed or mode of
walking [7], [8].

Instead of double integrating the acceleration between steps,
SHS uses step detection and an estimation of step length
through various heuristics. Like in INS, the step orientation is
either determined by integration of angular velocity through
a gyroscope or through a compass. Methods for step detec-
tion include analyzing the measured acceleration for peaks,
exceeded thresholds, periodic patterns (auto correlation and
frequency domain analysis) or a combination of these methods.
The range of plausible step frequencies may also be considered
to limit false detection of steps. Depending on the placement
of the sensor node, an analysis of the angular rate may also
be employed to recognize swinging arms or moving legs [6],
[9], [10].

Step detection is prone to false detection or missing of steps
through percussion of sensors or temporary unusual gait like
side stepping, sliding or very slow walking. Additionally the
gait of a person and therefore the acceleration pattern of a
step varies between users and the sensors position on the
user’s body affects the characteristic acceleration pattern of
a step. This may lead to decreased accuracy with predefined
parameters. Depending on the employed method, the accuracy
of step detection may be enhanced by parameter learning.
Similarly, machine learning is employed for step detection.
However, this requires an offline learning phase for each user
and may be more computationally complex than other meth-
ods. A combination with parallel, independent localization
may be used to establish an estimate of the ground truth to
tune such parameters online [6], [11].

The estimation of step length when utilizing SHS is com-
monly done by analysing step frequency or acceleration mag-
nitude. With additional Information of the user’s height it is
possible to get a reasonable estimate of current stride length
[12], [13], [14]. Currently available commercial pedometers
tend to underestimate step count while accuracy degrades with
lowering walking speed. Hip mounted devices tend to be more
accurate than wrist mounted ones or smartphone applications.
While research publications report step detection accuracies
of 97% and above in laboratory environments, studies of
commercial devices tend to report accuracies of 90% and
less. Detection accuracy tends to decrease with slower walking
speeds [15], [16], [17], [18].

A. Correction methods for PDR

The accuracy of localization with dead reckoning techniques
degrades over time as errors in step length and orientation and
missed or falsely detected steps accumulate. Map matching
methods can be employed to counter this effect. Here, the
user’s path is compared to a building map, eliminating trajec-
tories that, for example, cross walls. A common method for
map matching is the use of a particle filter. With each step a
cloud of particles is propagated that models the uncertainty
of the measurement. The particles are weighted depending
on the plausibility of their trajectory, leaving only probable
locations of the user. The user’s position is then estimated as a
combination of the weighted particles [19]. Some applications
start at a known location and backtrack to eliminate sequences



of particles that lead to dead ends. The remaining particles
are then re-sampled. Another method distributes particles over
the whole map and eliminates implausible particles while the
user moves through the building. This way the user’s location
becomes more certain over time and parameters like step
length can be derived from remaining particles [10]. These
approaches require the propagation and validation of dozens
to hundreds of particles with each step and are therefore
computationally intensive. However, research shows that these
methods work in real time on smartphones. Another limitation
is the need for complex floor plans so that the users path
through a building can be fit on a map without ambiguity [6],
[20].

IV. INVESTIGATION OF PDR FEASIBILITY DEPENDING ON
BUILDING GEOMETRY

To investigate if map matching is useful as a method of
long-term correction for PDR in an industrial context, we
conducted our own experiments. In the following section
we present experimental results obtained by our own map
matching correction methods.

A. Experimental setup
Six users are asked to walk a given course through a single

floor of a University building. The users are equipped with
an Inertial Measuring Unit (IMU) that is strapped to the
bridge of one foot as seen in figure 1. The IMU periodically
transmits acceleration and angular velocity to a smartphone
via Bluetooth. The smartphone runs an implementation of the
zero velocity update (ZUPT) method, using a Madgwick filter
to calculate the foots orientation. This ZUPT with Magdwick
fusion generates a three dimensional vector modelling the
propagation of the user’s foot between steps, which we call
the step vector. The user’s starting orientation and position
are predefined. The current position is determined by stringing
together the calculated step vectors. Only the horizontal com-
ponents of the step vector are considered in this experiment
(ignoring the Z-axis).

The smartphone application is capable of correcting a new
step vector with information about known paths through the
building. This correction method forces a step vector on a
nearby path if the user walks in parallel to the path (within
a range of acceptable deviation). Otherwise, if the user walks
perpendicular to the path, the step vector is not corrected.
As angular drift is a significant source of error, drift is also
corrected by comparing the orientation of parallel steps with
the orientation of a known nearby path, for example along a
corridor.

Two test courses are examined. Course Corridor consists
of a straight section through a corridor and back to the start,
including one 180◦ turn. The length of this course is 77m.
Course Hall consists of a round trip along the perimeter in a
hall with a length of 69m.

B. Experimental results
The results of the experiment are shown in Table I. The

course length and position error between start and end point

Figure 1: The cased IMU mounted on a shoe.

are stated as absolute values. The error is calculated as the
mean distance between start and end of 18 test runs in total,
by 6 test persons. The relative error is calculated as the mean
absolute error divided by the course length. Figures 2 and 3
show the recorded test paths as thin blue lines and the ground
truth as a thicker red line in a map of the test floor.

The uncorrected error between start and end of the test
course averages to about 5% of the course length. The cor-
rection by a known path along the test corridor improves
the average error to 1.55m or 2.02%. Figure 2a shows the
distribution of the recorded uncorrected user paths along the
corridor. Figure 2a shows the respective corrected user paths.
The spread of uncorrected user path end points and the
contraction by our correction method suggests that drift is a
significant source of error here. Errors in the initial orientation
can be discounted as they influence the angular fit to the map
but shouldn’t influence the accuracy of the return to the starting
position. The remaining error after correction can be attributed
to the measuring error of step length. Another source of error
may be the drift correction due to altering a steps measured
direction and therefore altering the traveled distance along the
corridor.

Figure 3 shows the uncorrected user paths from and to
the entry of a lecture hall. The test path leads around the
perimeter of the hall with a semicircle shaped deviation. Like
in course Corridor, permanent drift and deviations in the
starting orientation lead to a significant spread of the user
paths. However, small scale movements like the semicircle
portion of the path and 90◦ turns at the corners are recorded
accurately. The deviation of the recorded start and endpoints
average to 3.47m or 5.03% of path length which is comparable
to the results of course Corridor.

TABLE I: Error of PDR measured as distance between start
and end point.

Course Length Without correction With correction
Abs. error Rel. error Abs. error Rel. error

Corridor 77.00m 3.94m 5.11% 1.55m 2.02%
Hall 69.00m 3.47m 5.03%



(a) No correction. (b) Correction with map information.

Figure 2: Corrected and uncorrected user paths of the course
Corridor.

Figure 3: The uncorrected user paths of the course Hall.

C. Discussion

The examined map based correction methods are particu-
larly useful regarding building sections and movement patterns
that leave little room for speculation regarding the user’s
true path. A string of parallel steps along a corridor can
be corrected easily regarding orientation drift, leaving only
ambiguity regarding the true travelled distance. Map based
correction fails however, when users can walk freely in any
direction in a wide open space - as is the case in a factory
hall. Orientation drift soon degrades the reliability of position
tracking through PDR. However, small scale movements like
turns are recorded accurately per step. In respect to open
spaces like factory halls, this highlights the need for additional
localization technologies like UWB to correct the degrading
accuracy of PDR and the potential for improved accuracy
in the short term by PDR. If an industrial space features

geometries like narrow corridors, map matching is a feasible
correction method for PDR. This reduces the need for UWB
infrastructure in certain building parts.

Figure 4 shows an exemplary scenario of a factory building
which benefits from a hybrid localization strategy: A produc-
tion area and a storage area are connected by a corridor. A
gate is separating corridor and storage area. The production
and storage areas are fully covered by UWB anchors (A1 -
A4 and A5 - A8). The corridor is only partially covered by
two (A1, A2) UWB anchors in LOS, with one section not
covered at all.

To enable accurate UWB localization in the corridor, four
additional UWB anchors would need to be installed. However,
a combination of localization by PDR, the ranging information
of the remaining anchors in line of sight and map matching
may provide sufficient accuracy when transitioning from the
storage to the production area. This eliminates the need for
additional UWB anchors. Additionally, the assumption of full
UWB coverage at all times in the production and storage areas
may not be attainable in reality: Large equipment, moving
machinery or shelving may temporarily block line of sight
to an UWB anchor, introducing NLOS in an otherwise fully
covered area. In this case as well, fusion with PDR helps to
improve short-term localization reliability and accuracy, even
without map based correction.

Figure 4: Schematic view of a factory space with limited LOS
in the corridor section.

In this scenario, the combination of PDR and UWB would
reduce the need for UWB hardware from 12 to 8 anchor
stations - cutting initial hardware investment cost by 33%
(excluding a low cost inertial sensor node for PDR). The



following chapter will examine related work regarding the
fusion of localization technologies with PDR, focusing on
UWB as a candidate technology.

V. RELATED WORK

A promising approach to increase long-term tracking accu-
racy and to lessen the need for high frequency ranging updates
and sophisticated NLOS mitigation is the combination of
UWB and PDR. Short term movements are accurately detected
by PDR which allows lower frequency UWB updates and
range measurement outliers due to NLOS may be mitigated
with the additional positioning information of PDR. Addition-
ally UWB mitigates the long term accuracy degradation of
PDR [5], [2]. The following examples shall give an overview
of current research regarding hybrid PDR approaches.

[21] employs RSSI based localization fused with PDR by
an Extended Kalman Filter (EKF). The authors demonstrate
a covariance matrix tuning method suited for large spaces,
similar to factory halls, based on the estimated distance to
base nodes and the respective estimated accuracy statistics.
They are able to improve localization accuracy in a 8.6m x
18m round trip inside a hall from 2.65m with an untuned EKF
to 1.7m.

The authors of [22] use step counting and step length esti-
mation fused with low frequency UWB localization updates.
The authors do not employ tracking of the UWB positions
by Kalman filter because of the low sampling frequency.
Instead, the UWB derived position is fused with PDR data
that is sampled per each step of the user. UWB is only used
to mitigate the accumulated positioning error by PDR. The
drift of PDR orientation is not mitigated because of the low
frequency of UWB updates. This may still lead to a decreasing
reliability of the PDR data over time.

Another system fusing PDR and UWB data is presented
in [23]. The trilateration of UWB TOA data is realized as
a least-squares solving problem within an EKF that also uses
acceleration and rotation data of an IMU. UWB nodes that ex-
hibit NLOS behaviour are detected by comparing the predicted
(Kalman prediction step) error distribution of the measurement
of a node with the actual measurement, disregarding measure-
ments that lie outside of a certain confidence interval. The
least-squares solving approach increases the reliability with
an increasing number of TOA measurements from different
nodes.

Drone localization via EKF-fused GPS, IMU, Vision and
UWB range measurements is presented in [24]. Measurement
outliers, like UWB NLOS measurements, are rejected by doing
a Chi-Squared test on the measurement residuals.

[25] presents an approach to optimize step detection param-
eters based on past sensor data and Kalman filter innovation
parameters. Past inertial data with available GPS measure-
ments is used to minimize a cost function of Kalman innova-
tion and innovation co-variance. The goal is to find the optimal
step detection parameter that minimizes the discrepancy of
inertial and GPS data that is expressed in the Kalman filter
innovation and innovation co-variance. This approach is only

tested on offline batch data. It is however feasible to use this
approach for an automated PDR configuration at the beginning
of UWB assisted localization.

VI. CONCLUSION

Range based tracking techniques like UWB provide robust
long-term localization while PDR is accurate in the short
term and may be realized with no infrastructure and low
priced hardware. However, PDR suffers from degrading ac-
curacy with travelled distance and UWB requires specialized
infrastructure in line of sight with high update rates which
limits battery life. The fusion of PDR and UWB localization
using a Kalman filter combines the advantages of both tech-
nologies and enables accurate localization at reasonable cost
in industrial environments: The short term accuracy of PDR
allows lower update rates for range measurements and com-
pensates temporarily degraded ranging accuracy due to NLOS.
Additionaly, PDR reduces the need for UWB infrastructure
in suitable building geometries. In turn, UWB localization
is used to compensate the degrading long term accuracy
of PDR. A hybrid approach also enables the online tuning
of step detection parameters when using SHS by providing
an estimate of the ground truth, continuously improving the
accuracy of PDR.

We will publish a detailed description of the algorithms
used in our experiments regarding map matching for PDR and
additional experimental results in the near future. Additionally,
we will conduct experiments with UWB and PDR hybrid
localization.
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