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Abstract—Clock synchronization protocols such as the pre-
cision time protocol (PTP), which are used to synchronize
components of distributed systems, are fundamental to enable
timed and coordinated activities, e.g., in real-time applications
within the industrial Internet of things (IIoT). In theory, PTP is
able to achieve a precision on the order of nanoseconds. However,
its practical accuracy remains limited by packet delay variations.
In this paper, we hence present a novel approach to increase the
synchronization precision of PTP. Our approach (PTP-LP) relies
on PTP to obtain precise hardware timestamps taken during
multiple synchronization periods. These timestamps establish the
constraints for a Linear Programming (LP) solver that is used
to estimate the clock differences between devices. Moreover, we
propose the heuristic PTP-H that achieves comparable accuracy
but is less computationally complex. We evaluate PTP-LP and
PTP-H in comparison with two state-of-the-art approaches under
various conditions in terms of clock stabilities and packet delay
distributions. PTP-LP and PTP-H are fully compatible with
existing standards and show to be in particular robust to
varying packet delays. Especially, PTP-LP outperforms previous
approaches in presence of a stable hardware clock and unknown
non-negligible network delay, which are both realistic working
conditions.

I. INTRODUCTION

Clock synchronization is used for providing a common time
base to components within a distributed system. This is essen-
tial for timed and coordinated activities in real-time critical
industrial Internet of things (IIoT) applications [1], [2] such
as networked control loops in a smart factory or distributed
sensing (where the sensed data need precise timestamps for
further processing).

Hence, clock synchronization is a vital research field and
there is a tremendous interest in the standardization of clock
synchronization protocols. The most common clock synchro-
nization protocols are the network time protocol (NTP) [3],
the precision time protocol (PTP) [4], and the generalized
precision time protocol (gPTP) [5] as part of the latest IEEE
time-sensitive networking (TSN) standards [6] that aim at
supporting real-time critical IIoT applications.

In general, synchronization protocols send packets to ex-
change timestamps between a master device and a slave device
in order to estimate the path delays between both. Afterwards,
they either adapt the slave clock to the (reference) master clock
or remember the time difference between master and slave
without correcting the slave clock, e.g., if the slave clock
needs to be monotonic (especially, backward jumps can be
problematic in some applications [7]). The synchronization
precision of an approach is calculated as the remaining time

difference between master clock and slave clock that cannot
be compensated by the synchronization. As PTP by default
assumes a constant and symmetric delay, its practical accuracy
suffers if there is a non-negligible delay in the network. This
delay might occur due to the fact that two devices synchro-
nizing by means of PTP are connected via standard network
infrastructure (e.g., switches that do not support prioritization
or MAC-layer synchronization). Although this scenario is
fully compliant to the PTP standard, it would lead to an
insufficient synchronization precision. Especially, this might
be important for distributed sensing, like in the W7-X fusion
plasma experiment [8]), where standard network infrastructure
shall be used for cost-efficiency and synchronization accuracy
is still important.

Therefore, we propose using LP to mitigate the influence of
network delay variations. Subsequently, we describe PTP-LP
in a nutshell:

• First, we use PTP to send synchronization packets and
include timestamps into them.

• Second, to increase the robustness towards delay varia-
tions, we formulate the slave clock function determination
problem (SCFD-P) to estimate the slave clock function
C(t) referring to the master clock function T (t). We
use the timestamps taken during multiple synchronization
periods as constraints for the SCFD-P.

• To solve the SCFD-P, we formulate two distinct linear
subproblems by means of LP: one to determine the upper
and one to determine the lower bound of C(t). The PTP
timestamps serve as constraints for these subproblems.

Clock synchronization has two main challenges: to compen-
sate the inaccuracies of the slave clock and the communication
channel that both are not ideal in reality. Sources of errors
concerning the slave clock are quantization and frequency
changes like jitter (random variation at each tick), wander
(random walk of frequency), temperature effects (at greater
timescales), and aging effects (at even longer timescales).
Sources of errors concerning the communication channel are
variable network delays (queuing) and propagation delays.
We consider PTP-LP particularly significant concerning this
matter as it exploits implicit constraints on timestamp values
to improve clock parameter estimation. The contributions of
this paper can be summarized as follows:

• PTP-LP is fully compatible to PTP, since we do not
change the interface towards the PTP master. However,



we utilize the timestamps of PTP on the slave devices all
of which execute PTP-LP to achieve highest accuracy.

• We apply an additional estimation step to PTP. Even
though applying a further estimation by means of a
Kalman filter was already proposed in [9], to the best of
our knowledge there is no existing approach that applies
LP. However, using LP has a conceptual advantage: as the
networking delay is composed of a fixed wire delay and
a variant queuing delay, we can use the synchronization
packets having the lowest delay as boundaries for the
estimation of the slave clock. Therefore, LP is much more
robust to delay variations than averaging or filtering. In
addition, we propose the heuristic PTP-H that is more
computationally efficient and mostly comparable to PTP-
LP but always more precise than PTP.

• We conduct an evaluation considering different clock
stabilities as well as different packet delay distributions.
For this means, we use practical real-world measurements
of self-similar delay distributions and clock stabilities.

• We compare PTP-LP and PTP-H with two state-of-the-
art approaches: standard PTP and PTP with additional
Kalman filtering from [9]. In comparison, PTP-LP shows
to be much more robust against delay variations.

II. RELATED WORK

In this section, we present several clock synchronization
approaches that are either common standards or promising
research works. Many research approaches are not compatible
with standard protocols. In all of the considered approaches in
this section, a varying packet delay reduces the synchroniza-
tion precision tremendously. In contrast, PTP-LP is compatible
to existing standards (PTP) and shows to be robust against
packet delay variations.

The Network Time Protocol (NTP) [3] is the most widely
used synchronization protocol in the Internet. As shown in
[10], the synchronization precision of NTP decreases if non-
negligible delay variations occur. Furthermore, the accuracy
of the NTP software timestamps is lower than the accuracy of
hardware timestamps (e.g., PTP timestamps), which leads to
a further decrease of the synchronization precision.

PTP [4] is the most common synchronization protocol that
uses hardware timestamps. Consequently, the IEEE TSN group
used PTP to derive gPTP as TSN substandard [5]. PTP-
LP bases on PTP as it utilizes PTP timestamps. Although
PTP can achieve a high synchronization precision, is assumes
the packet delay between master and slave to be constant
and symmetric. Therefore, packet variations can significantly
reduce the synchronization accuracy. As shown in the evalu-
ation, PTP-LP can handle these inaccuracies by applying an
additional estimation step using LP. Note that an additional
processing step (e.g., exponential averaging) would increase
the robustness towards delay variations. However, averaging
is not as robust as LP that exploits implicit constraints.

The IEEE TSN substandard gPTP [5] demands all switches
to support gPTP synchronization in their MAC layers. In
contrast, PTP-LP does not need special switching hardware,

as it allows to compensate the delay variations on the net-
work nodes. Therefore, PTP-LP might be also an interesting
extension to the gPTP standard.

In [9], the authors present a much-noticed approach com-
bining PTP and Kalman filtering that mitigates the errors
that are generated by several uncertainties. However, the
authors do not evaluate the number of synchronization periods
used for the synchronization and the Kalman filter estimation
(these evaluations would be important for the convergence
and stability of the Kalman filter). Furthermore, the Gaussian
variations have to be known a priori for the adjustment of the
Kalman filter to ensure its precision and stability. Furthermore,
they only consider a constant packet delay, which is far from
a realistic scenario. We show that PTP-LP outperforms the
approach from [9] especially if there is a high network load.

In [11], the authors propose an approach that is statistically
robust and suited for passive (one-way communication) clock
synchronization in wireless sensor networks (WSNs). Mes-
sages are timestamped at a sending measuring node, transmit-
ted to a central reference node, and timestamped again. The
authors propose a timing estimation by using the heavy tailed
likelihood function to sort out outliers. As outliers basically
falsify the Kalman filter estimation, the authors achieve a
higher precision compared to a Kalman approach. In contrast
to their approach, we not only sort out outliers but the LP
solver inherently finds the most reliable timestamps.

The authors in [12] propose PulseSync that is suitable
for large-scale networks. PulseSync floods the network with
rapid and short pulses. This results into a short initialization
phase and quick adaption of the synchronization to topological
changes and clock drift. The authors state that they outperform
the de facto standard for WSNs, the Flooding Time Synchro-
nization Protocol (FTSP). Although the authors emphasize
the generalizability of their approach, it highly relies on the
WSN MAC layer (e.g., regarding the timestamps). Moreover,
PulseSync is suboptimal regarding robustness as it exhibits a
single point of failure (the reference node). In contrast, PTP-
LP inherits from PTP the best master clock (BMC) algorithm,
which ensures the compensation of a failing reference node.

Mallada et al. propose an approach without explicit estima-
tion of the skew (frequency offset) in [7] and demonstrate its
supremacy over NTP. The timestamps base on the Timestamp
Counter (TSC) that counts CPU cycles since last restart and
time measurements use an improved ping pong mechanism.
The proposed algorithm uses the current offset information
as well as an exponential average of the past offsets. This
avoids the keeping of a long offset history as well as expensive
computations. Besides these benefits, an exponential average is
prone to delay variations in contrast to our LP-based approach
that uses multiple timestamps to estimate the offset.

III. CLOCK MODEL

In this section, we briefly describe the clock model, which
we use in this paper and especially in the evaluation section.
This discrete time clock model was proposed in [9] and bases
on the continuous time clock model from [13]. It is a complex,



non-linear clock model that considers uncertainties of the time
offset increment and the frequency offset.

First, we consider the master time and slave time to follow
linear functions T (t) and C(t), respectively (see Eq. 1). We
consider T (t) as reference clock and C(t) to be a linear
function of t with slope γ. Γ denotes the frequency offset
between master and slave (see Eq. 2). Furthermore, we define
the time offset θ as difference between C(t) and T (t).

T (t) = t, C(t) = γ · t+ θ(0) (1)

γ =
fslave
fmaster

⇒ Γ = γ − 1 (2)

As clocks follow non-linear functions in reality, we will
consider this in the following. In particular, we assume a
perfect master clock as it serves as reference and all non-
linearities of the master clock are modelled as part of the slave
clock C(t) that is a stepwise linear function with stochastic
noise. We assume the time offset θ and the frequency offset
Γ to have random Gaussian uncertainties. Eq. 3 and 4 show
wθ and wΓ, which denote the discrete time offset fluctuation
and frequency fluctuation, respectively. Thereby N(m, sd)
refers to a Gaussian distribution with the mean m and the
standard deviation sd. Moreover, σθ (and σΓ) denote the
standard deviations of the offset (and frequency) fluctuation.
Furthermore, s denotes the current clock step (e.g., clock tick)
of C(t) and δT refers to the time between two steps.

wΓ(s) = N

(
0,
√
σ2

Γ · δT
)

(3)

wθ(s) = N

(
0,
√
σ2
θ · δT

)
(4)

By taking into account these uncertainties, we can derive our
clock models for the time offset θ (Eq. 5) and frequency offset
Γ (Eq. 6) as functions of s assuming that Γ has an impact on
time offset θ (as θ changes over time depending on Γ).

θ(s+ 1) = θ(s) + Γ(s) · δT + wθ(s) (5)
Γ(s+ 1) = Γ(s) + wΓ(s) (6)

IV. IEEE 1588: PRECISION TIME PROTOCOL (PTP)

PTP estimates both the time offset and the frequency
offset between a master clock T (t) and a slave clock C(t)
using several timestamps. Fig. 1 depicts both clocks as well
as all PTP timestamps for one synchronization period. All
variables will be introduced in the following. As the accuracy
of the timestamps is crucial, precise hardware timestamps
(e.g., MAC-layer) are preferred over software timestamps (e.g.,
taken at the application layer). Consequently, many devices
support taking PTP hardware timestamps at their MAC layers.

A synchronization packet is created at the master and the
sending moment is timestamped as T1. C(T2) is the moment
when the slave receives this packet. After a waiting time, the
slave sends a synchronization packet back to the master and
timestamps the sending moment as C(T3). T4 is the moment
when the master receives this packet. PTP assumes the path
delay between master and slave on the forward dms and the

reverse path dsm, respectively, to be symmetric (dms = dsm =
d). Using the timestamps T1 and T4 (taken at the master) as
well as C(T2) and C(T3) (taken at the slave), PTP estimates
the time offset θ̂PTP (n) as given in Eq. 7. Thereby, n denotes
the index of the synchronization period.

θ̂PTP (n) =
[C(T2)− T1]− [T4 − C(T3)]

2
(7)

Furthermore, PTP estimates the frequency offset Γ̂PTP (n), as
apparent from Eq. 8, from the differences of the time offsets in
two consecutive synchronization periods. Thereby, Tn1 denotes
the timestamp T1 taken in the n-th synchronization period.

Γ̂PTP (n) =
θ̂PTP (n)− θ̂PTP (n− 1)

Tn1 − T
n−1
1

(8)

t [s]

T(t) = t

C(t) = γt + θ(0) 

θ(0)

T1 T2=T1+dms T3=T4-dsm T4

dms
dsm

C(T2)

γdms

P=(T1,C(T2))

C(T3)
γdsm

P‘=(T4,C(T3))

T(t)
C(t)

Fig. 1. Times at master T (t) and slave C(t) with the PTP timestamps for
one synchronization period

V. PTP-LP: USING LINEAR PROGRAMMING TO IMPROVE
THE SYNCHRONIZATION PRECISION OF PTP

PTP-LP relies on PTP to obtain precise hardware time-
stamps and applies an additional estimation to these. We
estimate the linear function that the slave clock C(t) follows
using the master clock T (t) as reference. More precisely, we
estimate the slope γ and the y-intercept θ(0) of C(t). We use
the timestamps Tni taken at the master and C(Tni ) taken at
the slave in several synchronization periods n and formulate
an LP to find two linear functions: one above and one below
the original slave clock function C(t). We estimate C(t) as
the mean of both linear functions. As apparent from Fig. 1,
the point P = (T1, C(T2)) must always be located above C(t)
and the point P ′ = (T4, C(T3)) must always be below C(t).
PTP-LP uses this knowledge to estimate C(t) more precisely.

A. Problem formulation

To find the slope γ and the y-intercept θ(0) of C(t), we de-
fine the clock function determination problem (SCFD-P) that
uses the timestamps Tn1 , C(Tn2 ), C(Tn3 ), and Tn4 of several
synchronization periods n as constraints. Here, Tn1 denotes the
timestamp T1 taken during the n-th synchronization period.



1) Forward path: find linear upper bound for C(t): We use
the PTP timestamps Tn1 and C(Tn2 ) taken on the forward path
of the synchronization packets from the master to the slave to
find fub(t) as linear upper bound for C(t).

α1 = γ (9)
β1 = θ(0) + γ · dms (10)

As apparent from Fig. 1, the slave clock line C(t) is always
below the point P = (T1, C(T2)). Consequently, C(t) must
be located below the point (Tn1 , C

n
2 ) for an arbitrary synchro-

nization period n. We search for the slope α1 and y-intercept
β1 of the linear upper bound fub(t) as given in Eq. 9 and 10.
As we state that the points (Tn1 , C(Tn2 )) are part of a (non-
linear) upper bound for C(t), we formulate the LP subproblem
for the forward path using the constraints given in Eq. 11 to
find fub(t) as linear upper bound for C(t).

α1T
n
1 + β1 ≤ C(Tn2 ),∀n ∈ [1, ..., N ] (11)

This basically means that every point of fub(t) must be located
below or on the set of points (Tn1 , C(Tn2 )) that serve as con-
straints since we know that C(t) must run below (Tn1 , C(Tn2 )).
Moreover, we can state the minimization function for this LP
as given in Eq. 12.

f(α1, β1) =

N∑
n=1

(C(Tn2 )− α1T
n
1 − β1) (12)

This basically means that fub(t) should be as close as possible
to the set of constraint points (Tn1 , C(Tn2 )). Thus, fub(t)
converges towards the constraint points.

2) Reverse path: find linear lower bound for C(t): Although
the reverse path equations are very close to the forward path
equation, we will state them here for the sake of comprehen-
sibility. We use the PTP timestamps T4 and C(T3) taken on
the reverse path from slave to master to find flb(t) as the
linear lower bound for C(t). We can state its slope α2 and
y-intercept β2 as given in Eq. 13 and 14.

α2 = γ (13)
β2 = θ(0)− γ · dsm (14)

As apparent form Fig. 1, C(t) is always located above the
point P ′ = (T4, C(T3)). Consequently, C(t) must be located
above the point (Tn4 , C(Tn3 )) for an arbitrary synchronization
period n. Since we state that the points (Tn4 , C(Tn3 )) are part
of the (non-linear) lower bound for flb(t), we formulate the
LP problem as given in Eq. 15 for the reverse path by using
the constraints to find ful(t) as linear lower bound for C(t).

α2T
n
4 + β2 ≥ C(Tn3 ),∀n ∈ [1, ..., N ] (15)

This basically means that every point of flb(t) must be located
above or on the set of constraint points (Tn4 , C(Tn3 )) as we
know that C(t) must run above (Tn4 , C(Tn3 )). Moreover, we
can state the minimization function in Eq. 16.

f(α2, β2) =

N∑
n=1

(α2T
n
4 + β2 − C(Tn3 )) (16)

This basically means that flb(t) should be as close as possible
to the set of constraint points (Tn4 , C(Tn3 )). Thus, flb(t)
converges towards the constraint points.

3) Determination of C(t) from lower and upper bound:
Finally, the original C(t) is estimated as mean of the upper
and lower bounds fub and flb, respectively (Eq. 17).

γ̂LP =
α1 + α2

2
, θ̂LP (0) =

β1 + β2

2
(17)

4) PTP-H: a heuristic for PTP-LP: We also propose a
heuristic denoted as PTP-H to find f̂ub(t) and f̂lb(t) as ap-
proximations for fub(t) and flb(t) in a computationally more
efficient way. Let P1 = {((T 1

1 , C(T 1
2 )), ..., (Tn1 , C(Tn2 ))} be

the set of forward path constraints points and flr1(t) the linear
regression for all points in P1. Then f̂ub(t) equals to:

f̂ub(t) = flr1(t)−m1 (18)

m1 = max
(T i1 ,C(T i2))∈P1

(flr1(T i1)− C(T i2)). (19)

Respectively, let P2 = {(T 1
4 , C(T 1

3 )), ..., (Tn4 , C(Tn3 ))} be the
set of reverse path constraints points and flr2(t) the linear
regression for all points in P2. Then f̂lb(t) equals to:

f̂lb(t) = flr2(t) +m2 (20)

m2 = max
(T i4 ,C(T i3))∈P2

(C(T i3)− flr2(T i4)). (21)

We basically shift the regression line towards the constraints
point that is closest to C(t) (see Fig. 1). PTP-H completely
substitutes the LP solver.

5) Conceptual errors of PTP-LP: Observe that we use a
complex, realistic, and non-linear clock model. However, our
LP-based approach assumes a linear function for C(t). Due
to this mismatch, a systematic error is introduced into the
model. Nevertheless, this error can be neglected if C(t) can
be assumed to be linear for a sufficiently short period of time.
As show in [14] the clock changes more quickly when high
temperature gradients are applied. As a consequence, the LP
solver might not find a solution within a short period of time
and the solving is stopped due to a timeout. Furthermore,
many synchronization packets lead to a long synchronization
time. After a long period of time, the non-linearity of the
slave clock function C(t) becomes relevant. This might lead
to the situation that there is no solution as the original clock
is non-linear and there might be no linear clock function that
fulfills all constraints for C(t). However, in this case it is still
suitable to choose a lower synchronization period and therefore
improve the accuracy of PTP-LP.

VI. EVALUATION

In this section, we discuss the evaluation results obtained
through numerical simulations using Python 3.6.2 and SciPy
1.0.0 on a desktop PC (i7-3770, 32GB RAM). We compare
PTP-LP and PTP-H to standard PTP [4] and PTP extended
by Kalman filtering [9]. We choose PTP for comparison in
this evaluation as it is the most widely used synchronization
protocol that utilizes precise hardware timestamps and hence
serves as a benchmark. We further conduct a comparison to



TABLE I
CLOCK PARAMETERS USED IN THE EVALUATION.

σ2
θ σ2

γ σ2
C(t)

HW clock 1e-14 1e-18 1e-18
SW clock 1e-12 1e-16 1e-6

the Kalman filtering approach [9], as it is the most promising
and well-known synchronization approach that extends PTP.

In general, the synchronization accuracy depends on clock
stability [9] and network delay. Therefore, the accuracy de-
pends on the devices and traffic patterns in the distinct
application scenario. Hence, we cover a variety of different
stabilities and delay distributions in this evaluation.

A. Methodology

The synchronization period was set to one second (default
for PTP [4]). We executed every experiment M = 100 times.

We compare the different approaches using two metrics: the
synchronization error and the frequency error. The synchro-
nization error is the remaining difference between master and
slave time that cannot be compensated by the synchronization
approach. The frequency error Ferr = |Fest/Fref | is the
absolute value of the quotient of the estimated slave clock
frequency Fest and of the actual slave clock frequency Fref .

For the evaluation, we use the clock model from Sec. III.
To model different clock stabilities, we use several clock
parameters: variance of the time offset noise at the slave
device σ2

θ , variance of the frequency offset noise at the slave
device σ2

γ , and variance of the timestamp noise at the slave
device σ2

C(t). We use clock stabilities of two classes: a HW
clock (e.g., a hardware counter that is clocked by a hardware
oscillator) and a SW clock (e.g., a software counter that
is incremented using software interrupts). Table I depicts
the values of the clock parameters used in the evaluation.
They correspond to real-world clocks measured [15] and [16].
Moreover, we depict the Allan variance σ2

y(τ) of both clocks

in Fig. 2 (σ2
y(τ) =

σ2
θ

τ +
σ2
γ ·τ
3 , cf. [9]). For the variance of

the timestamp noise at the slave device σ2
C(t), we had to

make own assumptions. We assume an accuracy on the order
of nanoseconds for the standard deviation of the timestamps
obtained from the HW clock. For the timestamps obtained
from the SW clock, we assume an accuracy of the standard
deviation on the order of milliseconds.
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Fig. 2. Allan variances for SW and HW clock used in the evaluation.

B. Packet delay distributions used in the simulations: Gaus-
sian delay and self-similar delay

In this section, we describe the examined packet delay
distributions (Gaussian and self-similar).

The Gaussian delay distribution assumes a simple Gaussian
delay probability with a mean delay of 5ms and a standard
deviation of 2ms. However, the self-similar network traffic
is more realistic according to [17]. Thereby, the term self-
similar means that the probability distribution looks similar
for different time scales [17]–[19]. The Gaussian delay distri-
bution is easy to calculate (using the mean delay and standard
deviation).

In contrast, we conduct a complex calculation of the self-
similar delay in our simulations. Thereby, we assume the
packet delay to be the sum of the propagation and the queuing
delay. We further assume the propagation delay to be constant
and the queuing delay to be a non-uniformly distributed
statistical process. We use the self-similar packet arrival time
distributions from [17] to calculate a realistic queuing delay.
We scale the packet arrival distributions to a certain link
utilization and we calculate the queue fill level flqueue(t) at
a switch port using a packet size sizepacket of 800 bytes,
which was the mean packet size observed in [17]. Therefore,
we assume it as a realistic value for generic background
traffic (note that the packet size has only a minor impact
on the simulation results). The queuing delay dpacket of a
synchronization packet is calculated from flqueue(t) at the
arrival time tarrival of the synchronization packet and the
transmission speed strans (e.g., 1 GBit/s for GBit Ethernet):
dpacket = flqueue(tarrival)/strans. Actually, we calculate the
time that is needed to empty the queue after tarrival as this
time equals the queuing delay of this synchronization packet.

C. Evaluation with Gaussian packet delay

As we have a non-negligible network delay in this eval-
uation, PTP does not achieve an accuracy on the order of
nanoseconds. PTP-LP achieves a higher accuracy than PTP
under all examined conditions in this section (see Fig. 3).

There are no major differences between the HW and SW
clock as the delay uncertainties are more dominant than the
clock uncertainties in this scenario. Actually, for PTP-LP and
PTP-H the outliers of the Gaussian delay often result into one
bound (upper or lower) to be much closer to the C(t) than
the other bound. This results into errors as we estimate C(t)
as mean of both bounds.

When examining the SW clock, the Kalman filter achieves
a higher accuracy than PTP-LP regarding the estimation of the
frequency error (see Fig. 3). The reasons for this are twofold.
First, this results from the Gaussian uncertainties (noise) of
time offset, frequency offset, and timestamps taken at the slave
device using a SW clock. These Gaussian uncertainties can be
compensated by the Kalman filter, which is by design optimal
for Gaussian noise. Moreover, the Kalman filter can also
compensate the packet delay in this experiment as it follows
a Gaussian distribution. However, note that the Gaussian
variations have to be known a priori for the adjustment of



the Kalman filter to ensure its precision and stability. Second,
the uncertainty of the SW clock at the slave device results
into a non-linear slave clock function C(t), which cannot be
handled by PTP-LP and PTP-H.

When examining the HW clock, we can conclude that PTP-
LP outperforms the Kalman-based approach (see Fig. 3). The
reason for this is that the very low uncertainty of the HW
clock results into a sufficiently linear slave clock function
C(t). Thus, LP is very suitable to estimate it.

The accuracies of PTP-LP and PTP-H increase if more
packets are used for the synchronization. The reason behind
that is that more PTP synchronization packets provide more
timestamps and hence more information for the LP solver. As
a consequence, it is easier for the LP solver to estimate time
offset and frequency offset as the impact of the uncertainties
due to the delay variations is reduced. PTP-H achieves a
precision that is even slightly better than PTP-LP as the used
LP solver does not always find the optimal solution for the LP
and the linear regression also benefits from more information.
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Fig. 3. Synchronization error and frequency error for Gaussian network delay
(the graph is logarithmic in the Y axis).

D. Evaluation with self-similar network delay

Furthermore, we conducted an evaluation using a self-
similar delay distribution for the synchronization packets.

We chose fixed values of approx. 10% and 90% for the
utilization as an evaluation of various values would enor-
mously expand the size of the evaluation. Moreover, the
actual utilization heavily dependents on the scenario, which
complicates general statements. However, by using a high
network utilization, we can show that PTP-LP still achieves a
high synchronization precision under these difficult conditions.
The HW clock leads to a higher accuracy than the SW
clock as the clock uncertainties are more dominant than the

delay uncertainties in this scenario. Moreover, the HW clock
is sufficiently linear and thus PTP-LP and PTP-H are very
suitable to estimate it.

Fig. 4 depicts the results for 10% link utilization. There are
no major differences, but PTP-LP and PTP-H perform slightly
better than PTP and PTP-Kalman.

In contrast, the self-similar delay distribution with 90% link
utilization leads to large errors that cannot be compensated by
standard PTP or the Kalman filter. PTP-LP achieves a higher
accuracy (see Fig. 5) as it can handle delay uncertainties that
do not follow a Gaussian distribution since the LP solver is
able to compensate any kind of a delay distribution. PTP-H
performs not as good as PTP-LP as PTP-H evaluates only
the largest distance to a constraint point, which is usually one
at the beginning or the end. In contrast, PTP-LP evaluates all
points equally to find an optimal solution. Again, the accuracy
of PTP-LP and PTP-H increases if more packets are used for
the synchronization, as they can use more information and
estimate more precisely. Moreover, the influence of statistical
uncertainties decreases.
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Fig. 4. Synchronization error and frequency error for self-similar network
delay with 10% link utilization (the graph is logarithmic in the Y axis).

E. Computational complexity

Fig. 6 depicts the computation time of PTP-LP and PTP-H
for different numbers of synchronization packets (correspond-
ing to the problem size to be solved). LP is known to have
a polynomial complexity. Accordingly, the computation time
seems to be polynomial depending on the problem size. PTP-
H has a much lower computation time than PTP-LP. However,
the solving time of the LP was always below 10ms. Although
the LP solving is an additional estimation step that introduces a
computational overhead, we can increase the synchronization
accuracy. Consequently, PTP-LP offers to trade-off between
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Fig. 5. Synchronization error and frequency error for self-similar network
delay with 90% link utilization (the graph is logarithmic in the Y axis).

computation time and accuracy. Nevertheless, PTP-H also
seems to offer a good trade-off between computation time and
precision and might be suitable for constrained devices.
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Fig. 6. Computation time for PTP-LP and PTP-H (the graph is logarithmic
in the Y axis).

VII. SUMMARY AND CONCLUSION

In this paper, we presented an LP-based approach to in-
crease the precision of PTP that is particularly robust against
packet delay variations. PTP-LP is fully compatible to the
common standard PTP since we do not change the inter-
face towards the PTP master. However, we utilize the PTP
timestamps on the slave device. Furthermore, we propose the
heuristic PTP-H that achieves comparable accuracy but is less
computationally expensive.

We conducted a comprehensive evaluation considering dif-
ferent clock stabilities as well as different packet delay dis-
tributions. In comparison with two state-of-the-art approaches
(standard PTP [4] and PTP with Kalman filtering [9]), the
proposed approaches PTP-LP and PTP-H outperform both.

Especially, PTP-LP shows to be robust against delay variations
in the case of a high link utilization.
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