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Abstract—High assurance Cyber-Physical Systems (CPS) are
the supporting pillars of the critical infrastructure. They support
the power grid, the water supply, transportation systems and
many other devices, where failure or undefined behaviour lead
to risk for loss of life, danger to the environment and defective
operational safety of production. Rigorous testing practices have
assured reliable behaviour even for failure scenarios in their
predictable environments. However, previously isolated systems
have become connected to the Internet and expose an attack
surface that is hard to predict. While the safety of high assurance
CPS is well tested with a controlled residual risk, security risks
will rise throughout the deployment of a system. Hence, this paper
describes research for a testing methodology to tackle emerging
threats and preserve certified security assurance.

I. INTRODUCTION

Safety is addressed generically through "Functional Safety
of Electrical/Electronic/Programmable Electronic Safety-
related Systems" (IEC 61508), and also with their refinements
in many domain-specific standards, e.g., in avionics (DO-
178C, ARP 4754), in automotive (ISO 26262), in railway
(IEC 62279 and EN 501xx), in nuclear-power plants, and
production plants. Functional safety addresses the adequate
reduction of risk that the system can harm its environment.
Safety measures reduce risks coming from random and
systematic failures, which are well modeled and understood,
because they are under the control of the system and equipment
manufacturer. However, safety is also tightly coupled to
availability and integrity of the system to fulfill its safety
policy, i.e., to correctly perform the safety function(s).
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Fig. 1. With the disclosure of an exploit an existing or a new threat can
bypass the layer of defense and will trigger a risk situation.

With the emergence of Commercial-Off-the-Shelf (COTS)
products in Industrial Automation and Control Systems
(IACS), these properties become tightly coupled to security
assurance. In contrast to safety, security addresses risk in the
other direction. Security threats are imposed on the system
by the environment. The concept of terms is shown in Fig. 1.
In this context, assurance is a measure of confidence in the
correct behaviour of a system. A vulnerability is a weakness
of a system, which can be used to cause a threat. A threat is
a method leading to a dangerous event, i.e., risk. The layer
of defense is the collection of countermeasures preventing a
threat escalating to a risk. An exploit bypasses the layer of
defense, using a vulnerability to realize a threat, leading to a
dangerous event. It results in loss of integrity of the system
and its assurance. Evaluated security techniques can ensure
availability and integrity by employing countermeasures to
mitigate threats imposing risks on assets.

Additionally, security defense measures have to deal with
an environment, which is uncertain and changes or evolves
without the control of the supplier. This potentially invalidates
static countermeasures against known vulnerabilities. As a
result for necessary security certification, high assurance CPS
must have an effective infrastructure (not limited) to trace vul-
nerabilities, receive patches, and re-run tests to demonstrate the
required safe behaviour and reassure certification. This process
must still adhere to existing safety certification processes.

The certMILS project has been set up to develop a security
certification methodology according to Common Criteria and
IEC 62443 for a trustworthy Multiple Independent Levels of
Security (MILS) platform [1]. There are more definitions for
MILS platforms, such as defined by Alves-Foss [2] and D-
MILS [3], which follow different approaches. The funda-
mental architecture in the certMILS approach is composed
of multiple components: Hardware, a separation kernel and
multiple partitions for applications of varying security and
safety level. Each component may be under the control of a
different role of responsibility: supplier, system integrator, or
operator. By following the compositional security certification
approach, complexity is reduced and the platform is accessible
for many industrial safety domains. The project’s current
work in progress are the development of the certification
methodology, creation of the MILS Platform Protection Profile
and evaluation of security testing techniques. The latter is the
focus of this publication within the following sections. The
requirements for security, and robustness testing to maintain
assurance and counter emerging threats are described in the
next section. The third section will look at the state of the
art tooling available from the IT world and early usability978-1-5386-4155-2/18/$31.00 c© 2018 IEEE, 10.1109/SIES.2018.8442081
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Fig. 2. Non-formal implementation of requirements lead to mismatch of
desired and acquired functionality. (Redesigned from [5].)

evaluations for high assurance IACS.

II. SECURITY TESTING AND CERTIFICATION

In the web application and general IT domain, large ven-
dors and interest groups have introduced security frameworks,
essentially to protect their users and products from abuse: The
OWASP Testing Framework, Microsoft SLAM and SAGE [4],
MS Security Development Lifecycle (MS SDL), etc. Google
has established the OSS-Fuzz service donating server resources
to rigorously test open source software. The MS-SDL security
framework suggests the development lifecycle to be accompa-
nied with multiple tools:

Phase Tool
early requirements
and design-phase threat-modelling

implementation phase static analysis tools

verification phase
penetration-testing and
dynamic analysis tools

(e.g., fuzz-testing)

Security testing is part of robustness testing within the
verification phase. One methodology is fuzz-testing. It invokes
the target with random and intelligently mutated input data.
Oehlert [6] references fuzz-testing as a robustness testing
technique "to better ensure the absence of exploitable vulner-
abilities" by "checking large numbers of boundary cases" that
functional testing cannot cover. It adds negative test cases to
verify that a software or "product does not do something it
should not do". In Fig. 2, fatal "features", i.e., risks, are the
result of the acquired functionality of a system mismatching
the space of desired functionality through a conventional
implementation process sourcing from the requirements spec-
ification. Takanen et al. [7] provide an in-depth publication
on this topic. Indeed, the space of undesired functionality is
much larger than of desired functionality, covered by functional
testing for conformance. Consequently, fuzz-testing becomes
a time consuming technique.

Over the last years, different improved techniques go
beyond the "dumb" brute-force fuzzing. E.g., "Taint-Style
Vulnerabilities" [8] were the target of Shastry et al in 2017.
First the application is fuzz-tested for vulnerabilities. Then,
identified vulnerability code patterns were matched throughout
the remaining code base to find tainted repetitions. Though this
approach yields many false positives, which required further
analysis techniques.

So far, the previous tools and processes of general security
testing do not suffice for the certified CPS domain. For testing
of IACS, Takanen [7] proposes to differentiate the fuzz-testing
into Ethernet communication-, logic-, and I/O-processing. As
mentioned earlier, any stress imposed on a system must not
break the safety policy. Challenges specific to IACS were
identified by [7]:

• protocol diversity and implementation ambiguity,

• equipment access and configuration complexity,

• test simulations either with and without load,

• grey-box access to SUT (System-Under-Test),

• multi-way redundancy, watch-dogs, fail-safe modes,
communication failover

• performance constraints of tested system.

The most prominent tool to address this domain’s chal-
lenges at the time of the publication of "Fuzzing for Software
Security Testing and Quality Assurance" [7] in 2008 was
Wurldtech Achilles. In the meantime, as detailed by Hoheneg-
ger et al. [9], Achilles has evolved into a formally approved
certification process for exhaustive black-box network security
and network robustness testing. Achilles certification is based
on IEC 62443-2-4 [10].

However, the IEC 62443 series of standards has a much
wider scope, to cover the whole design of cyber-security
robustness and resilience in IACS. The series is organized
into four groups addressing (1) general topics, (2) policies
and procedures, (3) the system level and (4) the component
level. IEC 62443-4-<1,2> focus on device product development
requirements and technical security requirements. IEC 62443-
3-3 is related to "System security requirements and security
levels". These two aspects can be certified by accredited labs
using the ISASecure certification schemes:

EDSA Embedded Device Security Assurance [11],

SSA System Security Assurance [12], and

SDLA Security Development Lifecycle Assurance [13].

Most importantly, as a security standard, they define the
functional security for safety, availability, integrity and con-
fidentiality for the system and its components. Details about
secure implementations are not specified, but the expected be-
havior. To phrase this more explicitly, IEC 62443 is a standard
and makes no obvious technical suggestions. By using the
MILS approach, especially the certMILS reference solution
building on compositional certification, details can be defined
to ease a certification scheme.

The Common Criteria (CC) [14] certification scheme has
introduced an assurance class for composed (ACO) IT prod-
ucts, where most evaluation work, compared to a monolithic
evaluation, is focused on the evaluation of the security of
interfaces between components. Though this approach still has
impediments, when reaching for higher assurance levels [9].
Here, analysis has also shown that some lines of similarities
between the schemes of CC and IEC 62443 can be drawn.

For example, IEC 62443 has the concept of zoned network
components. The hypothesis anticipates to map this concept
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Fig. 3. Relation and information flow between an untrusted component (i.e.,
attacker) and the assets in a layered composed system.

for certification of a networked composition to a MILS sys-
tem. Such a networked composition would require efficient
verification and testing to demonstrate non-bypassability of the
security policies.

For this testing, first a threat analysis models the attacker
and the tested components of the composed system. A layered
composition, as shown in Fig. 3, is a simpler version of
the network type composition [1] mentioned before. The
network type can be modelled as an overlay or a fusion
of multiple layered evaluations. In this layered model, the
outer component has to be robust against malicious inputs.
In contrast, the inner component does not have to provide
maximum robustness, as the outer component is trusted to
only pass valid data. In a generalized MILS system designed
as a networked composition, the attacker, i.e., the untrusted
component, can have different mappings. E.g., an unprivileged
partition component, as implemented by the system integrator
or the operator role, cannot generically be trusted by the
separation kernel component supplier.

Typically, the hardware access layer, also referred to as
platform support package (PSP), is added by the system inte-
grator. It is a component to be composed with the separation
kernel component. On the one hand, this makes the MILS
system very flexible for COTS hardware and its obsolescence
throughout the product’s lifecycle. On the other hand, drivers,
especially hardware drivers, require elevated access rights
and most must run in the kernel domain. For technical and
performance reasons, this interface cannot provide the same
robustness, as the system-call interface to the user space
components. Testing of this information flow for security and
non-bypassability is analyzed in the next chapter.

III. TECHNICAL APPROACH FOR ONGOING WORK

In an interconnected CPS, the emergence of security vul-
nerabilities is realistically inevitable. These general "future"
vulnerabilities require these systems to support a patching
methodology throughout the lifecycle. Though a small patch
must not demand a full system re-certification. As discussed
before, a MILS system does address this requirement through
partitioning into, e.g., (at least) security relevant components
that may need patching and components fulfilling safety func-
tions. Accordingly, to maintain confidence in the correctness of
the system, testing can and must be specific to certain aspects
of the distinctive components of a MILS system. An additional
component that specializes a more generic system or a patched
component must proof confidence with testing before returning
the system to operations.

The previous chapter concluded with rigorous testing being
one of the important techniques to gain confidence in the
correctness of a high-assurance system. Testing tools for

functional testing are established and well available. Functional
testing demonstrates correct behaviour of specified require-
ments (see earlier in Fig. 2). However, due to often incom-
plete specifications and ambiguity in requirement interpretation
leading to implementation mismatch, undesired behaviour can
occur and must be traced with robustness testing.

Fuzz-testing, a robustness testing technique, has lately been
most successful to discover hidden security vulnerabilities.
However, there are challenges: Firstly, fuzz-testing tools need
specific adaptation to the interfaces of the test target, i.e., the
component. Secondly, the failure, i.e., the crash of a compo-
nent, needs to be handled. Prominent tools like AFL [15] and
libFuzzer [16] handle user-space fuzzing very well, and can
also work on high assurance (user-space) applications. Fuzzing
kernel-space components, such as the separation kernel or
the hardware layer of a MILS system, require more complex
approaches. Lastly, even though current fuzzing suites provide
powerful tooling to dissect the results of fuzz-testing, this is
non-trivial without additional, provided guidance. IEC 62443
describes the roles beyond the component supplier, such as the
system integrator and the operator. For example, the integrator
may develop an additional hardware driver for their specialized
product, and needs to test it for integration. However, typically
the integrator is not an expert on internals of the separation
kernel component of the MILS system. Further on, operators
may have to apply an urgent security patch along maintenance
operations, for which automated tests need to be provided.

For the security certification approach of the certMILS
project must master these different challenges. At first, the
approach needs be addressed in a Common Criteria Protection
Profile (PP). Since there exists no adequate PP for a MILS sep-
aration kernel [17], the Base MILS Platform PP is being writ-
ten by certMILS project members and published for comments
of the community. It consists of the target-of-evaluation (ToE)
description, security problem definitions, sec. objectives and
sec. requirements. It is assumed, that the underlying approach
can also successfully be used for IEC 62443 evaluations.
Concurrently, the robustness testing techniques for the different
component aspects are being evaluated and implemented. This
includes fuzz-testing for user-space application components,
for the system-call interface, for the system service component
(for, e.g., inter-process communication setup and resource
management) and for separation kernel extensions, such as
HW-drivers and platform abstractions (PSP). Even in COTS
operating systems (OS) testing of the latter is non-trivial, still,
indispensable due to the missing context-switch barrier.

For generic IT systems, kernel fuzzing is addressed by
the publishers of TriforceAFL [18]. They are using the full
system emulation framework QEMU [19] to fuzz-test black-
box OS kernels. Even though claiming "arbitrary" OS can be
tested, it is silently presumed, the OS is compatible with the
emulated environment. Furthermore, this approach is of small
use for hardware access layer (PSP) fuzzing, as the full system
hardware is emulated by QEMU. Typically, QEMU provides
hardware emulation in a generic way that does not necessarily
correspond to the actual physical hardware used in IACS. Such
fuzzing of the PSP may not provide results adequately related
to the operational product.

An improved approach, recently published as kAFL [20],
instead uses kernel-based system virtualization [19]. Its pri-



mary goal was significant speed improvement over an emulated
system. In a virtualization approach, the testing-hypervisor
could also pass-through virtualized parts of the target system
compared to an emulated system (see [21]). Though commu-
nity feedback has shown that this approach is expected raise
many technical complications and may still be of limited use
for hardware fuzzing in practice.

The authors of kAFL supplied an example of a vulnerable
kernel driver that panics on a "magic" input pattern. The
example was ported to a simple MILS system based on the
PikeOS kernel and fuzz-tested on an average laptop without
any special powers. The kAFL fuzzer traced the magic pat-
terns successfully in a matter of hours. Further experiments,
supporting own code instrumentation hardware-independent
techniques, are in progress.

IV. CONCLUSION

Upcoming work for the certMILS project needs to merge
the state of the art approaches into a tools suite that, most
importantly, is maintainable for prolonged periods with limited
resources compared to major IT companies. The security
testing suite required for the certification methodology must
also be "light-weight", to be well evaluable by certification as-
sessors. Some of the technical solutions in the previous chapter
introduced heavy modifications to the system emulator QEMU
or use a self-developed fuzzer, which may prove expensive
to maintain. In case of IACS development with cooperative
development partners, simpler approaches based on white-
box testing of kernel components are currently favored for
the progress of the certMILS project. Instead of architecture
specific run-time processor trace information, compiler-based
code instrumentation of the tested kernel component can be
applied for code-coverage feedback of fuzzing-test-cases. This
is similar to the original AFL approach, but must be adapted
for the special environment of the MILS separation kernel.

The collection of fuzz-testing guidance, a system fuzzing
framework for kernel and PSP, a user-space-interface fuzzer
("syscall" fuzzer) and additional existing tools, such as
Achilles, or Nessus, will ease demonstration of preservation of
assurance for the complete lifecycle, maintaining the security
certification for a high assurance MILS system according to
Common Criteria or IEC 62443.
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