
In Search for a Simple Secure Protocol for
Safety-Critical High-Assurance Applications

Thorsten Schulz, Frank Golatowski and Dirk Timmermann
Institute of Applied Microelectronics and CE, University of Rostock, Germany

{thorsten.schulz,frank.golatowski,dirk.timmermann}@uni-rostock.de

Abstract—Security and cryptography protocols are seen by
many as black-magic, largely due to their complex mathematical
algorithms and entangled state-machines. This complexity has
also led to numerous vulnerabilities in past years. Recent de-
velopments have simplified conformance requirements, and also
introduced formal proofs to mainstream security protocols. In
this work-in-progress publication we discuss, how this evolution
has greatly improved the situation for critical systems, and how
the architecture of MILS systems can raise the confidence for
high-assurance systems.

Keywords—security, formal modeling, safety critical systems,
CPS

I. SECURITY IN CRITICAL SYSTEMS

Critical systems are required to be reliable, available,
maintainable and safe according to accepted and governing
standards, e.g., EN 50126 in the railway domain. These at-
tributes are a result of qualified processes and guided methods,
requiring specially trained engineers, operators and maintain-
ers to minimize application risks. The processes specifically
require that access is limited to that qualified and authorized
group to assure the integrity of the processes and the system
(product). Physical access barriers, e.g., locked doors, typically
have a constant ratio between cost of securing and effort to
bypass, largely due to the required physical attendance of the
intruder with the specific knowledge to that barrier.

The introduction of electronic and networked access to
critical systems as Cyber-Physical Systems (CPS), in principle,
has not changed this paradigm, but removed the latter physical
appearance of an intruder. This has introduced negative scaling
effects making even well secured systems with only a small
security vulnerability cheap for large scale attacks. The current
mitigation trend in IT systems is to automate and improve
testing methods, and to shorten time to update, i.e., patch
vulnerabilities. In contrast, critical systems have stricter update
policies and typically run on non-standardized hardware. As a
consequence, testing requires more effort for a much smaller
number of operative products. Modifying a critical system’s
software requires re-certification – even if it is "just" a security
update.

Current research is developing methodologies to reduce the
fore-said re-certification effort through dependable partitioning
of a system, applying the Multiple Independent Levels of
Security (MILS) architecture (Fig. 1). For example, the system
design could split the application into a safe control component
and an independent transmission component with security
functions, such as remote authorization, authentication and
encryption. The safety function within the control application

would be independent of corruptions within the transmission
component, if it can continue operation in degraded mode
without transmission data. The data flow between the compo-
nents is guarded by the MILS separation kernel, allowing only
predefined data flows between the two domains. Depending
on attack vectors, system and application design, the security
relevant transmission component could then also be of lower
confidence level and classified with a low Software Safety
Integrity Level (SSIL), being less susceptible to re-certification
requirements.

A MILS system is composed of components. For the
system to perform a critical safety function, it needs evalu-
ation and certification to standards required by governmental
authorities. As mentioned before, evaluation for security of a
composed system of apriori certified components, requires spe-
cial methodologies. Furgel et.al. [1] present the methodology
for "Non-Interfering Composed Evaluation" within Common
Criteria. The key requirement for non-interference is that
the execution of one component does not undermine another
component’s security policy. For the general case, this demands
that all internal states of a component are well defined and
well known at any time, as well as all implicit and explicit
interfaces between components are clearly defined and accu-
rately described. For a component to demonstrate the adequate
evidence for evaluation, this either requires formal methods /
proofs or exhaustive testing, including robustness testing.

component

safety
certified

application

component

3rd party
application

component

attackable
transmission

security

partition partition partition

separation kernel
HW-driver Ethernet drv

hardware

Fig. 1. Architecture of a simple MILS system with a separation kernel, a
safety application and additional drivers. The security protocol implementation
(green) must be instantiated in a particular environment depending on the level
of assured confidence in the correct behaviour and non-interference.

This publication summarizes the findings selecting state
of the art methods and algorithms leading to a certifiable
cryptographic component for a high-assurance MILS system.
The targeted encryption protocol should, on the one hand, help



secure arbitrary data transmission between systems over an
open internet protocol (IP) network link, especially in terms
of authenticity of the remote system / application, as well as
integrity of the message sent. On the other hand, it may also
be used as a download channel in the context of Secure Update
mechanisms of selected system components. Current protocols
and related algorithms will be discussed in the following
section.

II. EVALUATION OF DATA ENCRYPTION PROTOCOLS

Network traffic encryption for security can be applied on
different layers of the common ISO-OSI (Open Systems Inter-
connection model). The tunneled traffic of security protocols
typically range from data link layer (2) up to the application
layer (7).1 When the data link layer, such as Ethernet, can
be abstracted, as well as application specific higher schemes
are out of scope, OSI layer 3 network layer encryption is
the most versatile choice – most prominently used as Virtual
Private Networks (L3-VPN). The following section will thus
look at the choice of the Transport Layer Security proto-
col (TLS) as used in OpenVPN, as well as the WireGuard
protocol, a VPN implementation using the Noise protocol.2
However, algorithms used within L3-VPN can always, and,
in terms of TLS, are also used to tunnel specific higher level
application protocols. For example, TLS is used to turn the
Hypertext Transport Protocol (HTTP) into its secured version
HTTPS. Consequently, a Secure Update functionality based
on standardized file transfer protocols would always require a
crypto-library that conforms to all mandatory requirements of
the given standard.

In cryptography algorithms and security protocols, it is
generally advisable to stick to proven solutions ([2]). As
mentioned at the beginning, even a small weakness can turn
the whole implementation vulnerable. For this reason TLS has
been widely adopted. However, a matured solution like TLS
that has received continuous updates and adoptions to many
applications, also grows in complexity and becomes more
susceptible to implementation flaws, for example the infamous
Heartbleed Bug. The implementation of TLS is accompanied
by over 20 extensional internet standards (RFC). E.g., the in-
formational RFC 7457 exists alone to list known vulnerabilities
and weaknesses to TLS implementations. A common source
of weaknesses in TLS are protocol downgrades to a broken
cryptographic algorithm, buffer overruns of message parser,
weak implementations of algorithms and dubious interpretation
of certificates [3].

Some of those weaknesses of TLS were addressed in the
latest version 1.3 [4], which is in the late draft process. Major
changes listed in the draft:

• Legacy encryption algorithms were removed.

• Only Authenticated Encryption with Associated Data
(AEAD) algorithms are supported.

• Static RSA and Diffie-Hellman (DH) suites were
removed in favor of ephemeral variants.

1In contrast, the tunnel protocol itself typically runs on top of TCP or UDP
in the application layer.

2Like TLS, IPsec is of greater complexity (see evaluation by Ferguson and
Schneier) and thus not further considered in this comparison.

Client
System

TCP connect request

ClientHello,ClientKeyShare

ServerHello,

ServerKeyShare,

Certificate,

Finished

Finished,Application Data

connect acknowledge

Application Data

T
L

S 
1.

3 
ha

nd
sh

ak
e

Server
System

Fig. 2. The basic TLS 1.3 handshake message passing process. There are
further more variants related to PSK, 0-RTT and client-authentication.

• Key-exchange suites provide Perfect Forward Secrecy.

• The HMAC-based Extract-and-Expand Key Deriva-
tion Function (HKDF) is used for key-derivation.

• The handshake state machine has been significantly
restructured to be more consistent and to remove
superfluous messages.

• Elliptic curve algorithms are in the base specification,
and signature algorithms Ed25519 and Ed448 were
added. Point format negotiation was removed in favor
of a single point format for each curve.

• Session resumption with and without server-side state.

• Reduction to a single Pre-Shared-Key (PSK) method.

As a result, current TLS Compliance Requirements (see
section 9 of the draft [4]) can be considered smaller than
previous versions. The subsection 9.1 of the draft lists the
mandatory-to-implement cipher suites:

• AEAD:
◦ mdt: AES128-GCM-SHA256,
◦ opt: AES256-GCM-SHA384 (RFC 5116),
◦ opt: ChaCha20-Poly1305 (RFC 7539).

• Diffie-Hellman key exchange:
◦ mdt: Elliptic curve secp256r1 (NIST P-256),
◦ opt: Elliptic curve X25519 (RFC 7748).

• Digital signatures:
◦ RSA PKCS1 SHA256,
◦ RSA PSS RSAe SHA256,
◦ ECDSA secp256r1 SHA256.

Which cipher suite is used for the application data is nego-
tiated in the handshake process. The TLS handshake messages
(Fig. 2) have optional and mandatory extensions, e.g., the
"KeyShare", the certificate. As a result, the handshake mes-
sages are of variable length and of varying complexity, which
has led to vulnerabilities and implementation mismatches in
the past [3].



Client
System

initiation message

response message

Application Data

Server
System

idle

initiation

data
trigger

listening

respond,
prepare

keysderrive
keys

valid
re

ke
yinval.

resp. re
se

t

Application Data wait-ack

Fig. 3. The WireGuard state-machine has few states. The initiator starts
rekeying after 120 seconds. Otherwise, the responder discards its transport
keys after a maximum of 160 seconds.

The WireGuard protocol [5] on the other hand uses a much
more simplified approach. Only one cipher suite is used and
certificates are not part of the protocol. The control-flow in Fig.
3 has an untangled structure. Peer selection and verification
is solely based on public keys. A more or less sophisticated
Public-Key-Infrastructure (PKI) may be implemented sepa-
rately, but only if the overall application requires this. The
core of WireGuard is based on the secure protocol framework
Noise [6], which has proven use in secure messaging networks
such as WhatsApp and Signal. Like in TLS, two messages are
sent in the handshake: the initiation and the response. A third
message type can be sent by the peer instead of a response with
low computational effort, if the replying peer is under heavy
load (e.g., in an adversary attack [7]) and unable to serve the
costly key calculation. The fourth message type transports the
application data. All four message types have a fixed length
and a fixed structure, so a message parser is immune against
length and buffer-overrun vulnerabilities.

In fact, the cipher suite and the key exchange algorithm are
also instantiated in TLS 1.3: the AEAD ChaCha20-Poly1305
(RFC 7539) and the elliptic curve X25519 (RFC 7748). Further
implementation requirements are the hash function Blake2s
(RFC 7693) and, like in TLS, the Keyed-Hashing for Message
Authentication (HMAC) and Extract-and-Expand Key Deriva-
tion Function (HKDF) constructs according to RFC 2104 and
RFC 5869 respectively.

Very recently, the authors of WireGuard have published
their results of the formal security verification of the protocol
in [7]. The verification efforts are based on the tool Tamarin
and assert the security properties of the modeled protocol
according to key agreement, key secrecy, session uniqueness
and identity hiding. Due to numerous static data structures
and avoidance of dynamic memory allocations, the main
C implementation of WireGuard claims low risk of unsafe
behaviour to be considered as a Linux kernel driver module.
Moreover, the implementation uses verified implementations
of the X25519 algorithm published in [8] and [9], applying
formal methods of F* and Coq.

III. SUMMARY

After identifying the properties of current state of the art
cryptographic protocols in the previous chapter, we need to
weight them against the requirements of safety-critical systems
from the introduction.

Clearly, TLS has a much wider adoption in all kinds of
systems compared to WireGuard. TLS has multiple available
implementations and is the basis for encryption for many
everyday protocols. Nevertheless, its complexity has grown
and recent updates to the standard suggest to rely on the
latest version 1.3 for critical systems for its reduced feature
set. WireGuard comes with a minimal feature set and small
code-base, which make it easier to verify security proofs of the
protocol and the execution resources of the implementation. In
an earlier publication [10] we also showed that it is feasible,
to model the cipher suites in the formal language Scade for
safety critical domains.

What has not yet been evaluated in experiment, whether
cryptographic hardware support affects the choice. The dis-
cussed cipher suite ChaCha20-Poly1305 was designed for
superior performance in software on modern processors [11]
and there is no known COTS hardware support. AES en-
cryption on the other hand, is often supported in hardware.
Advanced crypto-peripherals, increasingly included in larger
System-on-Chip (SoC) designs, also assist in hashing (SHA,
HMAC) and can calculate standard elliptic curve DH, such
as NIST-secp256r1. However, such access to specialized hard-
ware peripherals needs elevated rights in a MILS system and
requires a sophisticated system design to secure the data flows.
Furthermore, HW-crypto-accelerators cannot be patched on
discovered flaws. Whether SW or HW-crypto provides better
and long-term security, is an active ongoing discussion and
beyond the scope of this summary.

In the introduction, different composition architectures of a
MILS system were mentioned. Future work needs to evaluate,
whether a network security protocol implementation is too
complex to be trustworthy and needs to be shifted into an
unprivileged partition component, or if it can be run in the priv-
ileged separation kernel / hardware abstraction (PSP) space.
The latter case may be advantageous for HW-acceleration and
improved performance. However, formal proofs or rigorous
robustness tests must assure the non-interference with other
privileged components, e.g., the kernel and other drivers.

Ongoing work in the certMILS project will further inves-
tigate and implement robustness testing techniques, as well
as formal implementations of WireGuard. These experiments
will evaluate the feasibility of security for safety on multiple
hardware platforms, in different safety-critical domains.

ACKNOWLEDGMENT

This work is part of the certMILS project, funded by
the European Union’s Horizon 2020 research and innovation
programme under grant agreement No. 731456.



REFERENCES

[1] I. Furgel, V. Saftig, T. Wagner, K. Müller, R. Schwarz,
and A. S. F. Blomberg, Non-interfering composed eval-
uation, 2016. DOI: 10 . 5281 / zenodo . 47979. [Online].
Available: http://dx.doi.org/10.5281/zenodo.47979.

[2] J. Victors, “TLS 1.3 and the future of cryptographic
protocols,” Synopsys, Tech. Rep., Apr. 14, 2016,
https://www.synopsys.com/blogs/software-security/tls-
1-3/. [Online]. Available: https://www.synopsys.com/
blogs/software-security/tls-1-3/.

[3] A. Walz and A. Sikora, “Exploiting dissent: Towards
fuzzing-based differential black box testing of TLS
implementations,” IEEE Transactions on Dependable
and Secure Computing, pp. 1–1, 2017, ISSN: 1545-5971.
DOI: 10.1109/TDSC.2017.2763947.

[4] E. Rescorla, “The transport layer security (TLS) pro-
tocol version 1.3, Draft-ietf-tls-tls13-28,” IETF, Tech.
Rep., Mar. 20, 2018. [Online]. Available: https : / /
datatracker.ietf.org/doc/draft-ietf-tls-tls13/.

[5] J. A. Donenfeld, “Wireguard: Next generation kernel
network tunnel,” in NDSS Symposium, Feb. 27, 2017.
DOI: 4846ada1492f5d92198df154f48c3d54205657bc.
[Online]. Available: https://www.wireguard.com/papers/
wireguard.pdf.

[6] T. Perrin, “The noise protocol framework,” Tech. Rep.,
Oct. 4, 2017. [Online]. Available: https://noiseprotocol.
org/noise.html.

[7] J. A. Donenfeld and K. Milner, “Formal ver-
ification of the wireguard protocol,” Oxford

University, Tech. Rep., Jan. 21, 2018. DOI:
d376f649d7f4b68f616e05e5f64d660e9b23d7af. [On-
line]. Available: https : / /www.wireguard .com/papers /
wireguard-formal-verification.pdf.

[8] J.-K. Zinzindohoué, K. Bhargavan, J. Protzenko, and B.
Beurdouche, “Hacl*: A verified modern cryptographic
library,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Secu-
rity, ser. CCS ’17, Dallas, Texas, USA: ACM, 2017,
pp. 1789–1806, ISBN: 978-1-4503-4946-8. DOI: 10 .
1145 / 3133956 . 3134043. [Online]. Available: https : / /
eprint.iacr.org/2017/536.

[9] A. Erbsen, J. Philipoom, J. Gross, R. Sloan, and A.
Chlipala, “Systematic generation of fast elliptic curve
cryptography implementations,” MIT, Cambridge, MA,
USA, Tech. Rep., 2017. [Online]. Available: https : / /
people .csail .mit . edu / jgross /personal - website /papers /
2018-fiat-crypto-pldi-draft.pdf.

[10] T. Schulz, F. Golatowski, and D. Timmermann, “Eval-
uation of a formalized encryption library for safety-
critical embedded systems,” in Industrial Technology
(ICIT), 2017 IEEE International Conference on, IEEE,
2017, pp. 1153–1158, ISBN: 978-1-5090-5320-9. DOI:
10.1109/ICIT.2017.7915525.

[11] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe,
and B.-Y. Yang, “High-speed high-security signatures,”
Journal of Cryptographic Engineering, pp. 77–89, 2012,

Document ID: , http://ed25519.cr.yp.to/.


