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Abstract—This paper presents a novel decentralized control 

and communication system targeting diverse set of Material 

Handling Systems. It is an open platform and based on modular 

Industrial Device collaboration. The relation of proposed system 

with Industrial Internet of Things, which have relatively relaxed 

real time requirements, is also given. 
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I. INTRODUCTION 

Today's internal material flow in logistic systems is only 
able to cope with challenges such as small batch sizes and 
increasing product individualization just to a limited extent. A 
flexible adaptation of the material flow process is time-
consuming and expensive due to the hierarchical structure of 
the central factory control systems. In addition, different types 
of machines involved in the material flow and, therefore, their 
control systems have very limited or no communication with 
each other (Machine-to-Machine communication) due to the 
complexity of establishing such connections across platforms 
and applications. Such limited communication also results in 
the lack of support from machines to the operators in their 
work processes. Modularization and Machine-to-Machine 
(M2M) communication provide the basis for tomorrow's 
smart factories and smart Material Handling Systems (MHS). 
With the help of the intelligent Human-Machine-Interface 
(HMI) and the resulting in-depth human-technology 
cooperation, machines will be able to actively support the 
operators with "assistance functions" with regard to safety and 
efficiency.  

A trend in industrial automation is to adapt IoT technology 
to preprocess data or to assist smart manufacturing creating 
collaborative systems [1] [2]. With IIoT, the control process is 
not only monitored but also analyzed and optimized. In 
contrast to control applications, IIoT applications have 
relatively relaxed real time requirements. Therefore, the non-
real-time tasks should be decoupled to avoid the influence on 
the real-time tasks. This decoupling requires an interface for 
information exchange between control applications and IIoT 
applications.  

Wireless technologies are preferred in MHS where devices 
and operators are constantly moving. Common solutions for 

wireless industrial M2M communication are based on 
WLAN, [3]. Typical IoT solutions rely, on the other hand, on  
other wireless communication technologies which are 
specifically designed for energy-saving, [4]-[5], short 
distances, [6], or reduced bandwidth, [7]-[8]. Upcoming 
technologies such as 5G is also considered, which allows also 
peer-to-peer communication and fulfils industrial 
requirements like determinism or different kinds of Quality of 
Services. Control applications need to be designed abstractly 
from the underlying communication in order to ease the 
application of new communication technologies.    

This article presents a new open decentralized control and 
communication system that can be used by the most types of 
MHS – such as overhead forklifts, Automated Guided 
Vehicles (AGV), overhead cranes and hoists - to enable 
innovative assistance functions as well as a flexible and fast 
adaptation of the material flow. Such functions could later be 
complemented by specific software components running on 
the same or separate embedded devices without changing 
central components. Only links for information exchange need 
to be adapted. Another example is modular components in 
process industry according to the Namur Module Type 
Package concept [9]. Here, preconfigured and tested modules 
are put together for each process. The proposed control 
architecture also takes into account the interface with IIoT for 
the exchange of non-real-time data.  

The remainder of this paper is organized as follows: 
Section II briefly presents the system architecture considered 
for this work. Section III briefly discusses the proposed 
concept of the Distributed Control Platform. Section IV gives 
an overview about the communication concepts for control 
level and Section V gives an overview about interaction with 
IIoT components running of embedded industrial devices. 
Section VI presents a primitive implementation of the 
proposed system. Finally, the last section summarizes the 
benefits of the presented approach, the related work and gives 
an outlook about the next steps on improving the found 
solution. 



II. SYSTEM ARCHITECTURE 

A. Involved Components 

The components involved in MHS and their interaction are 
shown in Fig. 1. The machines are depicted as Industrial 
Devices (light orange boxes in Fig. 1). Some design aspects of 
the Industrial Device resemble Cyber Physical System (CPS) 
definitions [10][11]. A horizontal communication level allows 
the M2M communication, which may be wired or wireless and 
shall guarantee real-time data exchange. Additionally, the 
operator can interact with the MHS through specific HMI 
(Human Machine Interaction) devices. Furthermore, the 
components should be able to communicate according to IoT 
concepts with services running in edge cloud, in external 
cloud or offer services, which can be used remotely. There are 
some interesting solutions for such vertical communication 
either available or currently being specified. Most of such 
communication protocols use OPC UA [12] technology, e.g. 
such called Companion Specification developed at 
VDMA[13] or other associations, e.g. for integration of field 
device in modern SCADA systems [14]. In this paper, we will 
focus on the Distributed Control Platform (DCP) (dark blue 
boxes in the Industrial Device) and the horizontal interaction 
between software components aimed for control tasks.  

 

Fig. 1. Interacting Components for HMS or Smart Manufacturing 

B. Software Components 

Control systems, which have been applied in industrial 
field, are conceptually designed as centralized control 
systems. This implies that all inputs (sensors, HMI…) / 
outputs (actuators) are connected to this central controller. 
Hereby it is not important whether the inputs / outputs are 
physically arranged directly on the controller or are arranged 
decentrally in the automation system via fieldbus systems. 
The distributed control approach allows to break up the 
control loop and distribute it to a number of devices. For this, 
each device is required to be able to interact with physical 
process via its inputs/outputs, process the data and 
communicate with other devices. With all these requirements, 
each device in the distributed control approach can be 
considered as a Cyber Physical System (CPS).  

Each design strategy of the control system has its 
advantage and limitation. Although central control system 
provides optimized task schedule for each task by using high 
performance computing power, it is difficult to satisfy a real-
time control as the network size increases. In distributed 

control approach, real-time control can be guaranteed since 
each collaborating device fulfils its dedicated sub task of the 
overall application. However, each device, in order to 
accurately and safely operate, requires a larger amount of 
information from surrounding environment and other devices. 

Fig. 2 shows the architecture of an Industrial Device. Each 
Industrial Device performs appropriate set of tasks based on 
the context. The context consists of current state of nearby 
components and data from environment, which are obtained 
via basic communication and embedded or connected 
hardware such as sensors. DCP is the platform on which, the 
distributed control applications can be deployed. It also 
facilitates the interactions between the control applications 
across devices. IIoT is responsible for vertical communication 
as well as the exchange of non-real-time data. The Industrial 
Device should have specific software components depending 
on the requirements. Thus, not all components shown in Fig. 
2 have to be available in all device instances. Therefore, for 
instance, an edge cloud device may behave as an Industrial 
Device following the approach of this article. 

The design of control application shall follow the object-
oriented approach. Function Blocks are also well known and 
widely used in automation domain. The latest version of IEC 
61131-3 [15] allows Function Blocks with high degree of 
abstraction, e.g. by introducing the interface concept or 
multiple methods per Function Block. Control Application 
Objects (CAO) adapt such design principles but the DCP 
runtime allows remote interactions between CAOs as well. 

 

Fig. 2. Architecture of Industrial Device 

Different software components running on an Industrial 
Device shall be deployed based on container approaches.  

III. ARCHITECTURE OF DCP 

In this section, the architecture of the DCP is presented 
more in detail. For the realization of the DCP, it is assumed 
that an operating system (OS) is available, where the DCP and 
its component can be installed. This may differ from hardware 
to hardware platform. Quite often OS with real-time features 
are used for embedded industrial automation devices. Fig. 3 
shows the architecture of DCP. Central component of the DCP 
is the Node Manager. Each DCP provides exactly one Node 
Manager. It is the first contact point for each communication 
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channel established between Control Application Objects on 
the same node or across different nodes. 

The Control Application Manager is responsible for 
managing tasks between Control Object Managers, especially 
the functionality of distributed start, stop, halt or continuation 
of the overall functionality, whereas the Control Object 
Manager handles the lifecycle of all Control Application 
Objects. Scheduling strategies are required for Control Object 
Manager to handle multiple Control Application Objects, 
which are running concurrently. CAOs are further grouped 
into execution contexts. The Control Object Execution is 
responsible for triggering the CAOs.  

One of the main challenges in a distributed system is time 
synchronization. Different nodes in the network may use 
different time references. Therefore, the control platform 
provides clock synchronization to ensure that time is aligned 
between all nodes in the control network. In case of Ethernet 
based communication between the nodes, clocks can be 
synchronized according to IEEE 1588 (Precision Time 
Protocol - PTP) [16]. 

Logging is a very important service in different life cycle 
phases of the control application. The Logging Server offers 
services to log for instance events, Control Application Object 
activations or changes of the execution point of view. 

 
Fig. 3. Architecture of Distributed Control Platform 

Generally, each component in DCP offers several services 
via specific interfaces. The detailed specification cannot be 
given in the context of this article. Examples of services are 
for creating / deleting of CAOs or starting / halting / stopping 
of the application. 

The remaining components Network Manager, 
Connection Entity and Interface IIoT are discussed in 
subsequent sections. 

IV. COMMUNICATION BETWEEN DCP OBJECTS 

As shortly mentioned in Section I, communication 
between Industrial Devices shall be independent from the 
specific communication technologies. From DCP perspective, 
the availability of communication interfaces offered by the 
OS, e.g. by means of sockets, is also important. Based on such 
abstraction, the network component of the DCP can establish 
a communication channel between CAOs running on different 
devices. This results in peer-to-peer communication between 
Industrial Devices, if the specific control application needs 
such information exchange. Fig. 4 shows an established 
communication channel between two partners.  

 

Fig. 4. Communication Channel as Basis for Device Interaction 

The setup of a communication channel uses lookup 
functions for discovery purposes, e.g. to find the correct 
Industrial Device. In most cases, Industrial Devices are 
defined by their names. Here the approach follows well-
known IT solutions as Domain Name System (DNS). 
Internally the Network Manager consults the Node Manager 
of the DCP instance. 

Fig. 5 shows an application example from engineering 
perspective consisting of six CAOs. These objects are 
distributed to two Industrial Devices each with its own DCP 
instance. In the example, the CAOs are further distributed into 
two execution contexts, from OS point of view these may be 
processes. A CAO provides interfaces for the communication 
with other CAOs. The interfaces are called ports. Depending 
on the purpose of the port, the interaction may be blocking or 
non-blocking. In case of blocking interaction, the stimulating 
CAO waits internally up to completion of the 
stimulated / invoked service of another CAO. This is similar 
to a Remote Method Invocation know in other programming 
languages like Java [17] or C# [18]. In blocking interaction, 
the invoked service may send return values or output data. The 
proposed concept can be seen as adaption of Real-Time 
Object-Oriented Method (ROOM) or the UML-RT concepts 
of capsules, ports and connectors [20]. 

The DCP is responsible for establishing the engineered 
communication between the CAOs during runtime. Thus, 
links will be established. Depending on the context of a CAO, 
DCP creates the links for local interaction or for remote 
interaction accordingly. In each process, CAOs can be 
grouped into sub-contexts depending on the type of CAOs, 
which are active CAO (time-triggered) and normal CAO 
(event-triggered). The interactions between CAOs of the same 
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sub-context are simply method calls. In case of interactions 
between CAOs of different sub-contexts, the method calls 
need to be marshalled and registered to the sub-context of the 
invoked CAO. First-In-First-Out (FIFO) strategy is used to 
decide which message is handled first. In case of remote 
interaction, the described above communication channel is 
used. The Connection Entity, shown in Fig. 6, creates the 
remote links and uses the established communication channel 
for the real data exchange. In Fig. 6, two links share the same 
communication channel. At higher layer, the service calls are 
handled similar to the case of local interaction between CAOs 
of different sub-contexts. 

 

Fig. 5. Interaction between Control Application Objects 

By means of this concept, special communication 
channels could be established to fulfil dedicated QoS or to be 
used for redundancy. 

The communication protocol used by DCP is designed as 
a protocol at application level, independent from the lower 
level protocols, which provide a specific header and a payload 
for the data. DCP messages are embedded into the payload of 
the underlying protocols e.g. TCP. DCP messages are 
categorized into request and response messages. The structure 

of the message for the interaction between management 
components in DCP is defined as following: 

 

Fig. 6. Links sharing the Communication Channel 

The request contains a Transaction Number (TAN) to 
identify a transaction, see Fig. 7. After the transaction number 
is the length of the data of the request. Each request contains 
an Opcode for identification of the required service. Opcode 
from 0x0000 to 10 (0x000A) are reserved for response 
(0x0000) and for other special messages. The rest is used for 
other service requests. 

 

Fig. 7. DCP message for service request 

TABLE I. shows the value scheme for the opcode in DCP. 
Depend on the request, Data part can be empty or can contain 
the required data. In DCP, the data is converted to network 
byte order before being sent over the network. For a string, the 
length of the string is inserted into the message before the 
content of the string.  

TABLE I.  OPCODES USED IN DCP 

Value Description 

0x0000 Response 

0x0001 Interface info request 

0x0002 Remote connection status 

0x0003 Connection echo 

0x000A-0xFFFF Service requests 

 

The response message uses the same TAN number as the 
corresponding request, see Fig. 8. The length of the data of the 
response is specified next to the TAN. The Opcode of all 
responses have value 0. The status of the response is shown in 
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the Exception type. TABLE II. shows the list of exceptions 
used in DCP. Depending on the request, the response can be 
merely an acknowledgment or can contain the required data. 
In case there is an exception, the returned data contains a 
string, which gives detail about the error. 

The communication between CAOs for exchanging data is 
based on the presented structure above. For such 
communication it must be differentiated, if the 
communication between CAOs is blocking or non-blocking. 
The blocking interaction requires that a return message is sent 
back to the sender.  

 

Fig. 8. DCP message for service response 

TABLE II.  EXCEPTION TYPES 

Value Description 

0x00 No exception 

0x01 Runtime error 

0x02 Logic error 

 

The first 16 octets of the data request message are the same 
as a configuration / management message, where a transaction 
number TAN and length of the data are presented. The opcode 
of a message is always 0x000E. Each remote communication 
is assigned with a Link handle when the link is created. This 
handle is included in the request message for the receiver to 
select the corresponding receiving endpoint (port) of the 
remote link, see Fig. 9.  

 

Fig. 9. DCP message for CAO data sending 

Each port is defined with data (parameters from point of 
view of a function call), which needs to be transmitted. This 
data is embedded after the Link handle in the Data section. If 
the data is a structure, each structure element is inserted 

subsequently in the Data section of the message. The encoding 
of the data is the same as described above. On the other side, 
the port of receiving CAO is defined with the same data type, 
therefore the message will be decoded accordingly. 

The CAO response message is similar to the service 
response message described above, where Opcode has value 
0 and Exception type has value as in TABLE II. The Data 
section contains the data corresponding to the return data type 
defined in the CAO port. 

V. COMMUNICATION BETWEEN DCP AND IIOT 

The communication between CAOs in DCP can be 
classified as event driven RMIs. The coupling between CAOs 
more or less tight regarding to the real-time constraints of the 
automation application. Often also, data should be provided 
for vertical information flow in plant hierarchy. Here normally 
no real-time requirements has to be fulfilled and such data 
transfer should not influence the control application. 
Therefore, real-time and non-real-time tasks shall be 
decoupled. This decoupling will be done by means of the 
component Interface IIoT as shown in Fig. 3. The 
communication should be as lightweight as possible. 
Performance measurements show, the lightweight 
communication approaches such as MQTT [21] can be used 
for such decoupling.  

CAO can publish data to MQTT Broker via its output port. 
Messages from CAOs can vary from simple type (integer, 
float, string…) to complex type (array, struct). The data from 
CAOs are then encoded using format that IIoT applications 
can decode. A text-based format is preferable in this case e.g. 
JSON. The JSON object is then converted to JSON string 
before publishing to broker. 

In addition, CAOs may also provide properties. This can 
be seen as public member variables in object oriented 
languages. Properties allow dynamic adaptions of CAO 
behavior. Thus, properties of CAO may also be published. 
Important for publishing is a topic name. The topic name can 
be defined during engineering. If not defined, a topic name is 
generated automatically and consists of the instance name of 
the Industrial Device, the CAO instance name and the port 
name, see TABLE III.  

TABLE III.  TEMPLATE BUILDING TOPIC NAMES 

Template name Function Default value 

Instance template DCP specific part %I = Name of the process 
which contains the CAO 
where the port/property is 
defined 

Object template CAO specific part %O = Name of the object 
where the port/property is 
defined 

Port template Port/Property 
specific part 

%P = Name of the 
port/property 

 

In addition, topics can also be subscribed. Here also both 
variants – automatic or engineered – subscription will be 
supported. 

 

 



VI. IMPLEMENTATION 

First implementation exists for a demonstration of two 
cranes see Fig. 10. In this demonstrator, Industrial Devices are 
two IPCs, each of which controls one crane. Each IPC is 
equipped with Linux based OS and physical I/O systems. The 
DCP is ported to embedded hardware. Control application is 
developed to run on top of DCP, which implements tandem 
and come-to-position function. In tandem function, the control 
signals come from a pendant switch via CAN interface to one 
IPC. The control commands are then forwarded to the other 
IPC so that two cranes have the same movement. For 
automatic function e.g. come-to-position function, a joystick 
is employed in order to provide more inputs to the control 
application i.e. to change mode (manual/auto) and to trigger 
come-to-position movement. A Raspberry PI 3 is used to get 
data from the joystick since the IPC does not provide USB 
interface. DCP is also ported to the Raspberry PI, so that data 
can be transferred and interpreted by the control application 
on the IPCs.  

 

Fig. 10. Demonstrator of MHS with two cranes 

VII. CONCLUSIONS AND RELATED WORK 

 This paper discussed an approach to provide solutions 
supporting distributed application for control tasks. First 
implementation showed that the proposed architecture is able 
to satisfy the real-time requirement for the control task, 
especially in tandem function where two cranes are able to 
move concurrently without any significant delay. As visible in 
Fig. 2, further points need to be considered for the DCP. 
Firstly, IIoT platform is required in order to evaluate the 
interaction with the DCP. Secondly, security aspects shall be 
considered. Furthermore, the concept must take particular 
account of practicability, because the concept must be 
implemented in engineering tools and maintenance personnel 
has to handle it at operation of the automation system. Safety 
concepts are not explicitly mentioned, but they are important 
for the interaction of automation applications. Unfortunately, 
safety solutions are more complex and cannot be solved by 
research projects. Current implementation of DCP is based on 
Ethernet, which does not provide prioritization on the 
transmitted data. This can be solved by using Time-Sensitive 
Network (TSN). With the use of TSN-capable Ethernet 
hardware and the integration of TSN in Data Link layer, 
prioritization on transmitted data can be controlled by 
application and this feature will be considered for DCP in the 
future. 
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