
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Communication Solutions for the Integration of

Distributed Control in Logistics Systems

Giuliano Persico

DEMAG

Wetter, Germany

giuliano.persico@demagcranes.com

Matthias Riedl

ifak e.V.

Magdeburg, Germany

matthias.riedl@ifak.eu

Hannes Raddatz

Universität Rostock

Rostock, Germany

hannes.raddatz@uni-rostock.de

 Paolo Varutti

Thorsis Technologies GmbH

Magdeburg, Germany

pva@thorsis.com

Duy Lam Tran

ifak e.V.

Magdeburg, Germany

duylam.tran@ifak.eu

Metin Tekkalmaz

ERSTE

Ankara, Turkey

metin@ersteyazilim.com

Abstract—This paper presents a novel decentralized control

and communication system targeting diverse set of Material

Handling Systems. It is an open platform and based on modular

Industrial Device collaboration. The relation of proposed system

with Industrial Internet of Things, which have relatively relaxed

real time requirements, is also given.

Keywords—Distributed Control, IIoT, Smart factory

I. INTRODUCTION

Today's internal material flow in logistic systems is only
able to cope with challenges such as small batch sizes and
increasing product individualization just to a limited extent. A
flexible adaptation of the material flow process is time-
consuming and expensive due to the hierarchical structure of
the central factory control systems. In addition, different types
of machines involved in the material flow and, therefore, their
control systems have very limited or no communication with
each other (Machine-to-Machine communication) due to the
complexity of establishing such connections across platforms
and applications. Such limited communication also results in
the lack of support from machines to the operators in their
work processes. Modularization and Machine-to-Machine
(M2M) communication provide the basis for tomorrow's
smart factories and smart Material Handling Systems (MHS).
With the help of the intelligent Human-Machine-Interface
(HMI) and the resulting in-depth human-technology
cooperation, machines will be able to actively support the
operators with "assistance functions" with regard to safety and
efficiency.

A trend in industrial automation is to adapt IoT technology
to preprocess data or to assist smart manufacturing creating
collaborative systems [1] [2]. With IIoT, the control process is
not only monitored but also analyzed and optimized. In
contrast to control applications, IIoT applications have
relatively relaxed real time requirements. Therefore, the non-
real-time tasks should be decoupled to avoid the influence on
the real-time tasks. This decoupling requires an interface for
information exchange between control applications and IIoT
applications.

Wireless technologies are preferred in MHS where devices
and operators are constantly moving. Common solutions for

wireless industrial M2M communication are based on
WLAN, [3]. Typical IoT solutions rely, on the other hand, on
other wireless communication technologies which are
specifically designed for energy-saving, [4]-[5], short
distances, [6], or reduced bandwidth, [7]-[8]. Upcoming
technologies such as 5G is also considered, which allows also
peer-to-peer communication and fulfils industrial
requirements like determinism or different kinds of Quality of
Services. Control applications need to be designed abstractly
from the underlying communication in order to ease the
application of new communication technologies.

This article presents a new open decentralized control and
communication system that can be used by the most types of
MHS – such as overhead forklifts, Automated Guided
Vehicles (AGV), overhead cranes and hoists - to enable
innovative assistance functions as well as a flexible and fast
adaptation of the material flow. Such functions could later be
complemented by specific software components running on
the same or separate embedded devices without changing
central components. Only links for information exchange need
to be adapted. Another example is modular components in
process industry according to the Namur Module Type
Package concept [9]. Here, preconfigured and tested modules
are put together for each process. The proposed control
architecture also takes into account the interface with IIoT for
the exchange of non-real-time data.

The remainder of this paper is organized as follows:
Section II briefly presents the system architecture considered
for this work. Section III briefly discusses the proposed
concept of the Distributed Control Platform. Section IV gives
an overview about the communication concepts for control
level and Section V gives an overview about interaction with
IIoT components running of embedded industrial devices.
Section VI presents a primitive implementation of the
proposed system. Finally, the last section summarizes the
benefits of the presented approach, the related work and gives
an outlook about the next steps on improving the found
solution.

II. SYSTEM ARCHITECTURE

A. Involved Components

The components involved in MHS and their interaction are
shown in Fig. 1. The machines are depicted as Industrial
Devices (light orange boxes in Fig. 1). Some design aspects of
the Industrial Device resemble Cyber Physical System (CPS)
definitions [10][11]. A horizontal communication level allows
the M2M communication, which may be wired or wireless and
shall guarantee real-time data exchange. Additionally, the
operator can interact with the MHS through specific HMI
(Human Machine Interaction) devices. Furthermore, the
components should be able to communicate according to IoT
concepts with services running in edge cloud, in external
cloud or offer services, which can be used remotely. There are
some interesting solutions for such vertical communication
either available or currently being specified. Most of such
communication protocols use OPC UA [12] technology, e.g.
such called Companion Specification developed at
VDMA[13] or other associations, e.g. for integration of field
device in modern SCADA systems [14]. In this paper, we will
focus on the Distributed Control Platform (DCP) (dark blue
boxes in the Industrial Device) and the horizontal interaction
between software components aimed for control tasks.

Fig. 1. Interacting Components for HMS or Smart Manufacturing

B. Software Components

Control systems, which have been applied in industrial
field, are conceptually designed as centralized control
systems. This implies that all inputs (sensors, HMI…) /
outputs (actuators) are connected to this central controller.
Hereby it is not important whether the inputs / outputs are
physically arranged directly on the controller or are arranged
decentrally in the automation system via fieldbus systems.
The distributed control approach allows to break up the
control loop and distribute it to a number of devices. For this,
each device is required to be able to interact with physical
process via its inputs/outputs, process the data and
communicate with other devices. With all these requirements,
each device in the distributed control approach can be
considered as a Cyber Physical System (CPS).

Each design strategy of the control system has its
advantage and limitation. Although central control system
provides optimized task schedule for each task by using high
performance computing power, it is difficult to satisfy a real-
time control as the network size increases. In distributed

control approach, real-time control can be guaranteed since
each collaborating device fulfils its dedicated sub task of the
overall application. However, each device, in order to
accurately and safely operate, requires a larger amount of
information from surrounding environment and other devices.

Fig. 2 shows the architecture of an Industrial Device. Each
Industrial Device performs appropriate set of tasks based on
the context. The context consists of current state of nearby
components and data from environment, which are obtained
via basic communication and embedded or connected
hardware such as sensors. DCP is the platform on which, the
distributed control applications can be deployed. It also
facilitates the interactions between the control applications
across devices. IIoT is responsible for vertical communication
as well as the exchange of non-real-time data. The Industrial
Device should have specific software components depending
on the requirements. Thus, not all components shown in Fig.
2 have to be available in all device instances. Therefore, for
instance, an edge cloud device may behave as an Industrial
Device following the approach of this article.

The design of control application shall follow the object-
oriented approach. Function Blocks are also well known and
widely used in automation domain. The latest version of IEC
61131-3 [15] allows Function Blocks with high degree of
abstraction, e.g. by introducing the interface concept or
multiple methods per Function Block. Control Application
Objects (CAO) adapt such design principles but the DCP
runtime allows remote interactions between CAOs as well.

Fig. 2. Architecture of Industrial Device

Different software components running on an Industrial
Device shall be deployed based on container approaches.

III. ARCHITECTURE OF DCP

In this section, the architecture of the DCP is presented
more in detail. For the realization of the DCP, it is assumed
that an operating system (OS) is available, where the DCP and
its component can be installed. This may differ from hardware
to hardware platform. Quite often OS with real-time features
are used for embedded industrial automation devices. Fig. 3
shows the architecture of DCP. Central component of the DCP
is the Node Manager. Each DCP provides exactly one Node
Manager. It is the first contact point for each communication

Bridge (or
Access Point)

Bridge (or
Access Point)

Overall Gateway
(Supervisor)

OPC-UA

M2M

HMI
Device

Operator (remote)
M2M-Cloud

(Maintenance, Firmware-
Updates, Complex Tasks, …)

Industrial Bus
wired / wireless

M2M

OPC-UA

OPC-UA, … OPC-UA, …

OPC-UA,
MQTT,

…

Supervisor
Localization

UWB

M2M

Anchor-Point Anchor-Point

DCP

I/Os of MHS

I IoT

Industrial
Device

Localization
Unit (LU)

HMI

Profinet-IO,
CAN, …

internal

DCP

I/Os of MHS

I IoT

Industrial
Device

Localization
Unit (LU)

HMI

Profinet-IO,
CAN, …

internal

DCP

I/Os of MHS

I IoT

Industrial
Device

Localization
Unit (LU)

HMI

Profinet-IO,
CAN, …

internal

Industrial Bus
wired / wireless

HMI
Device

Operator (local)

oneM2M

channel established between Control Application Objects on
the same node or across different nodes.

The Control Application Manager is responsible for
managing tasks between Control Object Managers, especially
the functionality of distributed start, stop, halt or continuation
of the overall functionality, whereas the Control Object
Manager handles the lifecycle of all Control Application
Objects. Scheduling strategies are required for Control Object
Manager to handle multiple Control Application Objects,
which are running concurrently. CAOs are further grouped
into execution contexts. The Control Object Execution is
responsible for triggering the CAOs.

One of the main challenges in a distributed system is time
synchronization. Different nodes in the network may use
different time references. Therefore, the control platform
provides clock synchronization to ensure that time is aligned
between all nodes in the control network. In case of Ethernet
based communication between the nodes, clocks can be
synchronized according to IEEE 1588 (Precision Time
Protocol - PTP) [16].

Logging is a very important service in different life cycle
phases of the control application. The Logging Server offers
services to log for instance events, Control Application Object
activations or changes of the execution point of view.

Fig. 3. Architecture of Distributed Control Platform

Generally, each component in DCP offers several services
via specific interfaces. The detailed specification cannot be
given in the context of this article. Examples of services are
for creating / deleting of CAOs or starting / halting / stopping
of the application.

The remaining components Network Manager,
Connection Entity and Interface IIoT are discussed in
subsequent sections.

IV. COMMUNICATION BETWEEN DCP OBJECTS

As shortly mentioned in Section I, communication
between Industrial Devices shall be independent from the
specific communication technologies. From DCP perspective,
the availability of communication interfaces offered by the
OS, e.g. by means of sockets, is also important. Based on such
abstraction, the network component of the DCP can establish
a communication channel between CAOs running on different
devices. This results in peer-to-peer communication between
Industrial Devices, if the specific control application needs
such information exchange. Fig. 4 shows an established
communication channel between two partners.

Fig. 4. Communication Channel as Basis for Device Interaction

The setup of a communication channel uses lookup
functions for discovery purposes, e.g. to find the correct
Industrial Device. In most cases, Industrial Devices are
defined by their names. Here the approach follows well-
known IT solutions as Domain Name System (DNS).
Internally the Network Manager consults the Node Manager
of the DCP instance.

Fig. 5 shows an application example from engineering
perspective consisting of six CAOs. These objects are
distributed to two Industrial Devices each with its own DCP
instance. In the example, the CAOs are further distributed into
two execution contexts, from OS point of view these may be
processes. A CAO provides interfaces for the communication
with other CAOs. The interfaces are called ports. Depending
on the purpose of the port, the interaction may be blocking or
non-blocking. In case of blocking interaction, the stimulating
CAO waits internally up to completion of the
stimulated / invoked service of another CAO. This is similar
to a Remote Method Invocation know in other programming
languages like Java [17] or C# [18]. In blocking interaction,
the invoked service may send return values or output data. The
proposed concept can be seen as adaption of Real-Time
Object-Oriented Method (ROOM) or the UML-RT concepts
of capsules, ports and connectors [20].

The DCP is responsible for establishing the engineered
communication between the CAOs during runtime. Thus,
links will be established. Depending on the context of a CAO,
DCP creates the links for local interaction or for remote
interaction accordingly. In each process, CAOs can be
grouped into sub-contexts depending on the type of CAOs,
which are active CAO (time-triggered) and normal CAO
(event-triggered). The interactions between CAOs of the same

Distributed Control Platform

Distributed Control Platform

Node
Manager

Network
Manager

Operating System

Control
Application

Manager

Control
Object

Execution

Clock
Synchronisation

Interface
IIoT

Logging
Server

Connection
Manager

Connection
Entity

Control
Object

Manager

1 2 3 4 56

7

11

12

13 14

8 9 10

Control
Application

Object

Control
Application

Object

15 16

Basic Communication

DCP 1

Network
Manager

DCP 2

Network
Manager

Communication
Channel

sub-context are simply method calls. In case of interactions
between CAOs of different sub-contexts, the method calls
need to be marshalled and registered to the sub-context of the
invoked CAO. First-In-First-Out (FIFO) strategy is used to
decide which message is handled first. In case of remote
interaction, the described above communication channel is
used. The Connection Entity, shown in Fig. 6, creates the
remote links and uses the established communication channel
for the real data exchange. In Fig. 6, two links share the same
communication channel. At higher layer, the service calls are
handled similar to the case of local interaction between CAOs
of different sub-contexts.

Fig. 5. Interaction between Control Application Objects

By means of this concept, special communication
channels could be established to fulfil dedicated QoS or to be
used for redundancy.

The communication protocol used by DCP is designed as
a protocol at application level, independent from the lower
level protocols, which provide a specific header and a payload
for the data. DCP messages are embedded into the payload of
the underlying protocols e.g. TCP. DCP messages are
categorized into request and response messages. The structure

of the message for the interaction between management
components in DCP is defined as following:

Fig. 6. Links sharing the Communication Channel

The request contains a Transaction Number (TAN) to
identify a transaction, see Fig. 7. After the transaction number
is the length of the data of the request. Each request contains
an Opcode for identification of the required service. Opcode
from 0x0000 to 10 (0x000A) are reserved for response
(0x0000) and for other special messages. The rest is used for
other service requests.

Fig. 7. DCP message for service request

TABLE I. shows the value scheme for the opcode in DCP.
Depend on the request, Data part can be empty or can contain
the required data. In DCP, the data is converted to network
byte order before being sent over the network. For a string, the
length of the string is inserted into the message before the
content of the string.

TABLE I. OPCODES USED IN DCP

Value Description

0x0000 Response

0x0001 Interface info request

0x0002 Remote connection status

0x0003 Connection echo

0x000A-0xFFFF Service requests

The response message uses the same TAN number as the
corresponding request, see Fig. 8. The length of the data of the
response is specified next to the TAN. The Opcode of all
responses have value 0. The status of the response is shown in

Industrial Device 1

OS

DCP

Application

Process 1

CAO
1

CAO
2

Process 2

CAO
3

Industrial Device 2

OS

DCP

Application

Process 3

CAO
4

CAO
5

Process 4

CAO
6

DCP 1 DCP 2

Communication
Channel

Control
Application

Object

Control
Application

Object

Control
Application

Object

Control
Application

Manager

Connection Entity

Control
Application

Manager

Connection
Entity

Control
Application

Manager

Connection
Entity

the Exception type. TABLE II. shows the list of exceptions
used in DCP. Depending on the request, the response can be
merely an acknowledgment or can contain the required data.
In case there is an exception, the returned data contains a
string, which gives detail about the error.

The communication between CAOs for exchanging data is
based on the presented structure above. For such
communication it must be differentiated, if the
communication between CAOs is blocking or non-blocking.
The blocking interaction requires that a return message is sent
back to the sender.

Fig. 8. DCP message for service response

TABLE II. EXCEPTION TYPES

Value Description

0x00 No exception

0x01 Runtime error

0x02 Logic error

The first 16 octets of the data request message are the same
as a configuration / management message, where a transaction
number TAN and length of the data are presented. The opcode
of a message is always 0x000E. Each remote communication
is assigned with a Link handle when the link is created. This
handle is included in the request message for the receiver to
select the corresponding receiving endpoint (port) of the
remote link, see Fig. 9.

Fig. 9. DCP message for CAO data sending

Each port is defined with data (parameters from point of
view of a function call), which needs to be transmitted. This
data is embedded after the Link handle in the Data section. If
the data is a structure, each structure element is inserted

subsequently in the Data section of the message. The encoding
of the data is the same as described above. On the other side,
the port of receiving CAO is defined with the same data type,
therefore the message will be decoded accordingly.

The CAO response message is similar to the service
response message described above, where Opcode has value
0 and Exception type has value as in TABLE II. The Data
section contains the data corresponding to the return data type
defined in the CAO port.

V. COMMUNICATION BETWEEN DCP AND IIOT

The communication between CAOs in DCP can be
classified as event driven RMIs. The coupling between CAOs
more or less tight regarding to the real-time constraints of the
automation application. Often also, data should be provided
for vertical information flow in plant hierarchy. Here normally
no real-time requirements has to be fulfilled and such data
transfer should not influence the control application.
Therefore, real-time and non-real-time tasks shall be
decoupled. This decoupling will be done by means of the
component Interface IIoT as shown in Fig. 3. The
communication should be as lightweight as possible.
Performance measurements show, the lightweight
communication approaches such as MQTT [21] can be used
for such decoupling.

CAO can publish data to MQTT Broker via its output port.
Messages from CAOs can vary from simple type (integer,
float, string…) to complex type (array, struct). The data from
CAOs are then encoded using format that IIoT applications
can decode. A text-based format is preferable in this case e.g.
JSON. The JSON object is then converted to JSON string
before publishing to broker.

In addition, CAOs may also provide properties. This can
be seen as public member variables in object oriented
languages. Properties allow dynamic adaptions of CAO
behavior. Thus, properties of CAO may also be published.
Important for publishing is a topic name. The topic name can
be defined during engineering. If not defined, a topic name is
generated automatically and consists of the instance name of
the Industrial Device, the CAO instance name and the port
name, see TABLE III.

TABLE III. TEMPLATE BUILDING TOPIC NAMES

Template name Function Default value

Instance template DCP specific part %I = Name of the process
which contains the CAO
where the port/property is
defined

Object template CAO specific part %O = Name of the object
where the port/property is
defined

Port template Port/Property
specific part

%P = Name of the
port/property

In addition, topics can also be subscribed. Here also both
variants – automatic or engineered – subscription will be
supported.

VI. IMPLEMENTATION

First implementation exists for a demonstration of two
cranes see Fig. 10. In this demonstrator, Industrial Devices are
two IPCs, each of which controls one crane. Each IPC is
equipped with Linux based OS and physical I/O systems. The
DCP is ported to embedded hardware. Control application is
developed to run on top of DCP, which implements tandem
and come-to-position function. In tandem function, the control
signals come from a pendant switch via CAN interface to one
IPC. The control commands are then forwarded to the other
IPC so that two cranes have the same movement. For
automatic function e.g. come-to-position function, a joystick
is employed in order to provide more inputs to the control
application i.e. to change mode (manual/auto) and to trigger
come-to-position movement. A Raspberry PI 3 is used to get
data from the joystick since the IPC does not provide USB
interface. DCP is also ported to the Raspberry PI, so that data
can be transferred and interpreted by the control application
on the IPCs.

Fig. 10. Demonstrator of MHS with two cranes

VII. CONCLUSIONS AND RELATED WORK

 This paper discussed an approach to provide solutions
supporting distributed application for control tasks. First
implementation showed that the proposed architecture is able
to satisfy the real-time requirement for the control task,
especially in tandem function where two cranes are able to
move concurrently without any significant delay. As visible in
Fig. 2, further points need to be considered for the DCP.
Firstly, IIoT platform is required in order to evaluate the
interaction with the DCP. Secondly, security aspects shall be
considered. Furthermore, the concept must take particular
account of practicability, because the concept must be
implemented in engineering tools and maintenance personnel
has to handle it at operation of the automation system. Safety
concepts are not explicitly mentioned, but they are important
for the interaction of automation applications. Unfortunately,
safety solutions are more complex and cannot be solved by
research projects. Current implementation of DCP is based on
Ethernet, which does not provide prioritization on the
transmitted data. This can be solved by using Time-Sensitive
Network (TSN). With the use of TSN-capable Ethernet
hardware and the integration of TSN in Data Link layer,
prioritization on transmitted data can be controlled by
application and this feature will be considered for DCP in the
future.

ACKNOWLEDGMENT

The authors would like to thank ITEA 3 and the National
funding authorities: The Federal Ministry of Education and
Research; Ministerio de Economia y Competitividad;
TÜBITAK; Korea Institute for Advancement of Technology
for their support, and the partners of the ITEA 3 project
OPTIMUM - OPTimised Industrial IoT and Distributed
Control Platform for Manufacturing and Material Handling
(https://www.optimum-itea3.eu/) for their work and
contributions that enabled this paper.

REFERENCES

[1] D. Zuehlke, “SmartFactory-Towards a factory-of-things,” Annual

reviews in control, vol. 34(1), pp. 129–138, 2010.

[2] S. Jeschke, C. Brecher, T. Meisen, D. Özdemir, and T. Eschert,
“Industrial internet of things and cyber manufacturing systems,” In
Industrial Internet of Things, pp. 3–19, 2017.

[3] Hascher, Wolfgang: Wireless LAN auf einen Blick. In: Elektronik
Scout 2008, 2008

[4] Lora Alliance: https://lora-alliance.org/

[5] IETF, “IPv6 over Networks of Resource-constrained Nodes (6lo)”

[6] PaloWireless: Bluetooth. http://www.palowireless.com/bluetooth,
2008

[7] Kupris, Gerald; Kremser, Hans-Günter: Reichweitenuntersuchungen in
ZigBee-Netzwerken. In: D&E ZigBee&Co-Entwicklerforum, 2005

[8] Kupris, Gerald; Sikora, Axel: ZigBee. Franzis Verlag, 2007. –
ISBN 978–3–7723–4159–5

[9] Bernshausen, J. et al. Namur Modul Type Package – Definition. atp
magazin, [S.l.], v. 58, n. 01-02, p. 72-81, Jan. 2016. ISSN 2364-3137.
Available at: <http://ojs.di-
verlag.de/index.php/atp_edition/article/view/554>. Date accessed: 08
aug. 2019. doi: https://doi.org/10.17560/atp.v58i01-02.554.

[10] M. Broy, “Cyber-Physical Systems - Innovation durch
softwareintensive eingebettete Systeme“, ISBN 978-3-642-14901-6,
Springer, 2010

[11] John Eidson, Edward A. Lee, Slobodan Matic, Sanjit A. Seshia, Jia
Zou, “Distributed Real-Time Software for Cyber-Physical Systems”,
Proceedings of the IEEE (special issue on CPS), Vol. 100, p 45 – 59,
January 2012

[12] OPC Foundation: OPC Unified Architecture Specification,
https://opcfoundation.org/developer-tools/specifications-unified-
architecture

[13] VDMA: OPC UA Companion Specifications for Robotics and
Machine Vision released, https://industrie40.vdma.org/en/viewer/-
/v2article/render/26418188

[14] Großmann, D.; Braun, M.; Danzer, B.; Kaiser, A.; Riedl, M.: FDI -
Field Device Integration, Handbook for the unified Device Integration
Technology, ISBN 978-3-8007-3630-0, E-Book: ISBN 978-3-8007-
4010-9, 2016

[15] IEC TC65/WG6: IEC 61131-3: Programmable controllers Part 3:
Programming languages, 3rd Edition, IEC, Genf, 2014

[16] The Institute of Electrical and Electronics Engineers, Inc., IEEE
Standard for a Precision Clock Synchronization Protocol for
Networked Measurement and Control Systems. IEEE Std. 1588–2002.
ISBN 0-7381-3369-8, New York 2002

[17] M. Rouse, “Remote Method Invocation (RMI)”,
https://www.theserverside.com/definition/Remote-Method-
Invocation-RMI

[18] “R. Wiener, “Remoting in C# and .NET”, Journal of Object
Technology, http://www.jot.fm, Vol. 3, No. 1, January-February 2004

[19] Selic, B., Gullekson, G., Ward, P. T.: Real-Time Object-Oriented
Modelling, John Wiley & Sons, 1994

Crane1Crane2

[20] Pezzé, M.: Fundamental Approaches to Software Engineering, 6th
International Conference, p. 121-122, FASE 2003 as part of ETAPS
2003, Warsaw, Poland, April 2003, Proceedings

[21] OASIS:, “Message Queuing Telemetry Transport (MQTT)”,
https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=mqtt

