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Abstract—Industrial Internet of Things (IIoT) applications
benefit from the knowledge of the device and user positions
in a manifold way. Reliable indoor navigation combined with
IIoT enables Location-Based-Services (LBS) such as assistance
functions of moveable actuators. A crane which follows its
operator can significantly increase the efficiency of the process.
Safety mechanisms are also enhanced by positioning information.
For example, exclusion areas where only automated devices are
operating can be implemented. In this paper a novel localization
framework is introduced to fuse sensor data from either absolute
or relative positioning sources. The core of the framework is
an Extended Kalman-Filter (EKF) architecture that is able to
handle data from several different sources. Each localization
source needs to fulfill requirements regarding data representation
and structure defined by the framework, e.g., current state and
variance. The approach is verified in a real world scenario
with two different sensor types as information sources: Ultra
Wide Band localization and Pedestrian Dead Reckoning. We
show that the combination of these technologies improves the
localization accuracy and evaluate advantages and drawbacks of
this approach.

I. INTRODUCTION

Localization in industrial spaces plays an increasingly im-
portant role in the context of new assistance and safety
functions of autonomous machines. The German initiative
Industrie 4.0, among other things, aims to enhance traditional
industries by interconnecting devices with modern communi-
cation protocols to enable Machine-to-Machine (M2M) com-
munication, increase productivity and safety as well as support
the development of novel approaches for manufacturing and
material handling. Localization of workers and mobile ma-
chinery plays a crucial role to enable a machine to provide
assistance, autonomous and safety functions.

For example, cranes or forklifts may route autonomously
to a given target position and reroute dynamically based on
changes in the environment. However, autonomous machines
are prone to accidents with other mobile machinery and espe-
cially humans. To prevent collisions and to enable assistance
functions, a reliable and accurate localization is crucial.

Common infrastructure based localization approaches have
limited accuracy and are prone to disturbance (Bluetooth, WiFi
fingerprinting). Relative localization such as dead reckoning
based methods are comparably inexpensive but exhibit degrad-

ing accuracy over time. We present a localization framework
that utilizes sources of both, relative and absolute, positioning
data to enable reliable and accurate indoor positioning in in-
dustrial spaces. We demonstrate this approach using Pedestrian
Dead Reckoning (PDR) as a relative and Ultra-Wide Band
(UWB) as a absolute positioning technology. This approach is
not limited to humans. Machines such as cranes and forklifts
commonly provide data on the current speed or odometry,
which are leveraged as a source of relative positioning. This
paper highlights advantages and drawbacks of both positioning
approaches and how a combination improves the positioning
accuracy and mitigates these drawbacks. Additionally, the
described architecture is not limited to specific localization
technologies. It supports generic sources of absolute positions
and relative displacement.

This paper is structured as follows: Section II describes
related work regarding UWB and PDR based positioning
and the combination of both approaches. The architecture to
combine multiple localization sources is presented in Section
III. The localization methods we use are described in Section
IV, with the emphasis in Section IV-A on UWB and in Section
IV-B on PDR, and in Section V on the the fusion of both
methods. We conducted experiments to verify our methods as
described in Section VI. The experimental results are presented
in Section VII. Final conclusions are drawn in Section VIII.

II. RELATED WORK

Radio based localization is popular in the field of industrial
automation. Especially UWB is used in such environments
due to the high positioning accuracy compared to WiFi
and Bluetooth. In [1] a localization algorithm for industrial
environments is presented, while in [2] the connectivity of
UWB devices in such environments is tested. The authors
of [3] compare three types UWB systems with regards to
accuracy and precision. WiFi and Bluetooth based approaches
offer low cost and the infrastructure is often already available.
The authors in [4] evaluate Bluetooth while in [5] a WiFi
fingerprinting approach is used.

Pedestrian Dead Reckoning (PDR) uses wearable inertial
sensors to compute single steps and their direction. The users’
relative displacement is computed as the sum of the taken



steps [6]. A comparably precise method of step detection
is using Zero-Velocity-Updates (ZUPT) with foot mounted
sensors. Here, the acceleration of the foot is integrated twice to
compute the displacement caused by one step. The following
zero-velocity period of contact to the ground is used to eval-
uate errors in the estimated velocity from the first integration
and to subsequently correct the step length estimation [7].

An alternative to directly measuring a single step is to
recognize whether or not a step has been performed and
then estimate the stride length [8]. For this, the measured
acceleration of a hand-held or wearable sensor is analyzed for
exceeded thresholds, peaks, periodic patterns or a combination
of these methods. Gyroscopic data is used to recognize the
swing of arms or legs [9], [10]. Machine learning techniques
are employed to further improve the step detection reliability
[11], [12].

The quality of positioning with dead reckoning degrades
over time as errors in step length and orientation as well as step
count accumulate. A challenge of radio based localization is
the introduction of ranging errors when line of sight to a base
station is lost. To reduce the need of ranging error mitigation
and to limit the increasing error of dead reckoning, relative
and absolute positioning approaches like PDR and UWB can
be combined [13], [14]. The authors of [15] fuse step detection
and step length estimation with low frequency UWB updates to
limit the PDR location drift using an Unscented Kalman-Filter.
Another approach is presented in [16], where inertial sensor
data is combined with UWB positioning using an Extended
Kalman-Filter (EKF).

The authors of [17] show that a magnetometer that is used
to establish a fixed reference frame for the orientation of PDR
requires sophisticated correction methods and the presence
of a building map in industrial spaces. Disturbances due to
ferromagnetic materials and heavy electric machinery degrade
the compass measurement.

III. ARCHITECTURE

The general pattern of our localization approach is the
combination of relative and absolute positioning data. Relative
positioning technologies provide the displacement relative to
a known previous position. A drawback of relative position-
ing is an increasing positioning error through accumulated
measurement errors. Because of this, absolute positioning
data is used to limit the error growth. The localization of
humans is realized through the relative positioning with PDR
and absolute positioning using UWB. Machines are localized
using the relative odometry data of their drives and absolute
UWB information. We combine pre-processed estimates of the
absolute position or position change based on the raw sensor
data. Consequently, the fusion approach is loosely coupled
and independent from the exact type of raw sensor data, e.g.
instead of distance measurements from UWB, we feed the
position estimate to the fusion process.

A device-level view is seen in Fig. 1. We are proposing a
device with deterministic computing capability. All incoming
pre-processed data is fed to a real-time software component

that fuses the data to derive a position estimate. This estimate
is used by other system components for movement control
tasks of the localized device, e.g. a crane, and also published
via an Industrial Internet of Things (IIoT) component to
the industrial network to enable advanced control and safety
features.
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Figure 1: Device architecture showing the interconnection of
various localization data sources, the processing in a real-time
software component and distribution of localization via IIoT.

IV. LOCALIZATION

In the following subsections, we are presenting the UWB
positioning scheme using an EKF and the processing of inertial
sensor data to achieve PDR.

A. Absolute Positioning using UWB

We use an UWB system as an example for absolute posi-
tioning for mobile actors, processed by an EKF. The initial
position is computed by a simple trilateration least squares
algorithm. The state transition function is assumed to be the
linear constant velocity model, so it is as follows:px,kpy,k

vx,k
vy,k

 =

1 0 dt 0
0 1 0 dt
0 0 1 0
0 0 0 1


px,k−1

py,k−1

vx,k−1

vy,k−1


.

(1)

Since the noise of the system ωk is only related to the
constant update rate of the system, the covariance Q is also
assumed to be constant.

The measurement model is based on the euclidean distance:

da =
√

(xk − xa)2 + (yk − ya)2 + (hk − ha)2 + vk.
(2)

xk, yk, hk denote the coordinates of the tag and xa, ya, ha

the coordinates at the ath anchor. The height of the tag hk

and the anchors ha is assumed to be constant. Once again the
noise of the measurement model vk is constant.



B. Relative Positioning using PDR

We employ PDR as a source of relative positioning, using
tri-axial acceleration and angular-rate measurements of an
inertial measurement unit (IMU) attached to the top of one
foot of the user.

The orientation of the sensor relative to the global frame
of reference is computed using a Magdwick filter with accel-
eration and angular rate as inputs. We use the resulting unit
quaternion to match and subtract the global gravity vector and
to compute the acceleration of the sensor without the influence
of gravity. In contrast to the original description of the filter
in [18], we do not employ a magnetometer. Consequently, we
track the change of heading, but do not calibrate to the absolute
real world heading for PDR.

The sensor placement on the foot allows for the distinction
of stand and swing phases of the foot during each stride. A
stand phase of the foot is defined as the period of ground
contact in which the expected velocity of the sensor is zero.
It is detected by the computation of the signal energy of both
angular rate (Eq. (3)) and acceleration (Eq. (4)) in a window of
N samples around sensor sample k with the magnitude of the
three-dimensional vectors of acceleration a and angular rate ω,
as well as the gravity constant g. A stand phase is recognized
if both signal energies are below the respective thresholds tha

and thω as described by Eq. (5). Otherwise, a swing phase is
detected.

Ek
ω =

1

N

k+ N
2∑

i=k−N
2

|ωi|2 (3)

Ek
a =

1

N

k+ N
2∑

i=k−N
2

(|ai| − g)2 (4)

stand = Ea < tha ∧ Eω < thω (5)

During the swing phase, the current acceleration sample is
first aligned to the global reference frame. Secondly, gravity is
subtracted from the vertical axis. Finally, the current velocity
vk is computed by integrating the transformed acceleration as
described by Eq. (6) with sample k and sampling time interval
T .

vk = vk−1 + akT (6)

The following stand phase signals the end of the step and we
employ ZUPT for the correction of velocity drift as described
in [19]. The corrected velocity v′k is summed over the number
of samples of the swing phase Msw as described by Eq. (7).
The resulting displacement s is the current step vector used
for PDR.

s =

Msw−1∑
k=0

v′kT (7)

The start of the next swing phase is used to finally compute
the pedestrians current velocity v as described by Eq. (8),

with Mst as the count of samples in the finished stand phase.
The orientation change ∆Θ is computed as the difference of
orientation from beginning to end of one step.

v =
|s|

(Msw +Mst)T
(8)

V. FUSION OF ABSOLUTE AND RELATIVE LOCALIZATION

The loosely coupled fusion concept is based on a previous
work [20]. Regarding measurement updates with relative po-
sitioning data, the idea is that estimating a velocity vector is
more stable than estimating the heading directly. Furthermore,
since no absolute heading is available, it is also advantageous
to estimate it from the velocity vector.

If not stated otherwise, the process of the fusion EKF is
propagated as follows:

x̃k =

px,kpy,k
vx,k
vy,k

 =

1 0 dt 0
0 1 0 dt
0 0 1 0
0 0 0 1


px,k−1

py,k−1

vx,k−1

vy,k−1

 (9)

with fused positing pk and velocity vk at current time
instance k.

There are movable actors of different kinds in an indus-
trial environment like cranes, forklifts and humans. From a
localization perspective it is possible to divide them into two
groups. The first group contains devices that are restricted to
movement on rails that can directly measure their movement
direction, while members of the other group, e.g. forklifts
and humans, are able to measure their velocity v and the
orientation change ∆Θ.

Based on the different approaches, the state updates are
described in the following, with emphasis in subsection V-A
on orientation change and velocity measurements and in V-B
on absolute position measurements.

The position update with a directly measured movement
vector is straight forward. The velocity measurement in each
direction vx,k and vy,k is propagated to the filter as a mea-
surement. With a one to one relation to the velocity state. The
covariance of the velocity Rv is assumed to be constant.

A. Velocity and Orientation Change Measurements

Actors with orientation updates that are more frequent than
the absolute positioning updates use the state prediction update
described in [20] instead of Eq. 9. We employ a modified
version of this approach for the the PDR system described
in Section IV-B with low frequency orientation updates. The
architecture outlined in this chapter is visualized in Fig. 2

The rotation change ∆Θ is propagated to the process update
of a separate PDR-EKF to compute the PDR state prediction
x̃pdr
k with vk−n and pk−n as the velocity and position state at

the last orientation update x̂k−n of the fusion EKF:

px,kpy,k
vx,k
vy,k

 =

 px,k−n + vx,kdt+ εx
py,k−n + vy,kdt+ εy

vx,k−n cos (∆Θ + εΘ)− vy,k−n sin (∆Θ + εΘ)
vy,k−n sin (∆Θ + εΘ) + vx,k−n cos (∆Θ + εΘ))

 (10)
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Figure 2: The flow from raw sensor data to a fused position
and velocity estimate x̂k with PDR and UWB as exemplary
sensor inputs.

The process covariance estimate P pdr
k is propagated using

the appropriate Jacobi matrices of Eq. (10) and the process
covariance matrix Pk−n at the last orientation update of the
fusion EKF.

If the actor is moving straight, i.e. ∆Θ < a with a as
a threshold value, a velocity measurement update is applied
with the measurement zv

k as described in Eq. (11) to compute
the state estimate x̂pdr

k .

zv
k =

√
v2
x,k + v2

y,k + νv
k
.

(11)

If the update is applied to a state prediction with large
∆Θ, the velocity state tends to have a large orientation error.
This is due to an unbalanced, albeit correct, error covariance
prediction, of the two velocity axes of x̃pdr

k . If the velocity
measurement update is not applied we set x̂pdr

k = x̃pdr
k .

x̂pdr
k is fed back to the fusion EKF and handled as a

measurement with

Hpdr = I4×4. (12)

The diagonal of P pdr
k is used as the measurement covariance

matrix for the final measurement update of the fusion EKF.
Additionally, the covariance matrix of the fusion EKF and
the absolute position measurements are supplemented with a
penalty that decreases over time. This way, the PDR update
gains more weight in the short term and variations by absolute
positioning are compensated. On the other hand, the PDR-EKF
still converges towards the absolute measurements and the drift
inherent to relative positioning is compensated.

B. Location Update with Absolute Localization

The absolute position information is propagated as a mea-
surement to the EKF and independent from the relative posi-
tion information. If the position is not calculated in the same
coordinate system as the fusion, the rotation and translation
must be known and transformed before propagating it to the
EKF. The measurement vector z(n)k of sensor n consists only
of the position information:

z
(n)
k =

(
p

(n)
x,k

p
(n)
y,k

)
(13)

with

Hp =

(
1 0 0 0
0 1 0 0

)
.

(14)

Each sensor which is providing an absolute position is
assumed to be independent with a known covariance matrix
R

(n)
k . The update rate of a sensor must not be specified.

VI. EXPERIMENTAL SETUP

We verify the proposed fusion method for pedestrians on
several test tracks in a lecture hall of the Institute of Applied
Microelectronics and CE. The aim is to verify the complemen-
tary properties of UWB and PDR, especially concerning the
estimation of movement direction and its impact on positioning
accuracy. The employed IMU on the users’ foot is a Hillcrest
FSM-9 with a sampling rate of 125 Hz. The UWB system is
based on the Decawave DWM 1000 chipset, producing ranging
measurements at a frequency of 4 Hz. The corresponding EKF
updates the position estimate with the same frequency.

The first experiment covers multiple tracks with a length of
approximately 10 m. One track consists of walking straight,
while the others contain one change of direction with a turn
angle ranging from 45◦ to 180◦ in 45◦ increments. A 90◦ turn
is examined with turn radii of 0 m (i.e. immediate turn), 1.05
m, 1.85 m and 2.63 m. Each track was walked five times in
each direction. The main interest of the first experiment lies
in the behavior of orientation estimation of both positioning
technologies. Consequently, each track is traversed with an
UWB receiver tag placed above the head of the user, emulating
the placement on a helmet. This reduces ranging errors caused
by shadowing of the users body and results in fewer errors in
the orientation estimate of UWB. The direction of the UWB-
EKF velocity estimate is used as the orientation estimate of
UWB. The UWB anchor placement and ground truth of the
tracks is shown in Fig. 3.

In order to compare the characteristics of the orientation
estimation, we compare the timing of start and end of turn
indication of both technologies. Typically, Kalman-filtered
estimates take some time to converge to a new steady state,
i.e. a new orientation. If PDR provides a faster estimate, an
improvement in the accuracy of the fused position is expected.

The second experiment tests the actual accuracy of our
fusion method and introduces non-line-of-sight (NLOS) errors
to UWB. It covers two tracks: walking straight and making
an immediate 90◦ turn. The UWB receiver tag is placed on
the shoulder of the test person. We introduce a ferromagnetic
obstacle to the side of the track. This object is positioned at
0.8 m height from the ground with a total height and a width
of 2.03 m. It is positioned 0.8 m to the left and half way
down of the straight track. The placement for the 90◦ turn
is shown in Fig. 5. The object simulates view obstructions
such as loads on a crane in an industrial environment. We
compare the results of these two tests with the fused location
from the same tracks under ideal circumstances as described
in experiment one. Again, each track was walked five times
in each direction.
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Figure 3: Ground truth of the pedestrian tracks with various
turn angles. Straight tracks and tracks with turns of 45◦ and
90◦ begin at start 1. Tracks with 135◦ and 180◦ turns begin at
start 2. UWB anchor placements are marked as red crosses.

VII. EXPERIMENTAL RESULTS

The difference in timing of orientation change indication
for PDR and UWB-EKF is presented in Tab. I. We evaluate
the time difference when a significant change of direction is
beginning and ending according to PDR and UWB. This shows
inherent differences of PDR and UWB that are exploited in
our fusion approach. We define the start and end of a turn
when the measurements show a deviation of 11.5◦ from the
initial or final orientation respectively. This tolerance band
compensates noisy UWB measurements and drift of PDR. Fig.
4 shows these points in time for one characteristic recording
of a immediate 90◦ turn.
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Figure 4: Orientation over time at an immediate 90◦ turn.

The measurements show that PDR indicates the beginning
of a turn later than UWB. However, UWB takes longer than
PDR to indicate the final orientation. The initial delay of PDR
is most pronounced at the immediate 90◦0 and 45◦0 turns, and
almost immediate 135◦ turn with a difference of about 0.5
seconds to UWB. This delay almost vanishes on tracks with
a gradual change of orientation like the other 90◦ turns and

TABLE I: Difference of timing for start and end of turn
indication by PDR and UWB in seconds. A positive value
indicates PDR is later than UWB. Subscript indicates turn
radius.

45◦ 90◦ 90◦105 90◦185 90◦263 135◦ 180◦40

Start 0.476 0.552 0.046 0.090 -0.012 0.572 0.146
End -0.538 -0.729 -0.628 -0.454 -0.707 -0.322 -0.523

the 180◦ turn. There is no clear influence of turn angle on
the time of first orientation change. When approaching the
final orientation, PDR is on average 0.56 seconds faster than
UWB, also showing no clear correlation with turn radius or
turn angle.

During movement, UWB is sampled four times faster than
PDR. In most test cases, the user changes direction within one
step, which introduces about one second of delay to register the
final orientation. During this time, about four UWB updates
already register the orientation change.

The increased positioning accuracy of the fusion approach
is shown in Tab. II. The fusion of PDR and UWB improves
the accuracy in both tracks with and without NLOS errors,
yielding significantly more improvement when no NLOS is
present. As expected, the introduction of NLOS leads to a
decreased accuracy in both tracks. Fig. 5 shows the positioning
of the PDR-EKF, the UWB-EKF and the fused position using
PDR or UWB updates for a 90◦ turn with NLOS. The
recording shows several interesting properties of the fusion.
At the start, the UWB measurements show a varying bias in
positive Y direction. This also leads to an initial bias for the
PDR fusion. The variance in the Y direction is compensated
to a degree by PDR. However, this means that the initial
bias is upheld by the fusion with PDR. Overshooting of the
UWB-EKF is visible at the turning point due to the delayed
convergence to the new orientation. A slight overshoot of the
fusion EKF is also visible right before the PDR update of the
turn. This update sets the fused position on the ground truth.
A bias of the PDR-EKF position used in this update of about
0.5 m in negative X direction is visible. Afterwards both UWB
and PDR-EKF converge to the new true position. With an
initial offset caused by orientation or positioning errors in the
beginning, PDR gradually approaches recent measurements.
However, an initial error means that the error state is prolonged
by the fusion with PDR when UWB is already converging on
the true position. This highlights the importance of a reliable
initial position and orientation.

TABLE II: Average distance to ground truth for localization
through fusion with PDR and for Kalman-filtered UWB alone
in meters. With and without introduced NLOS errors while
walking straight and turning by 90◦.

90◦ Straight
w/ NLOS w/o NLOS w/ NLOS w/o NLOS

Fusion 0.222 0.143 0.266 0.079
UWB 0.237 0.160 0.279 0.101
improvement % by fusion 6.3 10.6 4.7 21.8
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Figure 5: A right turn with NLOS. The object blocking UWB
is shown as a black bar. Overshooting after the turn is reduced
by PDR.

VIII. CONCLUSION

In this paper, we describe a localization framework us-
ing different kinds of localization sources. We propose a
fusion architecture that distinguishes three types of positioning
sources: absolute positioning, relative positioning on pre-
defined axes, and relative positioning measuring velocity and
heading change. The fusion is independent from the exact type
of sensor and combines relative and absolute positioning to
increase the overall accuracy and reliability. We show that
PDR and UWB processed by an EKF exhibit complementary
properties. UWB is affected by NLOS which is mitigated by
fusion with PDR. Similarly, the PDR orientation drifts over
time and lacks an absolute reference. Therefore, we use the
orientation change together with the velocity vector of the
fused location state. Our experiments verify the improvement
of the fused positioning accuracy in comparison to UWB
alone. However, an unreliable initial position and orientation
leads to temporary worsening of accuracy by the relative
position updates. The positioning accuracy will be tested in
a real industrial environment in future works. Additionally,
we plan to test the framework with other sensors.
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