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Low-complexity online correction and calibration of pedestrian dead
reckoning using map matching and GPS
Fabian Hölzke, Johann-P. Wolff, Frank Golatowski and Christian Haubelt

Institute of Applied Microelectronics and CE, University of Rostock, Rostock, Germany

ABSTRACT
Dead Reckoning is a relative positioning scheme that is used to infer the change of position
relative to a point of origin by measuring the traveled distance and orientation change.
Pedestrian Dead Reckoning (PDR) applies this concept to walking persons. The method can
be used to track someone's movement in a building after a known landmark like the
building's entrance is registered. Here, the movement of a foot and the corresponding
direction change is measured and summed up, to infer the current position. Measuring and
integrating the corresponding physical parameters, e.g. using inertial sensors, introduces
small errors that accumulate quickly into large distance errors. Knowledge of a buildings
geography may reduce these errors as it can be used to keep the estimated position from
moving through walls and onto likely paths. In this paper, we use building maps to improve
localization based on a single foot-mounted inertial sensor. We describe our localization
method using zero velocity updates to accurately compute the length of individual steps
and a Madgwick filter to determine the step orientation. Even though the computation of
individual steps is quite accurate, small errors still accumulate in the long term. We show how
correction algorithms using likely and unlikely paths can rectify errors intrinsic to pedestrian
dead reckoning tasks, such as orientation and displacement drift, and discuss restrictions and
disadvantages of these algorithms. We also present a method of deriving the initial position
and orientation from GPS measurements. We verify our PDR correction methods analyzing
the corrected and raw trajectories of six participants walking four routes of varying length
and complexity through an office building, walking each route three times. Our quantitative
results show an endpoint accuracy improvement of up to 60% when using likely paths and
23% when using unlikely paths. However, both approaches can also decrease accuracy in
certain scenarios. We identify those scenarios and offer further ideas for improving Pedestrian
Dead Reckoning methods.

KEYWORDS
Indoor localization;
Pedestrian Dead Reckoning
(PDR); Inertial Navigation
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Zero Velocity Update (ZUPT)

1. Introduction

Indoor positioning systems (IPS) can be used to
locate devices and their users in buildings, thus
enabling the use of location-based services. These
may include navigation, tracking, or point of interest
alerts. While these services can be provided outdoors
using GPS (which is available in nearly all modern
smart devices), inside and near buildings, GPS loca-
lization is unreliable or even unavailable.

Smart mobile devices, e.g. smartphones and wear-
ables, are equipped with inertial sensors and
a multitude of radio technologies, that can be used
to locate the device. There are two basic approaches:
infrastructure-based methods use, e.g. Wifi,
Bluetooth, or Near-Field-Communication beacons at
fixed positions in the building to calculate a device’s
position based on the received signal strengths of
those beacons. These methods can achieve up to
meter-accurate results, but require a relatively dense
population of beacons throughout the building and

are highly dependent on the building's architecture:
increasing number and irregularity of walls can dis-
tort the radio signal characteristics and decrease posi-
tioning accuracy.

The second approach uses a fixed, known starting
point of the device (e.g. the building entrance) and
calculates the position based on the aggregated move-
ment since the starting point. This method is called
Pedestrian Dead Reckoning (PDR). Main concerns
regarding PDR are the errors introduced through
the sensing mechanisms. Typically, accelerometers
and gyroscopes are used to calculate the user’s path.
However, sensor drift and other accumulated errors
will quickly deteriorate the accuracy the farther away
the user walks. Methods are required to re-adjust the
estimated position to the physical environment.

Here, hybrid approaches come into play: these meth-
ods combine the first two approaches. Typically, the
PDR results are corrected using infrastructure informa-
tion when they are most reliable. This eliminates many
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of the disadvantages of the two approaches, but still
requires a setup, configuration, and learning of the
used infrastructure.

Another important factor for the accuracy of PDR
systems is the quality of the initial position and
orientation. Without correction mechanisms, an
initial localization error propagates to the endpoint.
Naturally, a person is outdoors before entering
a building, i.e. before starting indoor localization.
Therefore, an obvious method is to use satellite navi-
gation to determine the last position before entering
a building. However, the accuracy of GPS greatly
decreases in the vicinity of buildings, especially tall
buildings. An error of 3 m in an open area increases
to more than 20 m in an urban canyon, as shown by
Modsching, Kramer, and ten Hagen (2006). In addi-
tion, the time of signal loss can differ greatly from the
actual time of entry. While massive, multi-storey
buildings quickly interfere with the GPS signal, glass
facades have a much lesser effect on signal quality.

In this paper, we propose the use of building map
data to improve localization accuracy. We demonstrate
our approach in an IPS that uses a foot-mounted iner-
tial sensor, a simple Madgwick filter-based step detec-
tion, as well as step heading and length estimation. Our
algorithms can be applied to most existing PDR and
hybrid systems regardless of sensor location and device
positioning method, as long as the PDR uses a step-
based path estimationmethod. Additionally, we present
a method to determine the initial position and orienta-
tion with a combination of PDR and GPS.

The paper is structured as follows: Section 2
describes related work, especially regarding PDR sys-
tems using foot-mounted sensors. Following, we pre-
sent our basic indoor localization system and PDR
approach in Section 3. Our proposed map-based cor-
rection methods are detailed in Section 4. The
scheme to derive initial orientation and position
from GPS measurements and PDR is described in
Section 5. In order to evaluate these methods, we
performed experiments that are described in Section
6 and evaluated in Section 7. Conclusions are then
drawn and future work outlined in Section 8.

2. Related work

A comprehensive survey of PDR research is pre-
sented by Harle (2013). In the paper, the author
classifies PDR into two basic approaches: Inertial
Navigation Systems utilize the estimated 3D trajectory
of an inertial sensor to calculate the pedestrian's posi-
tion, whereas Step-and-Heading Systems (SHS) first
detect steps and then estimate each steps length and
heading. The accumulation of all steps results in the
estimated position. Examples for both approaches
using various sensor setups and positions are given
in the survey. Classified according to the survey, in

this paper, we propose an SHS using a foot-mounted
accelerometer and gyroscope for both step detection
and length/heading estimation. We use raw accelera-
tion/rotation values and no particle filter.

Using foot-mounted sensors for PDR is quite com-
mon, even though this sensor placement seems imprac-
tical today, as criticized by Harle (2013). But as this
sensor placement is advantageous for step detection
and length/heading estimation, it is often used in SHS.
The quality of the length and heading estimation is
enormously important for the localization effort and
has thus been subject in several papers, e.g. Bebek
et al. (2010); Foxlin (2005); Castaneda and Lamy-
Perbal (2010); Bird and Arden (2011). The computation
of error propagation in an SHS and the incorporation of
various sensors to limit error growth have also been the
subject of past research as published by Jiménez et al.
(2010); Romanovas et al. (2012); Olsson, Rantakokko,
and Nygårds (2014).

An open source foot-worn device for PDR by SHS
is presented by Nilsson, Gupta, and Händel (2014).
The device features four inertial measurement units
(IMU) to limit stochastic measurement errors and
features onboard computation of step vectors and
error estimates. A detailed analysis of an adaptation
of this approach is given by Gupta, Skog, and Händel
(2015). The authors argue that such a multi-IMU
SHS is capable of localizing a pedestrian in a radius
of 4 m with 95% certainty after a 100 m walk under
realistic conditions.

The precise computation of step length and
heading necessitates the accurate tracking of the
sensor orientation in relation to the global coordi-
nate system. A straightforward approach to track
the device orientation is the integration of the
angular velocity. However, the drift inherent to
gyroscopic measurements will soon lead to signifi-
cant error in orientation and therefore heading
estimation. This can be mitigated by using addi-
tional sensors such as an accelerometer or
a magnetometer as shown by Sabatini (2011).
A popular approach to fuse multiple sensor read-
ings into an attitude estimation is the Kalman filter
(Lefferts, Markley, and Shuster (1982); Sabatini
(2006); Bird and Arden (2011); Cavallo et al.
(2014)). The Madgwick filter is a more recent devel-
opment and is shown to provide results of compar-
able accuracy at reduced computational cost as
demonstrated by Madgwick, Harrison, and
Vaidyanathan (2011). Indeed, Cavallo et al. (2014)
show an eighteen-fold reduction of computation
time for one estimation cycle at similar heading
accuracy on an STM32F3 micro-controller.

An SHS with stance detection utilizing only the
angular velocity in the lateral axis of a foot-mounted
sensor node is presented by Huang, Liao, and Zhao
(2010). This approach requires knowledge of the
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relation of the user frame of reference and the sensor
frame. We argue that an approach which is agnostic
to the sensor attachment orientation is more robust
and therefore preferable. A study comparing accel-
eration and angular rate energy based stand detection
is presented by Skog et al. (2010). The authors find
that an angular rate energy-based detector outper-
forms acceleration-based detectors. Olivares et al.
(2012) present a wide variety of stance detection
methods for inertial data of body-worn sensors. The
authors recommend a combination of acceleration
magnitude and angular rate energy observation for
stance detection with low delay and low computa-
tional complexity. Our adoption of this approach is
described in detail in Section 3.

In our paper, we utilize map data to gather infor-
mation on likely and unlikely paths. Both principles
have been explored using different approaches before.

Xiao et al. (2014) introduce MapCraft, a map-based
localization method using conditional random fields as
a lattice of reachable positions across a building map.
The user position is computed by finding the path along
valid positions that best matches the observed features
such as user steps and the respective headings.
Additional features such as the radio signal strength of
nearby Wifi access points may also be used. Robertson,
Angermann, and Krach (2009) use a Simultaneous
Localization and Mapping (SLAM) approach to gener-
ate likely paths inside a building based on earlier paths
through this building. A Bayesian estimation algorithm
is used to decide whether a likely path is followed at
each step. In our paper, we gather the likely paths
directly from building maps, saving some computa-
tional effort in the PDR-device, while requiring every
building to be added to the PDR application manually
(or semi-automatically). To further reduce the compu-
tational load on the PDR device, our correction algo-
rithm is non-probabilistic, forcing the estimated
position back onto likely paths.

Map data, especially wall data, are also used by
Widyawan and Beauregard (2008), in which
a backtracking particle filter is used to detect unlikely
paths, e.g. wall crossings, and correct the estimated
path accordingly. The particle filter is used to accom-
modate measurement and estimation errors in step
length and heading, creating a multitude of possible
step end positions (one for each particle) and then
choosing the most probable one. When a particle is
observed to cross a wall, this particle is invalidated.
This principle is extended using backtracking, mean-
ing that particles remember their individual state
history. If a particle (or a group or particles) becomes
invalid after a new step, its former state also becomes
invalid. This triggers a new calculation of the former
estimated pedestrian position without the invalid par-
ticles. If no valid path is found from this new esti-
mated position, the algorithms backtrack one step

further, until a valid path is found. While the
approach using a particle filter is very error resistant,
it is also computationally expensive. In our paper, we
similarly detect wall crossings and correct the esti-
mated position, but we consider only a single particle
and do not use backtracking to correct earlier wrong
step corrections. This makes our algorithm more
suitable for implementation on embedded devices.

The method presented in Kim et al. (2012) is
intended to determine the exact time of entry into
a building. The method is based on observing the
Signal to Noise Ratio (SNR) of currently visible GPS
satellites with high altitude. When entering
a building, these satellites show a strong decrease in
SNR and the authors show that satellites with an
altitude greater than 60� show the most significant
SNR change. To compensate for false-positives due to
short-term changes, the signal trend is smoothed by
averaging. If the signal is interrupted completely, the
instance of the largest SNR change in the smoothed
trend is identified as the moment of entry into the
building. The error of the detected time of entry is
stated to be between 2 and 3 seconds. The accuracy of
initial localization can be improved with the build-
ing’s Wifi infrastructure as shown by Hansen et al.
(2009) and Gallagher et al. (2011). These methods
detect GPS signal loss for a prolonged time and
then switch to indoor localization by Wifi finger-
printing. The poor quality of the satellite-based posi-
tioning during the transition phase is compensated by
the localization using Wifi.

3. Indoor localization using inertial sensors

As described in Section 2, the use of inertial sensors for
IPS is well established as they are cheap, ubiquitous and
yield an appropriate accuracy using PDR. While it may
be easier to utilize a users’ smartphone, which is already
equipped with inertial sensors, the use of a foot-
mounted sensor produces much better results. This is
due to the fact that the phases of a step are much easier
to detect and quantize from the foot than, e.g. from
a pants pocket or a purse. The more distinctive move-
ments not only improve the step detection but also the
step orientation and length estimation significantly.

We use a Madgwick filter to track the sensor orienta-
tion as described by Madgwick, Harrison, and
Vaidyanathan (2011), due to its accuracy and low com-
putational requirements. The orientation is computed
as a quaternion to avoid gimbal lock and ease computa-
tion. We use an accelerometer and a gyroscope, but no
magnetometer to further reduce computational com-
plexity and hardware requirements. The expected head-
ing drift is mitigated by the correction methods
described in Section 4.1.

The phases of a step are illustrated in Figure 1: The
step begins with a stand phase. The second phase is
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the swing phase, which in itself can be divided into
lift-off, swing and step-down. The final phase of
a step is another stand phase which is also the first
phase of the following step.
A stand phase is defined by the low signal energy of
both acceleration and rotation signals, as well as
known approximate values for both the absolute
value of the acceleration vector (around 1 g or
9:81 m

s2 ) and rate of rotation in each axis (approxi-

mately 0 rad
s ). Equation (1) and Equation (2) describe

the computation of the signal energies of the accel-
eration and angular rate, respectively. This is done
over a window of N samples around sensor sample k
with the vectors of acceleration a and angular rate ω,
as well as the gravity constant g. A stand phase is
detected if both the energy of the absolute accelera-
tion (sans gravity) and angular rate are below their
respective thresholds tha and thω as described by
Equation (3) and visualized in Figure 2.

Ek
a ¼

1
N

XkþN
2

i¼k�N
2

ðjaij � gÞ2 (1)

Ekω ¼
1
N

XkþN
2

i¼k�N
2

jωij2 (2)

stand ¼ Ea < tha ^ Eω < thω (3)

The trajectory of the foot in the swing phase describes
both the step orientation and its length, thus enabling
PDR. Within this phase, the current acceleration
sample is rotated to the world coordinate frame
using the conjugate of the current sensor orientation
quaternion from the Madgwick filter. The sensor
sample is then integrated as described by Equations
(4) and (5) with velocity vk at sample k, the distance
sk and sample time interval T.

vk ¼ vk�1 þ akT (4)

sk ¼ sk�1 þ vkT (5)

The accelerometer noise and limited resolution have
a large impact on step vector estimation as the velo-
city error quickly accumulates. The second stand
phase delimits the step trajectory and is used for
a Zero-Velocity-Update (ZUPT), in which velocity
offsets caused by sensor drift are measured (while
standing the velocity should be zero) and henceforth
corrected. We employ the ZUPT method presented
by Feliz Alonso, Casanova, and Gómez-Garc
ía-Bermejo (2009). Figure 3 illustrates the resulting
velocity error and correction of three swing phases
and their corresponding stand phases as they are
detected in Figure 2. The difference in distance
from start to end of one swing phase is the step vector
used for indoor localization.

Both step orientation and step length are of limited
accuracy, even though the velocity drift offset is com-
pensated during the ZUPT. These inaccuracies will

Figure 1. Progression of step phases.

Figure 2. Detection of stand intervals using the signal ener-
gies of acceleration and angular rate with a foot mounted
sensor. Figure 3. Velocity correction of three steps by ZUPT.
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accumulate with each step. Regarding a pedestrian
walking in a straight line, two effects are thus
expected: First of all, the estimated position will
increasingly drift away from the real position.
Secondly, the sum of all step lengths will differ from
the distance actually traveled. The major problem for
this IPS lies in the aforementioned aggregation of
errors. Without a correction whenever a known loca-
tion is reached, for example by using infrastructure-
based localization methods, the overall error has to be
reduced in a different way. We propose the use of
building maps to improve on the user's localization.

4. Map-based correction methods

In order to improve the described system, we propose
the use of map data to correct individual steps. We use
simple assumptions about human behavior to develop
correction algorithms: First, we assume that pedestrians
in buildings know their destination and will try to reach
it via the shortest path, which reduces the number of
probable paths through areas like corridors or open
spaces with a limited set of entries and exits. With
predefined paths provided through maps, the position
estimation can better reason which step vectors are
most probable and how to correct unreasonable ones.
We present two correction methods based path data:
Orientation Angle Correction (OAC), described in
Section 4.1 and Correction using Path Information
(CPI), described in Section 4.2.

Second, we assume that pedestrians cannot walk
through walls and steps estimated to lead through
walls are unreasonable. The errors aggregated
through PDR may result in the estimated path to
wrongly cross through walls instead of, for example,
nearby doors. A provided building map helps the IPS
to detect when walls are crossed and enables the
correction of those errors. We describe the corre-
sponding correction method Correction using Wall

Information (CWI) in Section 4.3. All three correc-
tion methods are designed to be used in combination
or on their own. We found the sequence of OAC first,
then CPI and finally CWI to be most helpful.

To demonstrate and evaluate the following meth-
ods, we mapped a single floor of an office and lecture
building with both wall and path information. Doors
are interpreted as gaps in walls and indoor spaces
contain the minimal number of paths to reach any
door and point of interest. The maps themselves are
encoded using an R*-tree.

4.1. Orientation angle correction

The Orientation Angle Correction (OAC) is designed
to reduce orientation errors caused by drift. In most
buildings some sections exist, in which pedestrians
walk in a straight line, e.g. corridors. In these sec-
tions, consecutive step vectors will be roughly paral-
lel. If this is the case and the direction of this set of
step vectors is also parallel within an angle threshold
to the nearest available path, the OAC assumes that
the correct orientation of the user is actually parallel
to the nearest path and will henceforth correct the
orientation accordingly. The principle is shown in
Figure 4: the pedestrian walks along the corridor
but in a natural, slightly wavering path. As the angle
between this path and the mapped path α is smaller
than the threshold, this angle will now be used to
correct the orientation.

The algorithm is also described in Figure 5: for the
sets of the last n steps and the path segments closest
to these steps, each set is tested whether all steps or
wall segments are roughly parallel. If both sets are
parallel within themselves, one element of each set is
chosen and the angle between them is calculated. If
the angle is smaller then a threshold, all following
steps will be corrected by adding this orientation
angle, even after the straight line has been left.

Figure 4. Calculation of Orientation Angle Correction.
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The correction algorithm only works if the correct
paths within the map are found. The OAC is used in
conjunction with at least one of the following meth-
ods. Without the reduction of localization error by an
additional correction method, the used paths may be
incorrect and thus decrease accuracy.

4.2. Correction using path information

Similar to the OAC, the Correction using Path
Information (CPI) assumes that movement within
a building can be abstracted to a finite number of
paths. These paths can be used to correct estimated
locations. Figure 7 describes the mechanism: It cor-
rects the estimated position after new steps using the
last estimated position and the nearest mapped path.
Similar to the OAC, the algorithms check whether the
step orientation is roughly parallel to the mapped
path. If they are parallel, but the estimated position
strays far from the path, it is corrected towards the
path. Figure 6(a) illustrates the correction of two
steps of a pedestrian walking along a corridor. The
dashed red arrow depicts the steps that, while the
angle α towards the path is smaller than the thresh-
old, lead further away from the path then the distance
d, so that the end point of the step is corrected using
the vector v . Figure 6(a) shows a turn that leads to

no correction due to α exceeding the threshold
MaxPathAngle and a correction of the final step.

The algorithm is also described in Figure 7: for
each new step, the closest path to the uncorrected
step is found. If the step is found to be roughly
parallel to this path but is leading too far away from
it (as the threshold for parallelism is quite large), the
CPI will correct this step onto the path.

4.3. Correction using wall information

Another approach to improve step-based PDR systems
using map data is the utilization of the fact that pedes-
trians cannot walk through walls. The algorithm for the
Correction using Wall Information (CWI) is the most
complex of the demonstrated algorithms. It consists of
two mechanisms: The first is the reflection by walls, in
which a perceived step crossing a wall is corrected using
the assumption that the step should rather be along the
wall. The position is corrected to be near, not inside the
wall. The procedure is depicted inmore detail in Figure 8
and illustrated in Figure 9. The red arrows illustrate the
wall crossing steps with the crossing angle α. They are
corrected to the green arrows as if the pedestrian was
reflected from the wall. The algorithm further checks
whether the corrected step would also cross a wall and
recursively correct it.

Figure 5. Orientation Angle Correction.

Figure 6. Correction using Path Information with α as the orientation and d as the distance of a step relative to a nearby path.
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Figure 8 shows this reflection mechanism in lines 2 to
22. Each step is checkedwhether it leads through awall. If
a wall crossing is detected, the corrected step is first set
directly onto (or rather in front of) the wall. Then, the
reflection is determined. If the angle of the step towards
thewall is low, it is reflected off thiswall at this angle (lines
13 to 17 determine the correct direction of reflection).
The resulting half-step (newstep) is then also checked for
wall crossings using recursion.

The second mechanism of the CWI is the use of
passageways, e.g. doors. If a step vector crosses a wall
with a very steep angle, the algorithm searches for a gap
in the crossed wall near the crossing point (Line 23 in
Figure 8). In the function findGap, the nearest gap to
both sides of the wall segment, that the step is crossing,
is found recursively. If this gap would be reasonably

close to the uncorrected step, a step through this gap is
returned as the corrected step.

5. Determining initial position and
orientation

The accuracy of navigation with PDR depends on
a precise starting point and orientation. We employ
a combination of GPS and PDR to determine
a building entrance as the starting point of indoor
positioning and use the trend of prior GPS measure-
ments to determine the initial orientation.

When entering a building the accuracy of GPS
quickly deteriorates. However, the GPS signal may
not be lost well after entering the building. Instead,

Figure 7. Correction using Path Information.

Figure 8. Correction using Wall Information: Reflection by walls.
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individual satellite signals may still be received
through reflections into and throughout the building,
resulting in continued and highly inaccurate posi-
tioning. It is therefore not sufficient to wait for the
GPS signal to be lost to switch to PDR.

The method presented in Kim et al. (2012) is well
suited for determining the time of entry and is also
used in this paper in a modified form. The GPS satel-
lites with highest altitude are observed continuously. If
a building is entered, the SNR of these satellites dete-
riorates quickly and significantly. With each step
detected by our PDR method, the SNR of the three
GPS satellites with the highest altitude is averaged and
stored in a five-element ring buffer. With each new
buffered value, the median of the stored elements is
calculated and stored in another buffer. In this way,
short-term fluctuations are filtered out of the signal
trend. By filtering using the median of recent values,
the signal trend, significant long-term changes and the
precise time of the change in the data series are pre-
served and pronounced. A possible building entry is
detected if the change of SNR in the recently filtered
SNR values exceeds a threshold of 3 dB.

During the user's movement outdoors, single step
vectors are stored together with the most recent GPS
measurement. This way the users PDR data can be
correlated with the corresponding GPS positions. If
a potential building entrance has been detected by the
observation of the SNR trend, the corresponding
entrance of the building must be found in the map
data and the entry orientation has to be determined.
Without a known initial orientation the step vectors
computed by PDR have an unknown error in orien-
tation. We employ the following method to deter-
mine the initial orientation.

If the user walks at least 10 steps without
a significant change in direction, the direction of the

steps is approximated by a line drawn from the first
to the last step of the straight PDR track. The true
orientation is calculated by linear regression of the
corresponding GPS measurements. If the coefficient
of determination of the regression is greater than
0.85, the angle between the two lines is the angle
used to calibrate the initial step orientation.

Indoor positioning starts at the user’s point of
entry into the building. The following method is
used to compensate for the increasing inaccuracy of
GPS when approaching a building. To find the cor-
rect entry point, the most accurate of the last GPS
positions is used as the temporary starting point for
PDR. The last orientation-calibrated steps from this
position on are chained together up until the step at
the instance of entering the building. This step is
determined by monitoring the change of GPS satellite
SNR as described above. The door closest to this last
step is used as the starting point for indoor naviga-
tion. Figure 10 illustrates the procedure. If no door is
found within a certain search radius, the transition to
indoor positioning is canceled.

6. Experiments

6.1. Map-based correction of PDR

To evaluate the proposed map-based correction algo-
rithms, we implemented a system as described in
Section 3. We then defined four routes through a non-
trivial building architecture that would highlight pro-
blems with PDR localization. The routes are depicted
in Figure 11. All routes have a singular start and end
point in order to simplify accuracy evaluations. The
distance between calculated start and end points is
considered the overall estimation error. Initial position
and orientation are predetermined in this experiment.

Figure 9. Correction using Wall Information with intersection angle α. Acute angles lead to a search for gaps while shallow
angles result in reflection.
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Route 1 specifically targets the drift: two long
straights along the corridor will show how well the
correction algorithms can keep the estimated path par-
allel to the corridor path. This principle is extended in

Route 2: A room is entered on the return path of the
corridor. Several turns and an acute-angled intersection
with a door (or a wall through accumulated PDR error)
may especially test the CWI algorithm. Route 3 extends

Figure 10. Finding the entrance door with a precise GPS position as a temporary starting point.

Figure 11. Routes used in the experiment.
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Route 1 by a second corridor through a doorway and
includes two 90º corners. This route will also magnify
inaccurate step length estimations. An even more com-
plex route is defined as Route 4. More corners will allow
for more orientation distortion, while also provoking
miscorrections.

While the localization works online, for this
experiment the consecutive uncorrected step vector
data from the Madgwick fusion were recorded and
the path estimation was performed offline. The
recordings were performed using a sensor node
equipped with a Bosch Sensortec BMI160 inertial
sensor and transmitting sensor signals to
a connected smartphone using Bluetooth Low
Energy. For the experiment, six participants each
walked all four routes three times, resulting in 18
recordings per route and 72 recordings overall.

6.2. Initial orientation and position using PDR
and GPS

For the evaluation of the entry detection and the
initial orientation, a total of 40 test tracks were
recorded using two building entrances as seen in
Figures 12 and 13. For each step detected by PDR,
the buffered SNR of the three satellites with the high-
est altitude were averaged and stored. The last GPS
position was stored as well with each step vector. The
user manually marks the time instance of entry using
our Android App. The corresponding step vector is
then marked for later evaluation. A Motorola Moto
G2 is used as a GPS receiver. The phone is held in
front of the user, simulating ongoing navigation
using the smartphone.

To determine the accuracy of the initial position,
the distance from the end position of the marked step
to the center of the entrance is measured. If the
building entry is detected with a later step, the step
vectors are lined up backward to the marked step.

In order to evaluate the initial orientation, each track
first leads into a corridor. The initial orientation is

examined by comparing the orientation of the first
step vectors in the corridor with a reference line along
the corridor. Figure 14 shows the reference line in
green, the two building entrances are also visible. For
this experiment, the step vectors are only corrected by
the calibration angle determined using GPS.

7. Evaluation

7.1. Accuracy of map-based correction

The first concern in IPS is the accuracy. In our
experiment, we interpret the distance between the
estimated end position and the actual end position
(which is the same as the start position) as an accu-
racy metric. Figure 15 shows the average absolute

Figure 12. Entrance 1 at the northern side of the test
building.

Figure 13. Entrance 2 at the southern side of the test
building.

Figure 14. The position of the reference line for the initial
orientation.
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distance between start and end point for each of the
four routes and each of the four correction modes: no
correction, only CPI, only CWI, and both CPI and
CWI. All modes except no correction use OAC. The
distances between start and end point, relative to
route length, for all four correction modes are also
given in Table 1.

Most significant is the good performance of CPI
which reduces the deviation compared to no correc-
tion by up to 68% (Route 2). This is mostly expected
since all routes travel along or parallel to relatively
long straight paths at least once. However, for Route
4, CPI produces a worse result than the use of no
correction. This is due to only a few recordings,
where the correction leads the estimated position
into the room next to the end point, where it was
stuck throughout the second part of the route, result-
ing in a still moderately accurate estimated end posi-
tion, but to a completely failed estimation for
the second part of the route.

However, the performance of CWI is far below the
expectations. For all routes but Route 2, the results
using CWI (as well as using both algorithms) are on
average worse than the PDR results without any cor-
rection. This does not constitute a systematic error but
is mostly caused by a few extreme outliers in the
recorded data, which is also apparent in the wide
error bars in Figure 15. In these outlier cases, a door

or corridor is wrongly assumed to be used after an
intersection with a wall. Further corrections after such
an error result in a wrong path through the building or
a position estimation stuck in a dead end. Especially
error cases that lead to a dead end, like correction into
a room instead of a corridor, may result in a large
distance to the reference point of the accuracy mea-
surement. This behavior is especially apparent in
longer, more complex routes with a greater impact of
accumulated localization error and consequently
a greater likelihood for erroneous correction by CWI.
Figure 16(a,b) shows such error cases for routes 3 and
4, respectively. In Figure 16(a) the user turns at the end
of a corridor and walks back the same way. However,
the corrected trajectory enters a room adjacent to the
corridor in the middle of the turn, because the corre-
sponding step intersects a wall in an acute angle. In
Figure 16(b) the user arrives from the top right and
turns left into the bottom corridor. However, the cor-
rected trajectory leads across the corridor due to an
accumulated error in length and intersects a wall in an
acute angle, triggering a correction through a nearby
door into the room on the bottom left. Both error cases
are caused by comparatively small deviations from the
actual position. The next trajectory correction by CWI
employs reasonable but erroneous assumptions about
the user’s intention and renders any subsequent loca-
lization unusable.

The scenarios shown in Figure 16 show the main
source of error seen when using CWI: the decision
were to guide a step after an acute intersection with
a wall. CWI chooses the nearest way around a wall
or through a door. However, this might not be the
right decision. Especially long routes with a larger
accumulated distance error may render this method
unreliable. When a correction by CWI leads into
a room instead of a corridor, the estimated path
most likely stays in this room indefinitely, making
further corrections useless. These error cases may
be corrected by periodic plausibility checking of the
current path and re-evaluation of past correction
decisions. In case the current path is deemed
implausible, past corrections may be evaluated for
a plausible alternative nearby like other doors or
openings into open spaces, thus resolving a dead-
end error case.

7.2. Computational cost

The effect of the additional computation caused by
the correction algorithms is shown in Figure 17. For
our experiment, we used a Motorola Moto G2 run-
ning Android 5.0.2. The graph plots the average
computation time per detected step for the four cor-
rection modes: no correction, only CPI, only CWI,
and both CPI and CWI. The time is averaged over all
7561 detected steps of our test data set.

Table 1. Accuracy results, measured as the distance between
the start and end point, relative to route length. Accuracy
improvements are highlighted.
Route Length in m none CPI CWI both

Route 1 77.01 5.12% 2.01% 6.12% 4.01%
Route 2 99.44 4.67% 1.47% 3.59% 2.89%
Route 3 139.72 5.56% 2.67% 7.54% 8.93%
Route 4 225.97 1.69% 2.39% 13.80% 13.23%

Figure 15. Path estimation accuracy: Path deviation at end of
each route.
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On average, the majority of computation time is
used to search map data. OAC and CPI perform area
searches for nearby paths. In our experiments that
lead to a search for elements that intersect or lie
within a 10 × 10 m bounding rectangle, likely requir-
ing the traversal of several R*-Tree branches. CWI
only performs a search for intersecting walls, search-
ing for elements that intersect the comparatively
small bounding rectangle of a step vector. This results
in fewer evaluated tree branches and therefore less
computational time needed for CWI. Both CPI and
CWI are combined with the angle correction OAC,
resulting in an offset through the comparatively
costly area search by OAC.

While the correction algorithms increase computation
time significantly, even on this very restricted platform
computation takes far less than a millisecond for the
combination of both algorithms. Thus, more than 1000
steps could be processed per second, which is clearly
enough for online real-time localization.

In future work, the combination of algorithms
may use some synergies, mostly the search for nearby
paths could be reused, resulting in a lower computa-
tion time.

7.3. Initial orientation and position

On average, the error of orientation is 4.14 degrees at
entrance 1 and 6.96 degrees using entrance 2. The high-
est deviation is measured at entrance 2 with an error of
19.22 degrees. A possible explanation for the higher
average and maximum error at entrance 2 is the vicinity
of a multi-story building along the path to entrance 2. It
was observed that the GPS measurements are somewhat
skewed in some test runs when passing the building
while actually walking straight, possibly due to multi-
path effects of reflected or shadowed GPS signals. This
results in a GPS track that is oriented incorrectly. If this
track is used for the calibration of PDR, the error is
propagated to the initial orientation. Figure 18 shows
the total distribution of initial orientation error.

The initial position has an average error of
0.71 m using entrance 1 and 1.49 m using entrance 2.
The maximum error is observed using entrance 1 with
an error of 6.2 m. In this instance, the entry was not
detected until the glass-enclosed entrance area was left
and the stone-walled building itself was entered. In this
instance, it was observed that the satellites were

Figure 16. Erroneous dead ends by CWI halfway through routes 3 and 4. The computed user trajectory is visible as a blue line.
The true paths lead back through the respective corridor.

Figure 17. Computation time of PDR calculation per detected
step.

Figure 18. Histogram of the initial orientation error from GPS
and PDR.
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positioned unfavorably low and behind the user. This
lead to insufficient blocking of the satellites signals by
the glass front. Figure 19 shows the total distribution of
accuracy of the initial position.

The experiment highlights the importance of
a favorable, high altitude, GPS constellation. This limits
erroneous measurements near tall buildings and allows
the observation of a fast decrease of SNR when entering
a building.

8. Conclusion

In this paper, we demonstrate how the use of building
maps can improve PDR applications using a foot-
mounted inertial sensor-based system. The benefits
shown can also be applied to other step-based PDR
systems, as the step vectors can be corrected regardless
of the position of the sensor. We evaluated the pro-
posed algorithms using relatively accurate step vectors
measured at the pedestrians foot. Using smartwatch or
smartphone internal sensors might yield less accurate
step vectors. The benefit of the proposed algorithms for
other sensor locations can be evaluated in future works.
In addition to the shown correction methods by walls
and paths, other map information like the intersection
angle of paths at crossings and the length of a path are
also worth investigating in the future.

The experiment showed that CWI can yield very
large errors when the correction goes wrong and the
position estimation becomes “trapped” inside the wrong
room. We propose for future extensions of the system
the use of backtracking to revert to the last plausible
position and use a different step vector correction.

Furthermore, we show how the observation of GPS
signals in combination with PDR is used to determine
the initial position and orientation of PDR when enter-
ing a building. We also highlight challenges inherent to
GPS-based calibration and entrance detection. A more
sophisticated selection of GPS satellites to ensure

a rapid decrease of SNR during building entry can be
considered in the future. Additionally, the combination
of initial positioning and orientation with continued
PDR using the map-based correction methods will be
examined in future works.

Notes on contributors

Fabian Hölzke was born in 1990 in Berlin, Germany. He
received his Bachelor of Engineering in Mechatronics and
Electrical Engineering at the Esslingen University of
Applied Sciences in 2014 and the Master of Science in
Electrical Engineering in 2016 at the University of
Rostock. In 2017 he started working as a Researcher and
PhD-Student at the Institute of Applied Microelectronics
and CE at the University of Rostock, where he researches
indoor localization technologies based on inertial sensors.

Johann-P. Wolff was born in 1988 in Rostock, Germany.
He received his B.Sc. and M.Sc. in Electrical Engineering
from the University of Rostock in 2011 and 2013, respec-
tively. Since 2013 he works as a Researcher and PhD-
Student at the Chair for Embedded Systems at the
University of Rostock, where he researches gesture and
activity recognition software for smart inertial sensor plat-
forms and other embedded systems.

Frank Golatowski is senior research associate and lecturer
at the Institute of Applied Microelectronics and Computer
Engineering, University of Rostock and head of research
group on Industrial Informatics. His research focuses on
embedded service-oriented architectures, Cyber-Physical
Systems, Industrial Internet-of-Things, and systems engi-
neering for safety-critical embedded systems. He is working
to establish and improve interoperability and reliability as
well as the real-time capability of distributed embedded
systems used in different industrials domains and across
domains.

Christian Haubelt received his diploma degree in Electrical
Engineering from the University of Paderborn, Germany,
in 2001. He finished his Ph.D. in Computer Science and his
Habilitation (postdoctoral lecture qualification) in
Computer Engineering at University of Erlangen-
Nuremberg, Germany, in 2005 and 2010, respectively.
Since 2011, he is a Professor of Embedded Systems at the
University of Rostock, Germany. His research interests
include electronic system level design, system level design
automation, and multi-objective optimization.

References

Bebek, O., M. A. Suster, S. Rajgopal, M. J. Fu, X. Huang,
M. C. Cavusoglu, D. J. Young, M. Mehregany,
A. J. (Ton) van Den Bogert, and C. H. Mastrangelo.
2010. “Personal Navigation via Shoe Mounted Inertial
Measurement Units.” Paper presented at the Intelligent
Robots and Systems (IROS), 2010 IEEE/RSJ International
Conference on, Taipei, China, October 18–22, pp
1052–1058.

Bird, J., and D. Arden. 2011. “Indoor Navigation with
Foot-Mounted Strapdown Inertial Navigation and
Magnetic Sensors [Emerging Opportunities for
Localization and Tracking].” IEEE Wireless
Communications 18 (2): 28–35. doi:10.1109/
MWC.2011.5751293.Figure 19. Histogram of the initial position error from GPS

and PDR.

126 F. HÖLZKE ET AL.

https://doi.org/10.1109/MWC.2011.5751293
https://doi.org/10.1109/MWC.2011.5751293


Castaneda, N., and S. Lamy-Perbal. 2010. “An Improved
Shoe-Mounted Inertial Navigation System.” Paper pre-
sented at the Indoor Positioning and Indoor Navigation
(IPIN), 2010 International Conference on, Zurich,
Switzerland, September 15–17, pp 1–6.

Cavallo, A., A. Cirillo, P. Cirillo, G. De Maria, P. Falco, C.
Natale, and S. Pirozzi. 2014. “Experimental Comparison
of Sensor Fusion Algorithms for Attitude Estimation.”
IFAC Proceedings 47 (3): 7585–7591.

Colombo, A., D. Fontanelli, D. Macii, and L. Palopoli.
2014. “Flexible Indoor Localization and Tracking Based
on a Wearable Platform and Sensor Data Fusion.” IEEE
Transactions on Instrumentation and Measurement 63
(4): 864–876. doi:10.1109/TIM.2013.2283546.

Feliz Alonso, R., E. Z. Casanova, and J. Gómez-Garc
ía-Bermejo. 2009. “Pedestrian Tracking Using Inertial
Sensors.” Journal of Physical Agents 3 (1): 35–43.

Foxlin, E. 2005. “Pedestrian Tracking with Shoe-Mounted
Inertial Sensors.” IEEE Computer Graphics and
Applications 25 (6): 38–46. doi:10.1109/MCG.2005.140.

Gallagher, T., B. Li, A. G. Dempster, and C. Rizos. 2011.
“Power Efficient Indoor/outdoor Positioning Handover.”
Paper Presented at The International Conference on
Indoor Positioning and Indoor Navigation (IPIN),
Guimaraes, September 21–23.

Gupta, A. K., I. Skog, and P. Händel. 2015. “Long-Term
Performance Evaluation of a Foot-Mounted Pedestrian
Navigation Device.” Paper presented at the India
Conference (INDICON), 2015 Annual IEEE, Jamia
Millia Islamia, New Delhi, India, December 17–19, pp
1–6.

Hansen, R., R. Wind, C. S. Jensen, and B. Thomsen. 2009.
“Seamless Indoor/outdoor Positioning Handover for
Location-based Services in Streamspin.” Paper
Presented at the 2009 Tenth International Conference
on Mobile Data Management: Systems, Services and
Middleware, Taipei, China, May 18–21, 267–272.

Harle, R. 2013. “A Survey of Indoor Inertial Positioning
Systems for Pedestrians.” IEEE Communications Surveys
and Tutorials 15 (3): 1281–1293. doi:10.1109/
SURV.2012.121912.00075.

Huang, C., Z. Liao, and L. Zhao. 2010. “Synergism of INS
and PDR in Selfcontained Pedestrian Tracking with
a Miniature Sensor Module.” IEEE Sensors Journal 10
(8): 1349–1359. doi:10.1109/JSEN.2010.2044238.

Jiménez, A. R., F. Seco, J. C. Prieto, and J. Guevara. 2010.
“Indoor Pedestrian Navigation Using an INS/EKF
Framework for Yaw Drift Reduction and a Foot-Mounted
IMU.” Paper presented at the Positioning Navigation and
Communication (WPNC), 2010 7th Workshop on, Dresden,
Germany, March 11–12, pp 135–143.

Kim, Y., S. Lee, S. Lee, and H. Cha. 2012. “A GPS Sensing
Strategy for Accurate and Energy-efficient Outdoor-to-
indoor Handover in Seamless Localization Systems.”
Mobile Information Systems 8 (4): 315–332.
doi:10.3233/MIS-2012-00151.

Lefferts, E. J., F. L. Markley, and M. D. Shuster. 1982. “Kalman
Filtering for Spacecraft Attitude Estimation.” Journal of
Guidance, Control, and Dynamics 5 (5): 417–429.
doi:10.2514/3.56190.

Madgwick, S. O. H., A. J. L. Harrison, and R. Vaidyanathan.
2011. “Estimation of IMU and MARG Orientation Using
a Gradient Descent Algorithm.” Paper presented at the

Rehabilitation Robotics (ICORR), 2011 IEEE International
Conference on, Zurich, Switzerland, June 27–July 1, pp 1–7.

Modsching, M., R. Kramer, and K. ten Hagen. 2006. “Field
Trial on GPS Accuracy in a Medium Size City: The
Influence of Built-up.” Paper presented at the 3rd
Workshop on Positioning, Navigation and
Communication, Hannover, March 16–17, 209–218.

Nilsson, J.-O., A. K. Gupta, and P. Händel. 2014. “Foot-
Mounted Inertial Navigation Made Easy.” Paper pre-
sented at the Indoor Positioning and Indoor Navigation
(IPIN), 2014 International Conference on, Busan, Korea,
October 27–30, pp 24–29.

Olivares, A., J. Ramírez, J. M. Górriz, G. Olivares, and
M. Damas. 2012. “Detection of (In) Activity Periods in
Human Body Motion Using Inertial Sensors:
A Comparative Study.” Sensors 12 (5): 5791–5814.
doi:10.3390/s120505791.

Olsson, F., J. Rantakokko, and J. Nygårds. 2014.
“Cooperative Localization Using a Foot-Mounted
Inertial Navigation System and Ultrawide Band
Ranging.” Paper presented at the Indoor Positioning
and Indoor Navigation (IPIN), 2014 International
Conference on, Busan, Korea, October 27–30, pp
122–131.

Robertson, P., M. Angermann, and B. Krach. 2009.
“Simultaneous Localization and Mapping for
Pedestrians Using Only Foot-Mounted Inertial
Sensors.” Paper presented at the 11th International
Conference on Ubiquitous Computing, Orlando, FL,
September 30–October 03, pp 93–96.

Romanovas, M., V. Goridko, A. Al-Jawad, M. Schwaab,
M. Traechtler, L. Klingbeil, and Y. Manoli. 2012.
“A Study on Indoor Pedestrian Localization Algorithms
with Foot-Mounted Sensors.” Paper presented at the
Indoor Positioning and Indoor Navigation (IPIN), 2012
International Conference on, Sydney, Australia,
November 13–15, pp 1–10. doi: 10.1094/PDIS-11-11-
0999-PDN.

Sabatini, A. M. 2006. “Quaternion-Based Extended Kalman
Filter for Determining Orientation by Inertial and
Magnetic Sensing.” IEEE Transactions on Biomedical
Engineering 53 (7): 1346–1356. doi:10.1109/
TBME.2006.875664.

Sabatini, A. M. 2011. “Estimating Three-Dimensional
Orientation of Human Body Parts by Inertial/Magnetic
Sensing.” Sensors 11 (2): 1489–1525. doi:10.3390/
s110201489.

Skog, I., P. Handel, J.-O. Nilsson, and J. Rantakokko. 2010.
“Zero-Velocity Detection – An Algorithm Evaluation.”
IEEE Transactions on Biomedical Engineering 57 (11):
2657–2666. doi:10.1109/TBME.2010.2060723.

Widyawan, M. K., S. Beauregard 2008. “A Backtracking
Particle Filter for Fusing Building Plans with PDR
Displacement Estimates.” Paper presented at the
Positioning, Navigation and Communication, 2008.
WPNC 2008. 5th Workshop on, Hannover, Germany,
March 27, pp 207–212.

Xiao, Z., H. Wen, A. Markham, and N. Trigoni. 2014.
“Lightweight Map Matching for Indoor Localisation
Using Conditional Random Fields.” Paper presented at
the Proceedings of the 13th international symposium on
Information processing in sensor networks, Berlin,
Germany, April 15–17, pp 131–142.

GEO-SPATIAL INFORMATION SCIENCE 127

https://doi.org/10.1109/TIM.2013.2283546
https://doi.org/10.1109/MCG.2005.140
https://doi.org/10.1109/SURV.2012.121912.00075
https://doi.org/10.1109/SURV.2012.121912.00075
https://doi.org/10.1109/JSEN.2010.2044238
https://doi.org/10.3233/MIS-2012-00151
https://doi.org/10.2514/3.56190
https://doi.org/10.3390/s120505791
https://doi.org/10.1094/PDIS-11-11-0999-PDN
https://doi.org/10.1094/PDIS-11-11-0999-PDN
https://doi.org/10.1109/TBME.2006.875664
https://doi.org/10.1109/TBME.2006.875664
https://doi.org/10.3390/s110201489
https://doi.org/10.3390/s110201489
https://doi.org/10.1109/TBME.2010.2060723

	Abstract
	1. Introduction
	2. Related work
	3. Indoor localization using inertial sensors
	4. Map-based correction methods
	4.1. Orientation angle correction
	4.2. Correction using path information
	4.3. Correction using wall information

	5. Determining initial position and orientation
	6. Experiments
	6.1. Map-based correction of PDR
	6.2. Initial orientation and position using PDR and GPS

	7. Evaluation
	7.1. Accuracy of map-based correction
	7.2. Computational cost
	7.3. Initial orientation and position

	8. Conclusion
	Notes on contributors
	References



