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Enabling Artificial Intelligence in High Acuity Medical Environments 

Acute patient treatment can heavily profit from AI-based assistive and decision 

support systems, in terms of improved patient outcome as well as increased 

efficiency. Yet, only very few applications have been reported because of the 

limited accessibility of device data due to the lack of adoption of open standards, 

and the complexity of regulatory/approval requirements for AI-based systems. 

The fragmentation of data, still being stored in isolated silos, results in limited 

accessibility for AI in healthcare and machine learning is complicated by the loss 

of semantics in data conversions. 

We outline a reference model that addresses the requirements of innovative AI-

based research systems as well as the clinical reality. The integration of 

networked medical devices and Clinical Repositories based on open standards, 

such as IEEE 11073 SDC and HL7 FHIR, will foster novel assistance and 

decision support. The reference model will make point-of-care device data 

available for AI-based approaches. Semantic interoperability between Clinical 

and Research Repositories will allow correlating patient data, device data, and 

the patient outcome. Thus, complete workflows in high acuity environments can 

be analysed. Open semantic interoperability will enable the improvement of 

patient outcome and the increase of efficiency on a large scale and across clinical 

applications. 

Keywords: context-aware medical technology; big data; IEEE 11073 SDC; HL7 

FHIR; surgery 

Introduction 

Methods of artificial intelligence (AI) are increasingly applied in many fields of 

healthcare, e.g. for image processing to support the diagnosis of diseases like tumours, 

in genetics, etc. [1]. Lots of research progress has been achieved in recent years. The 

first AI-based assistive systems have already started to be used for regular patient 

care [2], [3]. However, AI-based assistive and decision support systems for patient 

treatment in high acuity environments with high impact on patient safety and clinical 
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outcome, such as the operating room (OR) or the intensive care unit (ICU), are highly 

underrepresented. Two prime reasons are the lack of availability and suitability of 

medical device data due to missing open communication standards, and the high 

regulatory/approval requirements for AI-based systems. This article focuses on the first 

aspect. 

Data is the most important resource for AI applications. In high acuity 

environments, this includes information about the composition of the medical device 

ensemble, vital signs measured by the devices, their current state of operation, etc. On 

the one hand, information provision is necessary for the actual decision making in the 

particular situation and, on the other hand, this data is needed for any machine learning 

process. While the first aspect can only be achieved with interconnected medical 

devices at the point of care (PoC), the second requires a seamless data transition from 

the medical devices to Clinical Care and Research Repositories. We will show how 

vendor-independent interoperability based on open standards can empower innovative 

AI-based assistive and decision support systems. Our goal is to enable AI for the OR 

and ICU as well as for PoC medical device deployments in general. 

State of the Art 

Artificial Intelligence (AI) is emerging in the medical domain and becomes ever more 

important. In their survey, Jiang et al. [1] analyse the current research in terms of the 

addressed diseases and the kinds of input data being considered in recent AI literature. 

They conclude that the leading three disease categories are neoplasms, neurological, and 

cardiovascular diseases. The three most frequently used kinds of input data are 

diagnostic imaging (>3,000 PubMed-listed papers between 2013 and 2016), genetic 

data (>1,100 papers), and electrodiagnostic data (diagnostic methods based on electrical 

activity of human body, like electrocardiography (ECG), electroencephalography 
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(EEG), and electromyography (EMG); >900 papers). Other types are mentioned less 

than 100 times in AI literature between 2013 and 2016. Monitoring and physiologic 

data is not used frequently, although many hospitalised patients’ vital signs are being 

monitored. This might be an indicator for poorly available or unsuitable medical device 

data as proper communication standards have been missing. In contrast, the well-

established DICOM standard for medical images might be one reason for their frequent 

usage. 

Maier-Hein et al. [4] discovered that large-scale data science is not as quickly 

introduced into interventional medicine as into other medical domains. For the vision of 

Maier-Hein et al. of a ‘Surgical Data Science’, they point out that one of the immediate 

challenges is the availability of data. During a surgical procedure, a large amount of 

data is generated, but it is usually neither captured nor annotated using standardised 

vocabulary [5]. 

The lack of interoperability and the lack of standardised data models and 

communication protocols is often highlighted as one of the major challenges or 

problems for AI in healthcare [6]. Especially, the fusion of heterogeneous data from 

multiple sources is challenging without widely-used standards [7]. Raghupathi et al. [8] 

identify the challenge that “healthcare data is rarely standardized, often fragmented, or 

generated in legacy IT systems with incompatible formats.” 

Even researchers from IBM Watson and Google DeepMind indicate that “the 

challenge lies in harnessing volumes of data, integrating the data from hundreds of 

sources, and understanding their various formats. [9]” and that “open standards and true 

interoperability” are the key-enablers [2].  

We conclude our state of the art study by citing the analysis of Dimitrov [10]: 

“The biggest technical barrier to achieving this vision is the state of health data.” It 
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states that data fragmentation in silos and a lack of “standardized vocabularies and 

message formats” are major problems. 

Problem Statement 

Following the analysis of current challenges and problems for AI in healthcare, we 

make the case that two main problems have to be solved for large-scale application. 

 Hypothesis 1: Fragmentation of data, unavailable data, and data being stored in

isolated or proprietary silos are responsible for a low quantity of input data for

AI in professional healthcare.

 Hypothesis 2: Missing or lost explicit semantics, like data types, units of

measure, acquisition context, temporal annotations, etc. considerably decrease

the quality of input data for AI in professional healthcare.

Hypothesis 1 deals with the unavailability/inaccessibility of medical data. As a 

sufficiently large amount of data is crucial for most AI applications, it is necessary to 

overcome this problem to enable the potential of medical device data for AI 

applications. Due to the high amount of necessary data, it is typically indispensable to 

make use of different data sources. 

However, the – ideally (semi-)automated – integration of heterogeneous data 

sources without annotation to get high quality data sets is a difficult and error-prone 

task. Modern AI methods are generally able to work with unstructured, untagged, and 

uncorrelated input data. However, understanding the structure and semantics of the 

input is then as well part of AI-training process. Given semantics therefore reduces the 

complexity of the learning problem. Thus, the results are expected to be much better 

using semantically annotated data. Unfortunately, the capability of AI-based methods to 

cope surprisingly well with unstructured and untagged data of poor quality lowers the 
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motivation of some stakeholders to increase data quality by implementing semantic 

interoperability. 

Both of these problems can be solved by using comprehensive standards for 

vendor-independent interoperability. To make medical device data available for AI 

applications, two steps have to be taken: Firstly, the medical devices have to be 

interconnected by committing to the same syntax protocol and standardised vocabulary. 

For this purpose, we will introduce the new IEEE 11073 SDC family of standards. 

Secondly, the data has to be transferred to the medical and research information systems 

without losing information or modifying semantics (overcoming the ‘semantic gap’). 

HL7 FHIR is an emerging standard enabling the device-to-infrastructure transfer as well 

as communication between information systems. Both standards will be explained as 

key enabling technologies in this paper. 

Interoperability for Medical Devices at the Point of Care: IEEE 11073 SDC 

The IEEE 11073 Service-oriented Device Connectivity (SDC) family of standards is an 

emerging technology designed for manufacturer-independent interoperability of medical 

devices in high acuity environments [11], [12]. Today, integrated ORs or ICUs are 

isolated solutions by single vendors, based on proprietary interfaces. Consequently, 

device data is locked away inside these systems and therefore unavailable to innovative 

medical systems that could supply advanced assistance and decision support at the 

point-of-care in highly dynamic situations.  

As illustrated in Figure 1, the Medical Devices Communication Profile for Web 

Services (MDPWS), published as ISO/IEEE 11073-20702, provides foundational 

interoperability, i.e. the ability of devices to exchange data. It is derived from the 

OASIS standard Devices Profile for Web Services (DPWS) [13] and defines extensions 

and restrictions with a focus on the characteristics of medical data and related safety 
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requirements. Whereas the extensions for dual channel transmission and the safety 

context primarily focus on safe remote control, the data streaming extension for 

waveforms such as ECG and EEG is also highly relevant for data access by AI-based 

systems. 

The Domain Information and Service Model (IEEE 11073-10207) defines how 

the devices describe themselves and their data in the network. Together with the usage 

of standardised nomenclature terms, this well-defined structure enables semantic 

interoperability, i.e. the correct perception and interpretation of exchanged data by 

human users as well as by machines. Semantically well-described medical device data 

in large quantities can thereby unfold its potential to bring AI and big data approaches 

to the next level of accuracy. 

In addition to the data and service model and the transport mechanism, there is a 

third standard (IEEE 11073-20701) that binds the services of the former to actual 

implementations of the interchange mechanism of the latter and thereby defines the full 

communication protocol. Furthermore, important references to other standards are 

specified therein, e.g. for time synchronisation, which is a very important factor in terms 

of data quality for AI and big data based applications. 
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Figure 1. Visualisation of IEEE 11073 SDC standard family and levels of established 

interoperability [11], [14], [15]. 

Interoperability for Device to Infrastructure Communication: HL7 FHIR 

Whereas the IEEE 11073 SDC family provides a comprehensive standard for the 

interconnection of medical devices, the connectivity to the clinical information system 

infrastructure is governed by another set of protocols. In the worst case, device data is 

locked out of this ecosystem by the aforementioned semantic gap between both worlds. 

Early efforts to overcome this resulted in proprietary outward communication of device 

data that only integrated with clinical information systems through custom interfaces. In 

response to these data silos, Integrating the Healthcare Enterprise (IHE) defined the 

Patient Care Device transaction PCD-01 that transforms device data into the Health 

Level Seven (HL7) Version 2 (V2) message format that dominates clinical IT systems’ 

message exchange to this day. Much of the data and its acquisition context, however, 

was lost in this transformation, ultimately limiting the usefulness of the data for the 

purpose of clinical research [16]. Version 3 (V3) of the HL7 standard overcame most of 

these problems through immense modelling depth, which came at the cost of high 
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implementation complexity. Consequently, it has hardly been adopted with the notable 

exception of its Clinical Document Architecture (CDA) [16]. Only the introduction of 

HL7’s latest modular instalment Fast Healthcare Interoperability Resources (FHIR) 

raises hopes and expectations of a data structure syntax for clinical IT infrastructure that 

is not only powerful and implementable but also enables secondary use, e.g. for clinical 

research. 

Whereas FHIR does not cover the same set of use cases as IEEE 11073 SDC, 

their development was mutually influenced. Therefore, mappings between these 

standards are far superior to, for example, the PCD-01 transaction in terms of data and 

context preservation. Most importantly, the semantic descriptions of the data are carried 

over. These are usually taken from internal or external coding systems that provide the 

necessary terms for machine-interpretability of the device data. This ‘mappability’ of 

SDC and FHIR thus has the potential to eliminate the semantic gap and make medical 

device data available as part of Clinical Repositories built on FHIR that integrate 

clinical data from various sources. 

Solution Outline 

In Figure 2Figure 1Fehler! Verweisquelle konnte nicht gefunden werden., we outline 

a reference model that addresses both the requirements of innovative AI-based research 

systems as well as the clinical reality. In the top left part (orange box), the medical 

device network, e.g. in the OR or ICU, is displayed using the new IEEE 11073 SDC 

standards for interconnection among each other. For the data transfer to the clinical 

information systems (bottom left part, green box), especially future Clinical Care 

Repositories, the usage of HL7 FHIR is proposed. This Clinical Care Repository also 

stores data from other information systems such as laboratory or radiology information 

systems. Provided there is an informed patient consent and de-identification of personal 
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data, the information can be duplicated into another FHIR-based Clinical Research 

Repository. This data can then be used for machine learning and other AI-based systems 

(right part of Figure 2, blue box). 

Machine learning frequently needs data that is not stored routinely during day by 

day clinical practice. Therefore, we introduce a second repository containing medical 

device data. This ‘Transient’ Research Repository contains data that will typically not 

be stored in Clinical Repositories, e.g. high-resolution technical parameters, and acts as 

a bypass allowing data that is usually discarded to be recorded for machine learning. 

There are established standards for clinical research data such as the ISO 14199 BRIDG 

Model [17], and favouring HL7 FHIR for this repository as well may slightly impede 

the computational performance, for instance, as streaming data needs to be flattened 

into arrays. However, it also facilitates direct linkage of the transient data to the 

recorded clinical data of the same case, even if stored on a different server (repository 

link in Figure 2). This data alignment feature requires only that the de-identification 

process preserves an anonymous case or operation identifier in both the clinical and 

transient data that does not enable linking to the patients’ personal information in the 

Clinical Care Repository. Furthermore, using FHIR for both research repositories 

preserves the semantic descriptions of all data elements and eases the machine learning 

systems’ data access through using the same protocol interface. Whereas not within the 

scope of this work, it is also conceivable to share the data in these research repositories 

between different institutions using FHIR, provided that issues such as data protection, 

informed consent, and data provenance can be solved. The IHE Profile Mobile Cross-

Enterprise Document Data Element Extraction (mXDE) [18], which is based on a 

federated concept, outlines a possible solution. 
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Data augmentation is a promising approach to cope with problems like low 

amounts of data, irrelevant features in the dataset, etc. For example, this technique is 

used in the field of (medical) image classification [19]. However, for data augmentation 

a suitable basic dataset is necessary. Thus, data augmentation is not able to solve the 

two basic problems that we identified above. Nevertheless, data augmentation could 

later on be used for further improvement of datasets collected in implementations of the 

reference architecture described in this paper. 

 

Figure 2. Conceptual overview: Medical device communication via IEEE 11073 SDC, 

Clinical Repositories based on HL7 FHIR, and AI-based research environment using 

the provided data. Abbreviations: AI – artificial intelligence; ML – machine learning. 

Future applications of AI in acuity medical environments 

The efforts towards a successful implementation of AI in patient treatment 

address two main long-term goals: an improvement of patient outcome and an increased 

efficiency. Whereas patient outcome is associated with increased effectiveness, reduced 
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invasiveness, and personalised treatment strategies, efficiency targets a reduction of 

cost, including time, material, as well as stress in the context of increasing health care 

expenses in aging societies. Methods of machine learning and artificial intelligence can 

improve current workflows in a broad set of applications. This comprises decision 

support [20], patient monitoring [21], context-aware device behaviour [22], as well as 

documentation and logistics. 

The integration of FHIR-based Clinical Repositories and SDC-based medical 

devices as data sources will foster applications for the intelligent operating room. Most 

of the context-aware surgical assistance systems yet published rely on an explicit, 

knowledge-based modelling of the surgical procedures [23], [24]. These models are 

often trained with recordings of real interventions, and the training may also consider 

case-specific factors provided by a clinical information system. The intraoperative 

application of such models requires a processing pipeline considering workflow 

recognition, classification of surgical situations, and an evaluation of the situation to 

derive intelligent systems’ behaviour. For instance, the appropriate video source for the 

primary surgical display may automatically be selected in endoscopic interventions 

based on the surgical workflow [22]. To that end, case-specific information, device 

data, tracking data, video streams, and sensors are interpreted, combined with 

knowledge about the surgeon’s needs, and mapped to actions of technical systems, e.g. 

the video switching unit. In every processing step, methods of AI and machine learning, 

such as Hidden Markov Models [25] and convolutional neural networks [26], can be 

applied [27]. However, the training sets are yet very limited, seldomly include device 

parameters, measurements, or patient-specific (diagnostics) data, and need to be 

manually annotated due to the missing semantic interoperability of data sources and 

repositories. The lack of such recordings limits the applicability of advanced AI 
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methods. To compensate the insufficient training data, domain knowledge is explicitly 

modelled using for instance ontologies [28] or rule-based approaches [29], which in turn 

tailors the resulting assistance system to a specific clinical use case. An end-to-end 

training of such AI pipelines cannot be realised with limited, centre-specific datasets. A 

survey on machine learning and AI-technologies in clinical settings and medical 

research can for instance be found in [30]. 

With large repositories, semantic annotations, and a high quality of data 

automatically acquired, sophisticated AI methods and models may be trained faster and 

for a broader set of applications. In the evolution of medical technology, systems may 

be able to continuously improve with the increasing amount of training data. Starting 

from a rather generic model, systems may adapt to new surgical approaches and novel 

technologies. In the long-run, semantic interoperability between Clinical and Transient 

Research Repositories will enable the correlation of preoperative information, device 

behaviour during treatment, and the patient outcome. Hence, patient treatment in high 

acuity medical environments can be analysed, predicted, and improved considering the 

complete workflow and a comprehensive set of influential factors. By means of that, the 

long-term goals of improved patient outcome and increased efficiency can be achieved 

on a large scale and across clinical applications. 

Conclusion  

Methods of artificial intelligence (AI) become increasingly important in the healthcare 

domain – in clinical research as well as in clinical care. However, interventional 

medicine and high acuity care are highly underrepresented. We analysed this situation 

and concluded that the lack of interoperability based on open standards is one of the 

major problems. To overcome the challenges of unavailability of data and missing 

semantic information, we urge clinics to use two emerging interoperability 
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technologies: The new IEEE 11073 Service-oriented Device Connectivity (SDC) series 

of standards for interconnection of medical devices among each other and HL7 Fast 

Healthcare Interoperability Resources (FHIR) for the connection to information systems 

and Clinical Repositories. Based on these open standards, we present a reference model 

that enables the usage of point-of-care medical device data for current AI-based 

approaches. In addition, we explain how this architecture can be built upon by future 

applications.  
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