
Integration Approach for Communications-based
Train Control Applications

in a High Assurance Security Architecture?

Thorsten Schulz , Frank Golatowski , and Dirk Timmermann

Institute of Applied Microelectronics and CE, University of Rostock, Germany
{thorsten.schulz,frank.golatowski,dirk.timmermann}@uni-rostock.de

Abstract. The secure integration of model-based, safety-critical appli-
cations implemented in the programming suite Ansys SCADE is ex-
plained with the help of a demonstrator. The interoperability between the
embedded devices of the demonstrator is achieved using the new TRDP
middleware. Remote connections are secured using the WireGuard se-
cure network channel. The demonstrator security concept addresses the
different life cycles of its heterogeneous components by adoption of the
robust MILS separation architecture. The goal of this open demonstrator
is to show how these essential technologies can be composed to a secure
safety-critical system.
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1 Introduction

From a systematic viewpoint, an application or device in a distributed system has
inputs, the application logic and outputs. For a physical system, the application
is hosted on hardware, typically abstracted from the application with a hard-
ware abstraction layer and an operating system. In an interoperable, networked
system, the inputs and outputs and their connection fabric are abstracted by
a middleware using a standardized network protocol. Networks can range from
dedicated, local connections to remote connections over untrusted networks. Un-
trusted access must be secured with adequate measures, defined by norms such
as IEC 62443 or Common Criteria. Depending on the requirements of the ap-
plication, certain levels of security assurance require different security measures.
Railway devices must be maintainable with regards to EN 50126. Even on a ded-
icated network, they must secure their maintenance access and update features.
The update/maintenance provider may not part a certified of the system.

This puzzle of heterogeneous technologies potentially induces three pitfalls:
different life cycles, mismatching interfaces, complex integration. In this paper,
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we describe our approach for an educational technology demonstrator that ad-
dresses these issues by applying the Multiple Independent Levels of Security
(MILS) architecture on a separation kernel [11][14].

A real-world device is based on technologies, e.g., network protocols and
hardware, with shorter life cycles compared to its core application logic. Differ-
ent levels of modularity and a separation architecture are required to achieve
a composed system certification. Such a separation architecture with different
levels of security and safety can sustain security patches or updates to compo-
nents without invalidating the safety certification of the application. This paper
describes the security architecture in the next chapter 2, showing its feasibility
with the help of a demonstrator in chapter 3.

In comparison to earlier approaches of our OpenETCS1 On-Board-Unit
(OBU) demonstrator [6], we have upgraded a basic middleware implementa-
tion with the new IEC 61375 standard based reference implementation of the
Train Real Time Data Protocol (TRDP) from the TCNopen consortium. The
adaptations and extensions to the TRDP Light library, we deemed necessary for
a smooth integration with the critical application’s interfaces, will be explained
in chapter 4. Within the MILS architecture, the demonstrator also applies a
novel, state of the art encryption mechanism with minimal additional overhead
for embedded systems. We have selected this data encryption tunnel for commu-
nication between, in terms of the use-case, ”non-local” devices. The motivation
will be discussed in chapter 5.

2 Security Architecture for Critical Systems

Railway applications are required to be reliable, available, maintainable and safe
(RAMS) according to accepted and governing standards, in Europe EN 50126.
The properties are a result of qualified processes and guided methods, requiring
specially trained engineers, operators and maintainers to minimize application
risks. The processes specifically require that access is limited to that qualified and
authorized group to assure the integrity of the processes and the system. Physical
access barriers, e.g., locked cabinets, typically have a constant ratio between cost
of securing and effort to bypass, largely due to the required physical attendance
of the intruder with the specific knowledge to that barrier.

The introduction of networked or remote access to critical systems as Cyber-
Physical Systems (CPS), in principle, has not changed this paradigm, but re-
moved the latter physical appearance of an intruder. This has introduced nega-
tive scaling effects making even well secured systems with only a small security
vulnerability cheap for large-scale attacks. The current mitigation trend in IT
systems is to automate and improve testing methods, and to shorten time to up-
date, i.e., patch vulnerabilities. In contrast, critical systems have stricter update
policies and typically run on non-standardized hardware. Consequently, testing

1 ETCS, European Train Control System. OpenETCS was a research project fostering
an open reference implementation.
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Fig. 1. Architecture of a base MILS system with a separation kernel, a safety ap-
plication and additional services. Components like the security protocol (green) and
the middleware must be instantiated separated to assure non-interference and correct
behaviour of the safety application.

requires more effort for a much smaller number of operative products. Modifying
a critical system’s software requires re-certification – even for security patches.

Current research is developing methodologies to reduce the fore-said re-
certification effort through dependable partitioning of a system, applying the
Multiple Independent Levels of Security (MILS) architecture (Fig. 1).

The demonstrator’s system design splits the system into a safe control com-
ponent, a communication middleware and an independent security component
with remote authorization, authentication and encryption. The safety function
within the control application is unaffected of corruptions within the transmis-
sion component, if it can continue operation in degraded mode without that
transmission data, e.g., safely issue an emergency command. The data flow be-
tween the components is guarded by the MILS separation kernel, see Fig. 1,
allowing only predefined data flows between the partitions, i.e., application do-
mains. This approach is also covered by IEC 62443 as conduits connecting zones
[9]. Depending on attack vectors, system and application design, the security rel-
evant transmission components could then also be of lower software confidence
level and classified with a low Software Safety Integrity Level (SSIL), being less
susceptible to re-certification requirements.

The separation kernel (SK) of a MILS system connects and controls the com-
ponents within its partitions. There are different kinds and implementations of
SK. For our demonstrator’s OBU we use Sysgo’s PikeOS. A different approach
following the same MILS architecture is implemented in Thales’ TAS platform
[7] building on a Linux KVM-hypervisor setup for security. The kernel security
development process follows different strategies to prove high assurance assump-
tions claiming interference-free execution of the composed system. Some rely on
rigorous testing, using different testing techniques such as systematic and ro-
bustness testing (fuzz-testing), others rely on formal methods and a mixture of
these techniques [12].
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Fig. 2. Demonstrator concept view. On the left, the trackside control device has a
GUI and is connected to the demonstrator model. On the right are the On-Board
components, which are instantiated for each train.

An additional security measure that is applied within the demonstrator de-
sign is a cryptography data tunnel. This component can ensure the CIA prop-
erties of confidentiality, integrity and authenticity of external data access via
untrusted networks (i.e., IEC 62443 cat. 3). Most state-of-the-art encryption pro-
tocols provide these properties. However, they strongly differ in algorithmic and
integration complexity. Some technology choices are less desirable for carrying
process data of safety-critical systems. We will discuss our choice in chapter 5.

In the next chapter, we will introduce the system structure of the demon-
strator and its applications. The safety-critical application has a longer life cycle
compared to a network-connected middleware or encryption tunnel. These need
to be able receive regular security patches, which is supported by the MILS
architecture. Therefore, we also separate the middleware described in chapter 4.

3 Demonstrator Overview

The demonstrator show in Fig. 2 has three parts: The trackside control applica-
tion, termed ”interlocking”. Then, for each train, the on-board components and
last, but not least, the physical demonstrator with model-trains. Larger parts of
the on-board application logic (see dark-red boxes in Fig. 2) are implemented
using the programming language Scade for safety-critical systems. Scade is an
extension of Lustre, a synchronous dataflow programming language for reac-
tive systems. It is graphically defined in the ANSYS SCADE Suite modeller.
A code generator creates C code for compilation into executable binaries. The
advantages of Scade are proofs towards causality errors, graphical verification,



immanent bounds checking and well defined behaviour. There exist other vi-
able environments for critical implementations. However, the project decision
for Scade was based on the existing OpenETCS models.

The demonstrator use-case is a simplified distributed Communications-based
Train Control (CBTC) application: It consists of an interlocking, movement
authorization, movement supervision (OpenETCS), a driver-machine interface
(OpenETCS) and a train control with movement simulation or emulation on the
model railway. While the implemented approach is applying state-of-art technol-
ogy with real-world performance requirements, it is nevertheless, a technology
showcase with an uncommon use-case – the distributed calculation of the train’s
movement authorization. Nonetheless, the goal is to integrate practical compo-
nents in a MILS system for evaluation and education.

The dataflow is found in Fig. 2. The interlocking GUI application controls
the physical switches of the demonstrator model and communicates the current
track segments to all train instances. It also receives and broadcasts all train
positions. The ”On-Board” devices are instantiated for each train, for both,
simulated or connected to a physical model train. The devices are a train control
instance, an ETCS Driver HMI (DMI) and the ETCS On-Board-Unit (OBU).
All these on-board applications are implemented as a Scade model. However,
for simplification of the demonstrator, the OBU application uses a subset of the
OpenETCS OBU with only the core module for Speed and Distance Monitoring
(SDM, [15]). The SDM reads a movement authorization, which is the reserved
track up to the next stopping point, and a track segment list with speed limits,
ascent-profile and special prohibitions. With this data, the SDM calculates safe
speed limits that need to be obeyed at upcoming locations. This data is sent
back to the interlocking GUI. The GUI captured Fig. 3 visualizes the ETCS
data for the demonstrator. If the derived deceleration curves are crossed, they
trigger brake commands, which are sent as intervention commands to the train
control. In a real ETCS application the movement authorization and the track
information is received from track data elements (balises), as well as the radio
block centre (RBC) via a mobile communication channel. In our demonstrator,
each train receives only the track map with the current switch settings and the
locations of all trains (Fig. 2). The on-board application generates the necessary
data: the safe movement authorization and the track atlas, for a safe movement
of the train on the demonstrator.

The following sections focus on the integration of the SDM + movement
authorization application together with the networking components within a
MILS system.

4 Lightweight Middleware

A middleware is required to connect the interfaces of separate applications. The
most basic communication channels exist on the same hardware as Inter-Process-
Communication (IPC) techniques like message queues and shared memories with
signalling. However, basic IPC are not regarded as middleware, as they are pro-



Fig. 3. GUI output of the interlocking application. It also displays the brake inter-
vention locations received from each train. Here, due to the speed limitation imposed
by the upcoming switch, ETCS brake-target operation is activated, showing warning
(org.) and intervention (red).

vided and governed by the operating system kernel. Strictly defined IPC are also
one of the key features of the MILS system architecture, which will be discussed
in the following chapter. Middleware typically abstracts application’s interfaces
in a standardized way, independent of the underlying operating system or hard-
ware architecture to enable interoperability. For example, in the demonstrator
setup (Fig. 2), the OpenETCS component Speed and Distance Monitoring passes
a uniform data structure to the DMI, which is connected via Ethernet. The first
approach copied the output of one into a UDP packet and sourced it to the
ScadeDisplay DMI application on the other side. This worked, as long as both
ran the same hardware, same OS, same compiler, etc. When we changed one de-
vice a from 32 to a 64 bit CPU architecture, the memory addresses of the fields
within the data structure changed due to specific memory alignments. This is
a typical issue addressed by middleware referred to as ”marshalling”. We will
return to this later in this section.

Middleware nowadays are based on web services, XML, SOAP and other
service-oriented architectures. These are often not targeted for real-time appli-
cations on embedded, resource-constrained systems. More fitting alternatives for
machine-to-machine communications in industrial automation (IIoT) are CoAP,
MQTT, DDS and OPC UA. Despite its tremendous success in factory process
automation, OPC UA has lately been criticized for its standard’s complexity
leading to non-interoperable implementations. Beyond these open protocols,
there are also many proprietary industrial Ethernet technologies, like ProfiNET,
EtherCAT, SERCOS III, TTEthernet, which can provide safe data transmission
up to SIL 3, but this is out of scope of this demonstrator.

The railway industry has recently standardized a network protocol tailored
towards efficient on-board process communication, the Train Real Time Data
Protocol (TRDP, IEC 61375-2-3 [1]). It is intended to replace vendor proprietary
solutions based on legacy buses or numerous incompatible custom solutions. It
implements pull requests and cyclic push messages, as well as filtering based on
a publish-subscribe scheme. The accompanying TCN standards (Train Commu-
nication Network) also define discovery, topology and direction based services.
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Fig. 4. Overview of the combined technologies in the OBU device of the demonstrator.
All SW components are separated into partitions (see Fig. 1). The configuration for
each component, the scheduling setup and the regulated information flow is sourced
from a coordinated config pool.

The payloads are predefined, immutable binary data structures. This makes it a
perfect fit interfacing with the Scade applications, which, in the generated code,
provide bare C-structures.

For the demonstrator, we used the open TRDP Light from the TCNopen
consortium. It provides a reference implementation of the core functionality of
TRDP. The Light implementation also provides the XML configuration func-
tionality ([1] Annex C), for memory, process and message (”telegram”) config-
uration for TRDP. Typically, TRDP functions are linked from a library to the
application code. However, following the MILS separation approach we integrate
TRDP as a generic component in our demonstrator. It obtains its specializing
configuration from the embedded operating system’s (here PikeOS) central data
provider, see Fig. 4.

For transferring the inputs and outputs of the Scade application component
with the TRDP component, we use a small shared-memory area. To ensure
synchronicity between the Scade application’s interface and TRDP’s related
telegram definition, we implemented a small ”type bridge” tool that converts
between the data model descriptions. Coming back to the motivation of this
chapter, TRDP Light also provides dataset marshalling based on the provided
XML configuration. Different memory alignments and architecture endianness
(big endian vs. little endian) are taken care of. The IEC 61375 standard defines
16 basic types, considering character, integer, float and time types with different
bit-widths and, for integers, signedness. These data types can be combined to
custom dataset structures making up a telegram.

However, we could not use the stock marshalling function and had to im-
plement a refined version. This is due to the OpenETCS applications being
implemented in a former version of Scade (6.4) that is limited to a single integer
flow type, e.g., int32 or int64. Our modified marshalling function can be config-
ured to take these type mappings into account, i.e., inflate an incoming int8 to
the Scade-defined type and vice-versa. This approach maybe also required for
other specialized programming environments.



To transport safety-critical SIL-2 process payloads, the Safe Data Trans-
mission extension ([1] Annex B) has to be used. The application-to-application
safety channel needs implementation of the safety code (checksum) calculation
in the same safety context as the application, hence in Scade. This is, however,
still work in progress. Security assurance is achieved by having TRDP as a sep-
arate component as discussed. The MILS approach simplifies security patching
in case of a discovered weakness in the network protocol.

5 Secure Data Encryption Tunnel

Network traffic encryption for security can be applied on different layers of the
common ISO-OSI (Open Systems Interconnection model). The tunnelled traffic
of security protocols ranges from data link layer (2) up to the application layer
(7). When the data link layer, such as Ethernet, can be abstracted, as well as
application specific higher schemes are out of scope, OSI layer 3 layer encryption
(L3-VPN) is the most versatile choice to be used as a component. The section will
thus look at the choice of the Transport Layer Security protocol (TLS) as used
in OpenVPN, as well as the WireGuard protocol, a VPN implementation using
one specific configuration of the Noise protocol. Since IPsec is of even greater
complexity than TLS, according to evaluation by Schneier and Ferguson [5],
we do not consider it here. However, partner projects dealing with Distributed
MILS (D-MILS) approaches have well analysed this technology for deterministic
networking, see their results in [8]. Algorithms used within L3-VPNs are also
known from tunnel specific higher-level application protocols. For example, TLS
is used to turn the Hypertext Transport Protocol (HTTP) into its secured version
HTTPS and the Noise protocol is used by the widespread WhatsApp messaging
service.

TLS itself is standardized and can tunnel payload and higher level protocols
in many ways. For this reason, we will only refer to TLS in general in the
following paragraphs. In comparison, ”Noise” rather is a protocol framework
that describes a protocol and requires a specific application implementation to
exist. Therefore, we will refer to WireGuard implementing exactly one crypto
algorithm and one protocol scheme.

For cryptography algorithms and security protocols, it is generally advisable
to stick to proven solutions ([16]). Even small weaknesses turn the whole imple-
mentation vulnerable. For this reason, TLS has been widely adopted. However,
a matured solution like TLS that has received continuous updates and adoptions
to many applications, also grows in complexity and becomes more susceptible
to implementation flaws, for example the infamous Heartbleed Bug published
in 2014. The implementation of TLS is accompanied by over 20 extensional
internet standards (RFC). E.g., the informational RFC 7457 exists alone to list
known vulnerabilities and weaknesses to TLS implementations. Common sources
of weaknesses in TLS are protocol downgrades to a broken cryptographic algo-
rithm, buffer overruns of message parser, weak implementations of algorithms
and dubious interpretation of certificates [17].
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Some of those weaknesses of TLS are addressed in the latest version 1.3 [10],
which is now a proposed standard, RFC 8446. Major changes listed in the RFC:

– Legacy encryption algorithms were removed.
– Only Authenticated Encryption with Associated Data (AEAD) alg.
– Static RSA and Diffie-Hellman (DH) suites were removed for ephemeral var.
– Key-exchange suites provide Perfect Forward Secrecy.
– The handshake state machine has been significantly restructured to be more

consistent and to remove superfluous messages.
– Elliptic curve algorithms move to base specification; signature algorithms

Ed25519 and Ed448 were added. Point format negotiation was removed.

As a result, current TLS Compliance Requirements (see section 9 of the RFC
[10]) can be considered smaller than previous versions. The subsection 9.1 of the
RFC lists one mandatory and two optional to implement cipher suites for AEAD
and two Diffie-Hellman key exchanges. Which cipher suite is used for the applica-
tion data, is negotiated in the handshake process. The TLS handshake messages
have optional and mandatory extensions, e.g., the ”KeyShare”, the certificate,
etc. As a result, the handshake messages are of variable length and of varying
complexity, which has led to vulnerabilities and implementation mismatches in
the past [17].

The WireGuard protocol [2] on the other hand, uses a much more simpli-
fied approach. Only one cipher suite is specified and certificates are not part of
the protocol. The control-flow in Fig. 5 has an untangled structure. Peer selec-
tion and verification is solely based on public keys. A more or less sophisticated
Public-Key-Infrastructure (PKI) may be implemented separately, but only if the
overall application requires this. Like in TLS 1.3, two message types are sent in
the handshake: the initiation and the response. A third message type can be sent
by the responder instead of a response msg., with low computational effort, if



the replying responder is unable to serve the costly Diffie-Hellman key calcula-
tion. This may be due to exhausting the real-time scheduling budget, when the
component is under heavy load (e.g., in an adversary attack), avoiding denial of
service complications. The fourth message type transports the application data.
All four message types have a fixed length and a fixed structure. Hence, the
parser is immune against length and buffer-overrun vulnerabilities.

Recently in 2018, the authors of WireGuard have published their results of
the formal security verification of the protocol in [3]. The verification efforts
are based on the tool Tamarin, and assert the security properties of the mod-
elled protocol according to key agreement, key secrecy, session uniqueness and
identity hiding. Beyond these properties, due to numerous static data structures
and avoidance of dynamic memory allocations, the main C implementation of
WireGuard claims low risk of unsafe behaviour and was recently accepted as a
mainline Linux kernel driver module. The Linux implementation uses formally
verified implementations of the X25519 algorithm published in [18] and [4], ap-
plying formal methods of F* and Coq.

As an alternative for use in safety-critical systems, we have also approached
implementing the WireGuard protocol as a Scade model based on previous
work in [13]. While the implementation reached proof-of-feasibility status for
the demonstrator within the OBU component, it is still work in progress. We
can conclude that the straightforward protocol state-machine and clear algo-
rithmic choices of WireGuard make such an implementation feasible with hard
real-time requirements. On the other hand, it must still be analysed whether a
special implementation in Scade is necessary or, if the mainline implementation
together with the anyway necessary security measures supported by the MILS
architecture provide enough assurance. The MILS separation architecture does
ensure non-interfering separation in terms of CPU time and memory space, for
each component independent of its assurance level.

6 Conclusion

In the previous chapters, we argued our choice of components and the ap-
plied system architecture to build a secure demonstrator composed of network-
connected devices hosting model-based safety-critical applications.

When used together with TRDP as a middleware, the Scade-generated code
does not require much boilerplate code, other than memory initialization and
cycle timing. TRDP needs only minor adaptations in terms of a modified Scade-
type dataset marshalling function and operating system layer modification.
PikeOS is not directly supported in TRDP Light, but via the POSIX adap-
tation layer. After modification, sourcing the TRDP-XML configuration from
the PikeOS rom-image property file system (pfs) unifies overall configuration
and removes the need for a full-blown file system. The WireGuard component
was also adapted to source the configuration for peer-public-keys and endpoint
addresses from the pfs. Building these components on the base of the MILS sep-
aration architecture ensures security assurance for different software integrity-



Fig. 6. The physical demonstrator component. Shown are the modified model trains
with the Bluetooth-LE (red PCB) back-channel to notify balise detection for odometry.
The IRDA balises are seen in the foreground tracks between the white ribbon-cables
connected to the IR-PCB.

and assurance levels throughout the whole life cycle accommodating security
updates for individual components.

Ongoing work in the certMILS project will guide the discussed MILS sys-
tem architecture towards an accomplished certification methodology for secure
safety-critical products. This will be demonstrated on real-world pilots, such as a
power-grid control unit, a platform approach for SIL-4 railway applications and
a demonstrator for the Prague subway system. Our educational railway demon-
strator (Fig. 6) will also benefit from those pilot projects, applying developed
testing techniques, improving integration tooling and fixing bugs that still need
special procedures. In the short term, we also like to integrate the TRDP-SDT
extension with Scade models, as well as evaluate the performance of our formal-
ized WireGuard implementation and find an answer whether it is beneficial for
secure data transport in safety-critical applications. A vital part of this ongo-
ing work is to discuss the current real-time performance of the demonstrator on
competitive, i.e., related industrial hardware.
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