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Abstract
Embedded always-on gesture recognition systems demand for a specific trade-off in terms 
of computational load, memory footprint, and accuracy. Hence, special care has to be taken 
in choosing the right recognition algorithms. But even with a suitable recognition algorithm, 
gesture development is still a manual, labor-intensive, and error-prone task, deteriorating 
the overall design quality. In this paper, we propose a framework for automated prototyping 
of embedded gesture recognition systems for mobile and wearable devices using inertial 
sensors. First results show the viability and scalability of the approach, which might serve 
as a basis of future automatic design of sensor-based embedded gesture recognition 
systems.

1 Introduction
Wearable devices are a well suited platform for gesture interaction, allowing users to control 
their digital neighbourhood with a shake of the arm or a nod of the head. Inertial sensors 
can capture these movements and poses; their data can be used to recognize gestures. 
Gesture recognition is a well established research area and has seen various real-life 
applications. As a specialization of pattern recognition, its goal is to identify certain gestures 
in available input signals, e.g. inertial sensor data. Looking only at dynamic gestures (as 
opposed to static gestures, i.e. poses), most proposed systems use probabilistic algorithms 
to first learn and then recognize gestures [7]. These algorithms provide a large amount of 
flexibility: implementing new gestures often requires only appropriate recordings of the new 
gestures and some extra computation time for training. 
Developing gesture recognition systems for wearable and mobile computers however does 
require a different trade-off: as the algorithms have to perform always-on gesture 
recognition, they will need to run on specialized hardware, like co-processors or sensor hubs 
[11]. Thus, they have to meet memory, performance, and power constraints. Flexibility 
becomes a minor issue. As a consequence, the gestures are not user programmable but 
pre-loaded by device vendors. On the other hand, specialized hardware requires specialized 
implementation. Developing these specialized implementations is time-consuming and error 
prone - even more so, when the next generation of a device is equipped with different 
specialized hardware and the implementation has to be revised. This adaptability of gesture 
designs to new platforms is especially important for mobile devices. 
Inertial sensors are commonly used in mobile devices for always-on gesture recognition. 
They allow fast and convenient control of a smartwatch display, music playback, and many 
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other functions. These sensors can provide information on movement, orientation and pose 
while, unlike camera-based solutions, being mostly environment-independent. 
Development for these mobile devices is known for a short time to market and rapidly 
changing physical attributes between device generations. These physical attributes however 
have a large impact on the way gestures can be performed: weight and screen size affect
the speed and amplitude of gestures; the physical location of the sensor in the mobile device 
decides whether a rotation around the device center is measured as just a rotation or as a 
rotation and a linear acceleration. Thus, gesture recognition software development (short: 
gesture development) needs rapid development and adaptation cycles. Today no automatic 
development approach for always-on gesture recognition on sensor hubs in mobile devices 
is available.

Our goal is to automate the development of gesture recognition software for mobile devices. 
In this paper, we present an automated approach that allows user-centered development. 
The gesture developer is enabled to develop gestures without detailed knowledge of either 
recognition algorithms or target platform. Using our approach, the gesture idea can be 
developed into a gesture recognition algorithm automatically, providing a prototypical 
implementation. This implementation can then be tested and incrementally refined. The 
result of this workflow is a gesture prototype that the developer can use for preliminary user 
acceptance tests, as a start point for a more complex implementation or even as a 
benchmark for the final gesture recognition system. Central to this idea is an adaptable 
gesture recognition algorithm and a target platform agnostic gesture description, which we 
present in the form of the Gesture Description Language (GDL).

2 Related Work
Like the gesture recognition algorithm proposed in this paper, there have been other 
systems that utilize Finite State Machines (FSM) to recognize hand gestures. In [12] and [9],
the dominant 2D hand motion direction is extracted from a video sequence and used to 
recognize dynamic hand gestures using simple FSM. The speed, with which gestures are 
performed, is not considered here, only the sequence of movement is relevant to the 
recognition result. Our approach not only considers specified timings for gestures, but also 
includes developer knowledge of the gesture in the recognition algorithm.

In [5], 3D gestures performed above a 3D position tracker are recognized similarly to [12],
but here Regular Expressions (regex) are used to define and describe gestures. These 
gesture descriptions however lack timing information, which is necessary to exclude 
possible too-fast or too-slow false positive recognition results. Our approach addresses this 
problem. Furthermore, we mitigate a problem apparent in the paper: superpositioned 
movement like moving up and left at the same time is only recognized as up-left, but not as 
up and left. Given the imprecise way in which humans perform gestures, this reduces 
recognition accuracy, especially for more than two-dimensional data.

Touchscreen gestures are also in the focus of [6], where these 2D movements are described 
in regex. A graphical user interface is described to easily design gestures without the need 
to write regexes themselves. The recognition of the gestures is done using Non-deterministic 
Finite Automata (NFA), which allows static analysis used to intersect regexes of different 
gestures and reduce computational effort when recognizing several gestures. This approach 
to gesture design and implementation is broadly similar to our proposed system. However, 
as the use of inertial sensors yields a much higher data complexity, the amount of gesture 
knowledge required from the gesture developer is also larger. Supporting gesture 
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developers to manage this complexity is a challenge not addressed in [6], which is central 
to our approach.

Another approach to describe gestures in a formal and automatically evaluatable 
representation is proposed in [10]. Here, 'functional' FSMs are introduced that are modeled 
in a functional programming language. Furthermore, the parameters with which raw sensor 
signals are transformed to the input of the functional FSMs are optimized using cultural 
algorithms. While this approach is the first one to acknowledge the need for a gesture 
description language, the implementation is not an intermediate language but executable 
code. This increases developer effort and slows down prototyping. Also, the naturally sloppy 
execution of gestures in real life applications is not addressed in [10], while we offer several 
techniques to include variations in performance at gesture design time.

Our proposed GDL shares many similarities with property languages from the domain of 
verification. In model checking approaches temporal logics are often used to specify 
functional properties. Temporal logics extend propositional logics by means of temporal (and 
sometimes modal) operators. Properties specified in temporal logics can be transformed 
into monitors, which check at runtime (or during simulation) if the system under verification 
obeys to the given property. Among others, PSL (Property Specification Language [4]) is 
one of the prominent representatives of languages used in systems verification. Our 
proposed GDL is a subset of PSL, which has been adopted to the domain of gesture 
recognition. As a consequence, our rapid prototyping approach shares some similarities with 
the automatic generation of monitors from PSL descriptions. But again, our approach is 
adopted to the domain of signal processing and gesture recognition, thus a reduction of 
language features in order to streamline language use is reasonable.  

3 Gesture Development Kit
As a tool for gesture development and rapid prototyping, we introduce the Gesture 
Development Kit (GDK). It aims to support development of inertial sensor-based gestures 
for resource constraint devices, like smartphones, wearables and Internet-of-things devices. 
The GDK is a modular framework, which supports the gesture developer with visualization 
and testing tools and enables a development flow using a domain specific language for 
automated generation of prototypical implementation of recognition software. In this paper,
we present the domain specific language and the code generation method derived from it.
3.1 Motivating example
Before we define the GDL more formally, we will use an example of a specific gesture to 
motivate the proposed structure of the GDL. While not applicable to all scenarios, many 
gestures can be described as a linear sequence of movements and poses. The Glance
gesture for example is a smartphone gesture that activates the display and shows 

Fig. 1: Phases of a simple Glance-gesture
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notifications. It can be implemented as a sequence of non-movement (e.g. laying on a table), 
some short but significant movement (e.g. shaking the phone) and then non-movement 
again. This gesture is illustrated in Figure 1.The remainder of this paper uses this simple 
gesture as an example. It is defined using the proposed GDL in Section 3.3.

3.2 Gesture Description Language
The GDL formalizes a gesture description (like the informal one presented in Section 3.1). 
It is an easily understandable representation of multi-phase gestures and includes both the 
signal characteristics used to identify each phase and the timing of the gesture. Goal of the 
GDL is the transformation of the gesture developer’s idea of the gesture to a format that is 
non-ambiguous and allows code generation for real platforms like mobile devices.
The GDL consists of several aspects, which are used to fully describe gestures. There are 
three major aspects involved: What happens? For how long? And: In what order? To 
describe these three aspects, the gesture is divided into subsequent phases that can be 
identified through signal characteristics. These phases are henceforth called GestureAtoms.
They are specified with timing and signal characteristics.

3.2.1 A more formal definition of the GDL
To describe natural movement, the GDL was designed to describe both timings and signal 
characteristics. The GDL GestureExpression is defined as shown in Figure 2. 

Line 1 defines the Sample as a basic signal information like sensor samples or derived signal 
information.  DerivedSignal refers to data derived from sensor data, e.g. filtered or fusioned 
data. A SensorSample in this definition is a single datum that is part of the current sensor 
data. Both DerivedSignal and SensorSample are terminal symbols in this definition to ensure 
readability. In line 2 the SampleExpression is defined: A SampleExpression is a predicate 
over one or two samples. It uses a relational operator to compare a Sample to a known
Value or another Sample. It can evaluate to true or false. Value is another terminal symbol
defined as a real value. Furthermore, line 4 defines the Symbol: A Symbol is a predicate 
over SampleExpressions. It can evaluate to true or false. A GestureAtom as defined in line 
5 is a constrained repetition of a Symbol. The parameters of the repetition (minTime and 
maxTime) are terminal symbols in this definition. They specify the timing of a gesture and 
are integers. Finally, line 6 defines the GestureExpression is an ordered sequence of 
GestureAtoms.

The GDL is then a text based representation of a GestureExpression. As such, it needs to 
contain all above mentioned information on a gesture. In the GDL, the GestureExpression
as well as the gesture atoms are formulated as a Regular Expression, while the Symbols
are defined explicitly. Similar to the use of cultural algorithms in [10], the threshold 
parameters both in Symbol- and GestureAtom-generation are obvious targets for later 
optimization.

1  Sample = SensorSample | DerivedSignal; 
2  SampleExpression = Sample, RelOp, Value | Sample, RelOp, Sample; 
3  RelOp = "<" | ">" | "=" | "<=" | ">=" | "/="; 
4  Symbol = SampleExpression | Symbol, "||", Symbol | Symbol, "&&", Symbol; 
5  GestureAtom = Symbol | GestureAtom, "{", minTime, ",", maxTime, "}" | 

GestureAtom, "{",minTime, ",", "}" | GestureAtom, "{", ",", maxTime, "}"; 
6  GestureExpression = GestureAtom | GestureExpression, GestureExpression; 

Fig. 2: GDL GestureExpression expressed in Extended Backus-Naur-Form (EBNF)
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Relation to PSL: The Property Specification Language formally describes electronic system 
behaviour and is widely used for specification and verification. The language consists of four 
layers: Boolean, Temporal, Verification and Modeling Layer. In this paper, we will only look 
at the first two layers: The Boolean and temporal layers can be used to specify behaviour 
as properties, which can then be evaluated during simulation. The Boolean layer is used to 
evaluate conditions in a single evaluation cycle. The temporal layer models temporal 
behaviour, using either Linear Temporal Logic (LTL) or Sequential Extended Regular 
Expressions (SEREs). These temporal expressions are evaluated over a series of 
consecutive evaluation cycles.

The Boolean layer of PSL can be compared to the Symbol definitions in the GDL: both break 
down conditions on the system state at a single point in time to a Boolean value. The 
temporal layer of PSL works on independently evaluated terms of the Boolean layer, much 
like the the regular expression of GDL uses the symbol vector as an input. It could even be 
said that the regular expressions in GDL are just a more compact nomenclature of SEREs. 
Each gesture can be interpreted as a property of a sensing device with the fulfillment of the 
property constituting a recognized gesture. 

In the proposed system, only linear, i.e. unbranched regular expressions are currently 
supported. Furthermore, the definition of gestures through the negation of a described 
gesture (e.g. a gesture defined as everything but the "Glance" gesture) is not allowed, 
reducing the feature set of the GDL to that of PSL-FL-. However, this approach of modeling 
behaviour similar to counterexample-guided abstraction refinement [1] might be beneficial 
for gesture recognition applications. Future work on GDL will explore this approach. The 
automated generation of gesture recognition software from GDL descriptions can be 
compared to the automated generation of monitors from PSL [3]. Instead of the tableau 
technique [13] for the generation of an NFA, we use a regex transformation based the 
separation of symbol order and repetition, as described in Section 3.3.
3.3 Recognition Algorithm
With the GDL the developer provides a non-ambiguous definition of the gesture as a 
sequence of specified movements with a fixed timing.

The task of gesture recognition can then be interpreted as a pattern matching between a
series of symbols and a GestureExpression, which describes the order and number of 
repetitions of the same Symbols. The GestureExpression is the central part of the Gesture 
Description Language (GDL) that is used in the GDK. The GestureExpression itself is 
realized as a Regular Expression (regex) with a reduced set of operations. The GDL also 
contains the definitions of all Symbols. 
Our example gesture would thus be described in GDL as:

assuming a sampling rate of 50 Hz, the acceleration unit being g and lp(x) being a function 
that implements a low-pass filter.
Regex matching can be done in several ways: Firstly, the regex can be translated into a 
deterministic finite automaton (DFA). This automaton has states for each and every possible 
(and relevant) input sequence and is ever only in one of these states. This approach 
computes very fast, as it only evaluates a single state at a time, but consumes a lot of 
memory for long sequences. Secondly, backtracking can be employed for regex matching 

1  sym a = (lp(x)<(0.1)) & (lp(y)<(0.1)) & (lp(z)>(0.9))& (lp(z)<(1.1)) 
2  sym b = lp(sqrt((x’-x)^2 + (y’-y)^2 + (z’-z)^2)) 
3  regex = a{25,}b{25,50}a{25} , 
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[2]. This approach consumes less 
memory but due to its depth-first 
search can lead to high worst-case
execution times. Another approach to 
regex matching is the use of non-
deterministic finite automata (NFA) [8].
A NFA translated from a regex is 
typically smaller than an equivalent 
DFA but has a less predictable (and 
most likely higher) runtime due to 
concurrent active states. While still 
being fast and memory-efficient, it 
does not allow for advanced regex 
features like backreferences.
For the implementation of the regex 
matching system on embedded 
systems, we chose an NFA approach 
based on an implementation provided 
in [2], but found that the restriction of 
symbol repetition as a method of time 
measurement leads to large automata 
(as do DFAs). While being a good 
human-readable representation of a 
gesture, the regex from a GDL is thus 
unsuitable for NFA generation. We addressed this problem in our GDL processing as 
depicted in Figure 3: we removed the timing from the regex and included it in the evaluation 
function. The regex is transformed to a regex without limited repetition, allowing constructed 
NFAs to be quite small again.
The Symbols c and C are introduced to express that while they use the same Symbol, the 
first and the second phase of non-movement are distinct in their role in the gesture. The 
additional Symbols can be understood better when looking at the evaluation function 
presented in Figure 3. This function evaluates both the SampleExpressions as well as their 
timing using simple counters (this will evaluate the GestureAtoms), yielding a vector of 
Boolean values called the symbol vector. In order to enforce the progression from the state 
associated with the Symbol to the state associated with the corresponding GestureAtom,
the GestureAtom deactivates its Symbol. This is possible since the GestureAtom already 
implies the occurrence of the appropriate movement. The results of these GestureAtoms as 
well as the results of the Symbols are encoded in the symbol vector. This vector describes 
which specified movements occur at each sampling time point and whether they are within 
their specified timing parameters. 
The input symbol for the regex matching is the symbol vector. However, the matching does 
not check for identity between input symbol and literal but whether the bit in the vector 
corresponding to the literal is true. This allows movements, that do not exclude each other 
(e.g. moving along the x-axis and moving along the y-axis) to be recognized at the same 
time. The concurrently active states coupled with the concurrent movements allowed by the 
symbol vector enables a highly flexible and variation tolerant pattern matching algorithm. 

4 Evaluation
In order to provide a first assessment of our proposed GDK, we compare recognition 
software, which has been automatically generated from GDL descriptions, to equivalent 

GDL
sym a = 

(lp(x)<(0.1))&(lp(y)<(0.1))& \
(lp(z)>(0.9))& (lp(z)<(1.1))

sym b = lp(sqrt((x’-x)^2+(y’-y)^2 +(z’-z)^2))
regex = a{25,}b{25,50}a{25}

Eva lua t ion  funct ion
if( (lp(acc_x) < 0.1)& \

(lp(acc_y) < 0.1)& \
(lp(acc_z) > 0.9)& \
(lp(acc_z) < 1.1))

{
a = true;
counter_a++;

}
else 
{

counter_a = 0;
}
if(counter_a > 25)
{

A = true;
a = false;

}
[...]

In t e rm e dia t e  re ge x
regex‘= a*A+b*B+c*C

N FA

# a A
a A

A

Gesture!

a

bBc

C

B

bBc

C

Fig. 3: Processing of the GDL
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manual C implementations that recognize the same gesture. We use the Glance gesture 
from before as well as a Pickup gesture, in which the sensing device is picked up and held 
at a 45° angle. The manual implementations are optimized for the smallest sensor hubs and 
use a deterministic FSM with a similar counting mechanism for time measurement. In 
addition, two new GDL gestures are introduced to illustrate the scalability of gesture 
descriptions and their generated implementations. Glance 2x and Glance 4x use the 
regexes and

,
respectively. Thus, the Glance gesture is extended by additional movement → non-
movement phases. Table I shows the length of the different implementations and 
representations. The manual implementation uses a DFA and similar symbols and timings 
as the GDL. The GDL consists in both cases of one line for the gesture expression, two lines 
of symbol declaration and one line to specify the sampling rate. Both implementations 
describe the used automaton as a series of if-statements, in which the appropriate states 
for the iteration are activated or deactivated. It can be seen that the GDL descriptions are 
dramatically shorter in terms of Lines Of Code (LOC), as is the purpose of a high-level 
description language. We argue that this reduction of text, as well as the clearer distinction 
between gesture progression and the definition of partial movements (i.e. symbols) improves 
readability and thus development speed. Furthermore, it allows persons unfamiliar with the 
C programming language to develop gestures for embedded systems. This benefit can be 
maintained when switching hardware or software architectures if one C programmer adapts 
the fixed part of the implementation to the new architecture. We argue that the GDL is 
tailored to the task of gesture description in a way that uses the length reduction to improve 
understanding.
All four gesture recognition programs were briefly tested on a sensor hub and showed 
similarly good, but not perfect accuracy. As a second comparison, we compared the 
compiled code and data memory footprint of the manual and generated implementations for 
a PC architecture for reproducibility. The results shown in Table I were produced using gcc 
8.1.1 for x86_64 and size optimization, i.e. “-Os”. Both implementations use only functions 
of the standard C library that can typically be found on sensor hubs, namely in math.h and 
stdint.h. Neither implementation uses dynamic data memory allocation.
The results show that the generated implementations produce significantly larger programs 
than the manual implementations, both in terms of code and data memory footprint. 
However, they are still within the same ballpark - proving that this approach can produce 
prototype software for small sensor hubs, but through automation at a much lower 
development effort. The measured memory footprints further show a  trend for scalability.
The seven states of the original Glance become 11 and 19 states for Glance 2x and Glance 
4x, respectively. As the rest of the implementations of the three Glance variants are identical, 
we can assume the difference in memory footprint between Glance 2x and Glance 4x to be 

LOC LOC Generated Code .text size [B] .[ro]data size [B]
Glance (Manual) 127 - 408 18
Pickup (Manual) 143 - 616 18
Glance (GDL) 4 129 801 44
Pickup (GDL) 4 134 743 32
Glance 2x (GDL) 4 187 1016 44
Glance 4x (GDL) 4 301 1473 44

Table I: Lines of code and memory footprint for equivalent gestures in different 
implementations. .text refers to the code memory footprint, .[ro]data refers to the sum of 
.data and .rodata and thus to the total static data memory footprint
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twice the difference between the regular Glance and Glance 2x. As can be seen in Table I,
the assumption holds at least for this example. 

5 Conclusion
In this paper, we propose a framework for gesture development and rapid prototyping and 
its implementation in the GDK. The major contribution is the formulation of a gesture 
description language that is expressive in describing sequences of motion yet easier to 
understand and faster to write than actual code for embedded devices. Through code 
generation, the GDL description of a gesture can be easily tested on a PC or the actual 
smart sensor platform. This workflow enables rapid prototyping even for developers 
unfamiliar with gesture recognition algorithms or embedded systems programming.

This work is supported by BMBF project SAFE4I, grant number 01IS17032O.
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