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Abstract—The ability to locate assets and humans will lead to
many services such as location based services especially in the
material handling domain. The development of Industrial Inter-
net of Things (IIoT) necessitates precise positioning, especially for
moving objects in industrial environment. This way, automation
processes with less human errors, and more safe environments
are feasible. In order to achieve a wide reaching penetration
of new control and tracking schemes in the Material Handling
Domain (MHD), localization of assets needs to be realized in
a cost efficient way with sufficient quality of positioning. The
cost and quality of localization need to be weighted against each
other and depend on the use case. We investigate variations of
a indoor localization system, this is done through acquiring raw
measurements from an Ultra Wide-Band (UWB) ranging system
and comparing various processing approaches to achieve accu-
rate positioning. We then compare the computational cost and
quality of positioning of these approaches. Three multilateration
algorithms are compared: gradient descent, least square, and
recursive least square. Additionally, we investigate the impact of
anchor node placement and additional filtering through a Kalman
filter. We show that the maximum positioning error is mitigated
by up to 30 % and the mean error by up to 4 % when using
additional Kalman filtering of multilateration position estimates
at comparably low additional computation cost. Our results
suggest there are significant differences of localization quality
and computational cost between the examined multilateration
methods with no clear correlation of computational cost and
positioning quality. We also show that the positioning quality
and filtering improvement strongly depends on the UWB anchor
height.

I. INTRODUCTION

Localization in industrial spaces plays an increasingly im-
portant role in the context of new assistance and safety
functions of autonomous machines. The German initiative
Industrie 4.0, among other things, aims to enhance tradi-
tional industries by interconnecting devices with modern com-
munication protocols to enable Machine-to-Machine (M2M)
communication, increase productivity and safety as well as
support the development of novel approaches for manufac-
turing and material handling. Localization of workers and
mobile machinery plays a crucial role to enable a machine
to provide assistance, autonomous and safety functions. The
ability to locate assets and humans leads to various services
such as mobile advertising, navigation, safety and security.

Assets management in industrial environment profits from lo-
calization to observe, automate and analyze material handling
processes.

To design an appropriate localization system, several factors
need to be balanced [1]. In the material handling use case, a
system which is able to increase or decrease coverage area,
with low latency to be used as a (near-) realtime localization
system is preferred. In addition, it should provide appropriate
accuracy ranging from meters to centimeters with an appro-
priate reception range. Also, the design of the system should
be cost efficient with low power consumption for longer life
time of mobile power sources such as batteries.

The global positioning system (GPS) requires communi-
cation with at least four GPS satellites and offers location
accuracy of a few meters. It is mainly used in outdoor appli-
cations because its accuracy degrades significantly in indoor
applications. The GPS signals from satellites hardly penetrates
buildings and infrastructure which leads to large positioning
errors. Wireless local area network (WiFi) technology became
a good candidate for indoor localization applications because
of widespread availability of access points. There is no need
to have new infrastructure installed for the system but it has
disadvantages such as poor accuracy and comparably high
power consumption. Ultra wide-band is suitable for indoor
localization applications because of the ability to accurately
measure the time of flight and therefore the distance to known
base stations. It enables localization with comparatively good
accuracy, low power consumption, comparatively low cost and
high robustness [2], [3], [4]. Because of these advantages, we
focus on UWB as a technology for indoor localization and
are exploring various localization schemes using UWB in the
following chapters.

This paper is structured as follows: Section II describes
related work regarding indoor positioning approaches. The
approach to produce a position estimate from UWB distance
measurements and additional filtering is presented in Section
III. We conducted experiments to verify our methods as
described in Section IV. The experimental results are presented
in Section V. Final conclusions are drawn in Section VI.



II. RELATED WORK

Early systems used for tracking, used infrared (IR) signals to
determine the position of objects inside a network that is made
of IR sensors connected to centralized location server. This
known as active IR positioning system [5]. There is are also
passive IR positioning systems based on thermal IR sensors
measuring the radiation emitted by objects such as humans
[6]. IR systems perform positioning estimation at low cost
and small form factor which makes them easy to carry by
a person. On the other hand, there are drawbacks such as
limited coverage range and accuracy. Also, IR suffers from
disturbances when losing line of sight or interference from
other light sources such as sunlight.

An alternative to IR is ultrasound, which is sound waves
at frequencies above the audible limit of human hearing at
approximately 20 KHz. Systems using these sensors often
consist of transmitters (anchors) and receivers (tags) using
ToA or TDoA techniques to calculate the distances to the
anchors. Multilateration is then used to estimate the tag
location [7]. The ultrasound signal has several advantages such
as a slow propagation speed and a low cost of the transducers.
These characteristics of ultrasound make it suitable for indoor
positioning systems. Also the accuracy of these systems is
quite high, reaching sub-centimeter accuracy. The drawbacks
in these systems is the requirement of synchronization between
network nodes, limited range coverage of sensors, a negligible
penetration in walls and high power consumption compared to
other technologies [8].

RFID has become popular and typical application span from
asset tracking, service industries, logistics, and manufacturing,
to supply chains. This large number of applications drives the
price of RFID system down, creating a reliable device for auto-
matic identification. RFID has some desirable features, such as
contactless communications, high data rate and security, non-
line-of-sight readability, compactness and low cost. With these
capabilities, a RFID system is a good candidate for an indoor
localization system. However, there are some difficulties in
using RFID for localization. For example, it requires extensive
infrastructure to accurately determine the location. In addition,
most RFID devices lack RSSI functionality, which would
help improving the accuracy. Various choices of tags, such as
active, passive and semi-active tags, can affect the localization
accuracy as well [9].

Bluetooth is specified for wireless personal area networks
(WPAN). Bluetooth supports a range of 100 m communication
and replaces the IR ports mounted on mobile devices [5].
Bluetooth Low Energy (BLE) supports a similar range with
higher energy efficiency, as compared to older versions. Most
of the existing BLE based localization solutions rely on
received signal strength (RSS) to estimate the distance or
proximity to BLE base stations with subsequent multilateration
or fingerprinting. The disadvantage of BLE based on RSS is
the low accuracy of the distance estimate. Due to its range,
low cost and energy efficiency, BLE is a prime candidate for
coarse localization. The positioning accuracy varies between

1m to 5m [5], [10], [11].
At the moment, most portable device such as smart phones,

laptops and others use WiFi which makes it an ideal candidate
for indoor localization, because there is no need for additional
infrastructure and extra cost. Popular methods use similar
approaches to BLE based localization, such as fingerprints
of the Wifi infrastructure signal strength, to achieve indoor
localization [12], [13]. However, Wifi based localization also
suffers similar drawbacks as BLE based localization, such as
coarse accuracy in the range of several meters due to inaccu-
rate ranging and sensitivity to shadowing. The fingerprinting
approach may also be combined with other sensors to ease
the fingerprint collection process or increase the positioning
accuracy [14].

Ultra wide-band (UWB) systems use a bandwidth larger
than 500MHz. Due to this, some important features for UWB
are high time resolution of its signal and robustness against
multipath interference [4]. This makes UWB a very good
candidate to use in positioning systems [2], [3]. A comparison
of three commercially available UWB localization systems is
presented in [15]. The authors document a mean accuracy of
0.49 m for the most precise system. The authors of [16] present
a gradient descent approach to produce a robust location
estimate from a set of partially erroneous range measurements.

III. METHOD

Our approach is using UWB infrastructure to measure the
distance of the tracked UWB tag to four UWB anchors
which are distributed around the area of localization. The
measured distances are processed by a multilateration scheme
to compute the tracked objects position. This position is then
optionally subjected to additional filtering using a Kalman
filter. The Kalman filter state includes two dimensional po-
sition and velocity. The time update of the filter state employs
the usual equations of motion as shown in eq. (1), with ~pk
and ~vk as the two dimensional vector of position and velocity
respectively, and t2×2 as a diagonal 2× 2 matrix of the filter
update period t.(

~pk
~vk

)
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02×2 I2×2

)(
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(1)

The measurement update maps the received position mea-
surement ~zk = ~p m

k directly onto the filter position state ~pk of
the state vector x according to
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k = Hxk (2)
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Fig. 1 shows the filtering architecture. The distance mea-
surements from UWB are fed into the multilateration module,
producing a position estimate. This estimate is then fed into
the Kalman filter as a measurement. The positioning by UWB
is evaluated using three different multilateration algorithms.



We are using gradient descent in a slightly modified variant of
[17], recursive least squares [18] and the commonly employed
least squares method.

The least squares (LS) method is a simple, commonly
known method to produce a position estimate from multiple
range measurements. Measurement noise and outliers have
a direct effect on the position estimate and may cause it to
”jump” when tracking a moving target. However, the quality
of localization is expected to improve with an increasing
number of range measurements. The LS method is also a good
candidate for additional Kalman filtering which is expected
to compensate jumps in positions due measurement noise,
because of the added kinematic model.

The recursive least squares (RLS) method is introduced as a
way to produce a position from sequential range measurements
to multiple anchor nodes. This way, a positioning estimate
can be produced from a minimum number of range estimates.
The estimate is refined using further measurements over time.
RLS is expected to behave in a similar way to the LS
method, because we will only evaluate the final result of the
sequential processing of all ranging measurements from one
UWB sampling interval. This method is also used without a
reference to previous measurements, therefore we expect RLS
to ”jump” between positioning estimates similar to LS.

The gradient descent (GD) method is chosen because it
is shown in literature to be robust against interference. The
method is stateful, i.e. it requires an externally defined initial
position estimate and will use the previous position state as a
basis for the next positioning update using the new measured
ranges. Similarly to the Kalman filtered position estimates, this
statefulness is expected to increase the positioning accuracy
because it compensates measurement noise and outliers to
a certain degree. Unlike [16], we are refraining from the
exclusion of range measurements outliers before the actual
computation of the new position and base the employed imple-
mentation on [17]. This is done to increase the comparability
against LS and RLS approaches which include outliers in the
position updates.
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Figure 1: Flow of data from ranging via UWB producing a
set of range measurements D to position estimate ~p m through
multilateration to a filtered position and velocity estimate x.

IV. EXPERIMENTAL SETUP

We conduct two experiments to compare the proposed
positioning algorithms. The Decawave MDEK1001 is used as

the UWB system, sampling the range measurements to anchor
stations at 10 Hz. The anchor stations are placed at varying
heights in the corners of a 3.0 m x 3.9 m area as seen in Fig.
2. In the first experiment 4 anchors are placed at same height
of 2.05 m. The second experiment features anchors A1 to A4

respectively at heights of 2.49 m, 1.65 m, 2.05 m and 1.19
m. The varying anchor heights are chosen to provoke non-
line of sight conditions, potentially diminishing the ranging
accuracy and therefore the positioning quality. This allows us
to examine how the positioning algorithms behave in adverse
conditions.

All measurements are collected using a hand-held UWB tag
that initiates the ranging measurements to the anchor nodes. A
person is completing one trip around the area for experiment
1 and a almost a full trip in experiment 2 following the
ground truth as seen in Fig. 2. The data is recorded first and
then evaluated offline using Matlab. We are measuring the
positioning accuracy as the distance from the ground truth.
The hand held UWB tag is held above the ground truth which
is marked on the ground. Minimal positioning errors due to
human error are expected.
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Figure 2: Setup of the positioning experiments. The red line
shows ground truth of experiment 1, the dashed purple line
marks experiment 2. UWB anchor stations A1 to A5 are
marked as black dots.

V. EXPERIMENTAL RESULTS

The measurement results are shown in Tables I and II, as
well as Fig. 3 and 4 for experiments 1 and 2 respectively.

The measurements show a distinct difference in accuracy
for the three multilateration methods. In every case RLS
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Figure 3: Mean distance from ground truth and the standard
deviation as error bars for experiment 1 using UWB anchors
at a fixed height of 2.05 m.

behaves worse than LS or GD, while GD performs best
in both experiments. The positioning accuracy benefits from
additional filtering especially due to the reduction in outliers.
The improvement of the mean accuracy is relatively minor.
Experiment 2 suggests that systematic errors due to a relatively
static offset are not mitigated through additional filtering.
However, more experiments are needed to reliably define
the influence of varying ranging error types on different
positioning methods.

In experiment 1, GD shows the best accuracy with a mean
error of 0.225 m after filtering and a maximum error of 0.69
m before and 0.59 m after filtering. The biggest improvement
of 30.6 % of the maximum error by additional filtering is
achieved for RLS, followed by LS with an improvement by
26.9 %. The improvement of mean accuracy through filtering
is relatively minor and ranges between 2.6 % and 4.3 % for
GD and LS with RLS in between. Fig. 5 shows the plot of
the positioning by GD and the filtered trajectory.

The changed anchor heights show a distinct effect on
the accuracy in experiment 2. Here, the mean error about
doubled for all multilateration methods. However, compared to
experiment 1, the maximum error is less for LS and RLS and
increased for GD. This suggests a systematic ranging error,
possibly due to the on average decreased anchor height and
consequently increased signal shadowing from the localized
persons body. This increases the distances for the majority of
the range measurements and leads to a relatively pronounced
offset in certain parts of the track. Additional filtering has no
significant impact on the mean accuracy in experiment 2 and
lessens the maximum error by about 3.9 % for RLS and GD
and by 8.4 % for LS. This leads to a maximum positioning
error close to 1 m for every algorithm after filtering.

Besides the positioning accuracy, we also investigated the
average computation time needed to process one position up-
date with each multilateration method and additional Kalman
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Figure 4: Mean distance from ground truth and the standard
deviation as error bars for experiment 2 using UWB anchors
at a heights ranging from 1.65 m to 2.49 m.

TABLE I: Average and maximum distance to ground truth in
experiment 1 with and without additional Kalman filtering in
meters. Percentage of change due to filtering.

w/o filtering w/ filtering
mean max mean max

LS 0.314 1.411 0.300 (-4.33 %) 1.032 (-26.87 %)
RLS 0.360 1.931 0.349 (-2.98 %) 1.340 (-30.59 %)
GD 0.231 0.691 0.225 (-2.62 %) 0.587 (-15.11 %)

filter. The results are presented in Table III. The timings were
measured using a laptop with 2.6 GHz Intel i7-6700HQ CPU
using the timeit() function of Matlab R2018b. The results show
a significant difference for the multilateration methods, with
LS being 43 times faster than RLS and 116 times faster than
GD. Processing one position update with the Kalman filter
only needs 6 µs in contrast to the 39 µs of one LS update. This
shows that the reduction of maximum errors through additional
filtering is rather inexpensive. In order to estimate the trade-
off between computation time and accuracy, we calculate a
trade-off metric by multiplying the mean positioning error
in cm with the computation time in ms. The results are
also shown in Table III. LS leads by this metric while RLS
achieves about half the score of GD. Although GD performs
best in terms of accuracy, it is disproportionately expen-
sive to compute. LS however, delivers an exceptional trade-
off between computation time and accuracy. The drawbacks

TABLE II: Average and maximum distance to ground truth in
experiment 2 with and without additional Kalman filtering in
meters. Percentage of change due to filtering.

w/o filtering w/ filtering
mean max mean max

LS 0.494 1.136 0.492 (-0.55 %) 1.039 (-8.54 %)
RLS 0.566 1.106 0.572 (1.12 %) 1.061 (-3.99 %)
GD 0.497 1.037 0.500 (0.63 %) 0.997 (-3.87 %)



Figure 5: Plot of the positioning by GD as red points and the
filtered trajectory as a blue line.

Figure 6: Plot of the positioning by LS as red points and
the filtered trajectory as a blue line. Compared to GD, more
outliers and a significant deviation from ground truth, also with
filtering, are visible.

of ”jumping” position solutions and high maximum errors
compared to GD can be mitigated partly by additional and
inexpensive Kalman filtering. This shows clearly, that the trade
off between computation time and positioning accuracy is not
linear between the examined methods.

It has to be noted that the authors of [18] state that the RLS
algorithm is not specifically adapted to moving targets due to
the low update rate of their UWB system which is reflected
in our results. The computation time of RLS may also be
improved: using the latest position estimate as a initial solution
for the next positioning update, instead of computing a new
initial estimate with each new set of measurements. However,

TABLE III: Median computation time of one position update
of the multilateration methods and the Kalman filter and
the positioning error by computation time tradeoff metric
meanErrorcm ∗ tcomp of experiments 1 and 2 normalized
to 0..1.

LS RLS GD Kalman filter
computation time (ms) 0.039 1.686 4.54 0.006
trade-off for exp. 1 0.0117 0.5800 1
trade-off for exp. 2 0.0086 0.4232 1

the results already show a reduced accuracy compared to the
solution by LS. Using an recent estimate may introduce further
errors to the RLS solution. This may be mitigated by the
use of a Kalman filter state prediction estimate that produces
predictions with a greater frequency than measurement updates
from RLS. When appropriately parametrized, the Kalman filter
prediction may be sufficiently close to the actual state previous
to new measurements and therefore provide a sufficiently
accurate initial state for a new RLS solution at very low
computation cost. We see potential for future work here.
Additionally, as the authors state themselves, several costly
computations of inverse matrices may be pre-computed and
read from memory for every anchor configuration used in a
ranging update. However, this is also true for LS.

VI. CONCLUSION

This paper presents a comparison of indoor localization
schemes that may be used in the material handling domain
for cranes, hoists, and other moving objects, or individuals.
UWB has proven to be a cost-effective and accurate solution
for indoor localization applications and was therefore chosen.
By placing UWB anchor points at specific positions, moving
objects or individuals that are provided with a UWB tag can be
localized with centimeter precision in an indoor environment
such as a factory hall. The measured distances between anchor
points and tag are processed with various multilateration
algorithms (gradient descent, recursive and conventional least
squares method) in order to calculate the position of the
moving object. Finally, the position can be optionally filtered
by a Kalman filter, e.g., in order to compensate jumps in
positions resulting from noisy measurements. We show that
the maximum positioning error is mitigated by up to 30 % and
the mean error by up to 4 % when using additional Kalman
filtering of multilateration position estimates at comparably
low additional computation cost. Our results show there are
significant differences of localization quality and computa-
tional cost between the examined multilateration methods with
no clear correlation of computational cost and positioning
quality. We also show that the positioning quality and filtering
improvement strongly depends on the UWB anchor placement.
However, varying walking paths are tested in experiment 1
and 2, which limits the comparability of both experiments.
Prospectively, step counting algorithms and other positioning
sensors could be used to increase the reliability of the position
estimation in non-line-of-sight parts, between UWB anchors
and tag, of the indoor environment.
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