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Abstract—Step detection is a common application in battery
driven wearables. It enables fitness tracking as well as indoor
localization. However, current state of the art approaches heavily
rely on spectral properties of the acceleration signal or decisions-
trees comparing peaks and valleys, using various thresholds and
timings. This requires accurate AD conversion as well as complex
calculations to the disadvantage of battery life. Consequently,
an ultra-low complexity step detector with competitive accuracy
is desirable. We propose a zero-crossing interval and Bayesian-
analysis based step detection algorithm which requires minimal
computation at runtime, using a-priori knowledge from pre-
computed statistical analysis. We compare our approach to a clas-
sifier that uses the more accurate but costly spectral properties
of the data. The statistical analysis for pre-computation as well
as evaluation is done using the annotated sensor data of the OU-
ISIR Gait Database. Our evaluation shows the presented method
outperforms classification with spectral features and delivers a
step count accuracy that is competitive with state of the art
commercial products.

I. INTRODUCTION

Step detection in smartphones and other wearable devices
has become ubiquitous. Here, step counting commonly serves
to track or encourage exercise. A more complex use case
for step detection is localization in buildings, when GPS can
not be used reliably. The step count, together with walking
direction and an estimation of step length, enables the tracking
of the users’ movement starting from a known initial position
and orientation.

In order to detect steps, the signal, e.g. of an accelerometer,
needs to be continuously monitored for features that indicate a
step. This is typically done by a sliding window approach with
a certain overlap. The window overlap ensures that a step event
is contained, at least for the most part, within one window of
sensor data. In general, one may analyze inertial data in the
time domain and/or frequency domain for step detection. For
instance, for each window one may detect peaks in the time
domain [1] or evaluate certain parts of the frequency spectrum
of a signal [2] to detect the step event. These spectral markers
rely on detecting spectral peaks within the narrow frequency
band that is influenced by human motion. For each overlapping
window, a new transformation of the signal to the spectral
domain needs to be computed. Consequently, parts of the data
(within the overlapping interval) are at least transformed twice
to produce the signal spectrum of the propagated window.

Keeping in mind that fast Fourier transform (FFT) has a
computational complexity of O(n log n), we see potential
for optimization. Since step detection is usually done on
battery powered wearable devices, power consumption of the
step detection system is an important factor and should be
minimized. Simple spectral discrimination techniques, such
as zero crossing intervals, typically feature lower complexity
and power consumption compared to spectral analysis such
as FFT. Consequently, an alternative approach is to estimate
the leading frequency through the zero crossings alone. This
approach is called zero crossing interval analysis (ZCIA).
It has been successfully implemented for seizure prediction
based on EEG data [3] and voice activity detection in audio
recordings [4]. The connection of zero crossing intervals with
the spectrum of the signal is a long established subject of
research as shown in [5] and [6]. While ZCIA is not a direct
representation of the actual spectrum, it is correlated to the
dominant frequency in a way that allows for step detection
without explicit transformation to the frequency domain.

ZCIA may be implemented completely in hardware, mini-
mizing actual computation: It only requires 1−bit AD conver-
sion, i.e. checking weather the sensor output of a wearable
accelerometer is above or below a set threshold. This can
be typically realized with a primitive comparator circuit or
a slightly more complex Schmitt trigger, if noise tolerance
is desired. The binary output of this 1−bit AD converter
circuit is then analyzed for timing intervals between edges
of the converted signal to produce the zero crossing intervals
for further analysis. Additionally ZCIA allows updating the
zero crossings of a window using only the new data from
the window propagation, without recalculation of the window
as a whole. Moreover a-priori knowledge of the underlying
application, e.g. the crossing intervals when taking a step,
allows checking the measured intervals against the known
interval distribution of the desired event. Consequently, a mea-
sured interval can be directly associated with the likelihood of
representing the desired event by a simple look-up operation
from memory directly producing a confidence measure for the
step event.

Since the above mentioned factors contribute to lower
power consumption, the power draw of step detection/counting
systems may be significantly decreased by implementing a



zero crossing based approach if comparable accuracy can be
achieved. Consequently the aim of this work is to investigate
and evaluate a zero crossing based approach for step detection
using a given dataset.

This paper is structured as follows: Section II describes
related work regarding UWB and PDR based positioning and
the combination of both approaches. The dataset enabling the
Bayesian analysis and final evaluation is presented in Section
III. Following the pre-processing of the data is described in
Section IV while the actual approach for step detection is
outlined in V. The evaluation approach is described in Section
VI and the experimental results are presented in Section VII.
Final conclusions are drawn in Section VIII.

II. RELATED WORK

A step counting algorithm estimates the number of steps
a user has taken based on event detection in inertial sensor
data. A multitude of approaches to achieve this have been
proposed. Threshold based approaches use one or multiple
thresholds applied to the sensor data to detect steps. While this
is the simplest approach, selecting a threshold that works in all
cases is not trivial. Implementations can be found in [7] and
[8]. Peak detection leverages peaks in the accelerometer signal
that are produced when taking a step. To remove the impact of
device orientation, the magnitude of the accelerometer signal
should be used [1]. Auto correlation leverages the periodic
nature of walking motion, computing the auto correlation of
an inertial signal produces sharp peaks with every step. In
[9], this is used to count steps in combination with walking
detection based on the signals standard deviation and the
maximum magnitude of the signals auto correlation. Step
frequency estimation can be used if the walking duration
and step frequency can be accurately determined. One may
estimate the step count by simply multiplying the time spent
walking with the step frequency [2].

Zero crossings are employed for step counting in [10].
Thresholds around the zero line are used to facilitate counting
of zero crossings in high amplitude parts of the signal. The step
count is then estimated by linear regression on the number of
zero crossings in a signal. Further works combine multiple
features of the sensor data such as the detection of zero
crossings within an allowed interval, combined with the a
threshold for signal variance [11]. Another approach is the
detection of peaks above a certain threshold followed by a
zero crossing [12]. In [13], ZCIA is used for event detection
in satellite imagery. Machine learning techniques have shown
promising results recently for the use of step event detection
[14], [15]. Other than accelerometer data, gyroscopic data may
also be used to register the periodic swing of legs or arms
[16], [17]. Indoor localization is achieved by the combination
of step event detection with step length estimation and heading
estimation [18], [19].

III. DATA PREPARATION

The following sub-chapters describe data used in this work
and its’ pre-processing for experimental validation.

A. Dataset of true step events

The inclusion of a-priori knowledge for the likelihood
estimation of the step event necessitates a sufficiently large
dataset. This work uses data collected by the Institute of
Scientific and Industrial Research (ISIR) at Osaka University
(OU). Specifically the Similar Action Inertial Dataset from
the OU-ISIR Gait Database [20]. This dataset includes triaxial
accelerometer and gyroscope data recorded from three inertial
measuring units (IMUs) at 100 Hz. The IMUs are positioned
on the subject’s left and right side of the waist as well as the
lower back using a belt.

Subjects with an even gender ratio and ages between 2
and 78 walked through a course which included level ground,
stairs, and slopes.

The labels of the dataset include the interval of single steps,
as well as the mode of walking (level walk, upstairs, down-
stairs, slope-up, slope-down). Furthermore, some sections of
the data are labeled as invalid. These invalid sections may
include walking and other actions and are not used in this
work, because the specific action for each section is unknown.
The data is provided in text files labeled with the subject ID
which is used to obtain the subject’s age and gender.

The sensor position and orientation is static, therefore we
are able to choose an optimal sensor axis at design-time, as
proposed in [2]. Excluding rotation, the hip mainly moves up
and down when walking. Therefore the highest acceleration
is experienced by the vertical axis and the acceleration in
the horizontal plane is comparatively small. The vertical axis
corresponds to the y-axis for all three IMUs. Indeed, testing
different approaches confirmed that the y-axis of the ac-
celerometer yields the best detection performance. Differences
based on the choice between the left, center, and right IMU
were minimal, so the center IMU was used for all further
considerations.

In order to accurately evaluate and train the step detector,
a dataset of positive and negative examples is needed. The
positive examples are extracted from the previously described
dataset. Non-overlapping windows of data from the sections
marking a valid step are extracted until the desired number or
positive examples is reached.

B. Generation of non-step examples

Negative examples, such as standing, gesturing, or other
explicitly labeled non-walking actions, are not part the OU-
ISIR Gait Database. Instead white Gaussian noise is used to
approximate other actions that may be sampled by the IMU.
Consequently, the noise is generated with a standard deviation
of 0.4, which is the same as an average step of the training
set, and an offset of -1 due to gravity. It is subjected to the
same pre-processing described in Section IV. As the mean
of the noise signal is non-zero the low-pass filter of the pre-
processing leads to a ramp up from zero at the beginning of
the generated counter examples. This is remedied by creating
a longer signal and discarding the initial samples. The seed of
the pseudo random number generator is retained in order to
reproduce the set of negative examples during the development



process. We employ a 1:1 balance of positive and negative
examples for training and evaluation.

IV. DATA PRE-PROCESSING

Two factors were considered for pre-processing of sensor
data: Human walking mainly generates acceleration signals in
a range of 4 Hz to 6 Hz [21] and high frequency components
produces a high number of zero crossings that interfere with
the detection method. Consequently, all data is low-pass fil-
tered by a 5th order Butterworth filter with a cutoff frequency
of 6 Hz.

To remove the gravity from a given signal x we take
the mean of the window x and subtract it from the signal.
Furthermore we add an offset δ to the zero line, as this will
avoid the generation of zero crossings for very low amplitude
signals. In hardware, this would be realized by an analog high
pass filter, followed by a constant level shift by δ. Subtracting
this offset from the signal effectively moves the zero line by
the desired amount.

x′ = x− x− δ (1)

Each sign change in x′ represents a zero crossing. The index
of the sample before the sign change is considered the zero
crossing index. One could further improve the precision of the
zero crossing detection by estimating the instance between
the two samples that constitutes the sign change. However,
since we are using data at a relatively high sample rate of
100 Hz, this is unlikely to meaningfully impact the detection
performance and is thus not used in our case.

V. STEP DETECTION THROUGH ZERO CROSSING INTERVAL
ANALYSIS

We employ a probabilistic approach to step detection: A
window of acceleration data is analyzed for zero crossings. For
each window a sample of consecutive zero crossing indices is
generated. The probability if this sample was also observed for
a step or for noise is then compared. Using Bayes’ theorem,
we can determine the probability if this window of data is
indeed generated by a step.

Following, the probability for a step event given the timing
of two consecutive zero crossings is denoted as P (S|zc1∩zc2).
The steps event is denoted by S, the case of noise by N and
the position of the n-th zero crossing in a window by zcn.

Bayes’ rule states:

P (A|B) =
P (B|A) ∗ P (A)

P (B)
. (2)

We can apply this to the problem at hand:

P (S|zc1 ∩ zc2) =
P (zc1 ∩ zc2|S) ∗ P (S)

P (zc1 ∩ zc2)
(3)

Here P (S) refers to the prior probability that a sample
belongs to the set of steps (without any knowledge about the
zero crossing positions). For the data used, this is assumed to
be 50% for both P (S) and P (N) (balanced dataset). The de-
nominator describes the probability that a certain combination

of zero crossing timings occurs, whether generated by step
data or noise:

P (zc1 ∩ zc2)
= P (zc1 ∩ zc2|S)P (S) + P (zc1 ∩ zc2|N)P (N) (4)

This leaves P (zc1 ∩ zc2|S) and P (zc1 ∩ zc2|N) as the
unknowns. Since we cannot assume statistical independence
between the zero crossing positions, we have to compute the
conditional probability for the second zero crossing based on
the first:

P (zc1 ∩ zc2|S) = P (zc2|S ∩ zc1)P (zc1|S) (5)

The equation for P (zc1 ∩ zc2|N) is analogous to (5).
The conditional probabilities of zero crossing placements

zc1 and zc2 are determined by first computing the respec-
tive probability density function (PDF) using kernel density
estimation (KDE) with a Gaussian kernel on the training
dataset. Zero crossings can only occur at integer values,
so the characterization as a probability density function is,
strictly speaking, not correct. Therefore, the PDF is sampled
at integer values to produce an approximation of the respective
probability mass functions (PMF).

For P (zc1|S) we simply collect all the position of the
first zero crossing in every step of the training set and
determine the PMF. To estimate P (zc2|S ∩ zc1) the second
zero crossings have to be grouped according to the positions
of the corresponding first zero crossing. Then the PMF is
determined on the groups of zc2 corresponding to each zc1.

Furthermore, in order to perform a KDE multiple unique
samples are needed and some zero crossings may occur rarely
or not at all in the training set, so this condition is not always
satisfied. Consequently, the PMF is set to zero in its entirety,
if there is no zc1 for an index or if there is not more than one
zc2 for one zc1.

The result of these computations using is visualized in Fig.
1. The visualization reaffirms the previous assumption that the
position of the second zero crossing is not statistically inde-
pendent from the first, as the plot shows a linear relationship
between the placement of both zero crossings. Furthermore.
the fact that these probabilities show different properties for
steps and noise supports the assumption that they can be used
to discriminate between the two cases.

Finally, with we compute the probability of a combination
of zero crossings being generated by a step:

P (S|zc1 ∩ zc2)

=
P (zc2|S ∩ zc1)P (zc1|S)P (S)

P (zc2|S ∩ zc1)P (zc1|S)P (S)
+ P (zc2|N ∩ zc1)P (zc1|N)P (N)

(6)

This probability is computed for every combination of zero
crossings in the training set, generating the final matrix of
probabilities as shown in Fig. 2. Some values from the PMFs
that are used to compute (6) are very small. These double
precision floating point values are set to zero if they fall below
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Figure 1: Conditional probability for second zero crossings.
a) shows probability of a zero crossing occurring at a certain
index after an initial zero crossing generated by a step, while
b) shows the probability of a second zero crossing generated
by noise

a threshold ε. This ε is the lower limit ensuring 1.0+ε 6= 1.0.
Resulting from this, a sharp drop of the probability is visible
in Fig. 2 for the upper bounds of zc2. This has no significant
effect on the performance of the step detection method.

A window of sensor data can now be evaluated by applying
the above-mentioned pre-processing and determining the first
two zero crossings for the data. A look-up operation on the
pre-computed matrix shown in Fig. 2 returns the probability
if the examined window of data is belonging to a step event.

In order to detect single steps, a sliding window is propa-
gated in one sample steps along a sequence of data. In each
window propagation, the first and second zero crossing zc1 and
zc2 is determined to find P (S|zc1 ∩ zc2) as described in (6).
A step is detected if P (S|zc1∩zc2) exceeds a threshold thstep
for a certain count of consecutive windows. These thresholds
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Figure 2: Step Probability based on the index of two consec-
utive zero crossings

are found by maximizing the detector performance in the
training set and will be detailed in Section VI. The exact
size of the sliding window has little effect on the accuracy
or complexity of the step detector. Only new samples after a
window propagation need to be checked for a zero crossing
while the known zero crossing indices are simply incremented
by the window propagation step size. Finally a new look-up in
the probability matrix is done, the value is compared against
thspec and the counter is either incremented or reset if thspec
is not exceeded anymore.

A detailed evaluation of this approach is presented in the
following sections.

VI. EXPERIMENTAL SETUP

We verify the proposed method in a two-fold way. First,
the ability to discern walking from random noise is validated.
Second, the actual ability to determine the correct count of
steps from a sequence of true walking is determined.

The basis of the evaluated step detector is a matrix of pre-
determined probabilities as outlined in the previous section.
The same matrix is used for both experiments. It is generated
using a training set of 7000 examples, containing each: A
sequence of data containing exactly one true step and a
sequence of Gaussian noise. One noise sequence consist 100
samples with constant standard deviation σn. For comparison:
The training steps consist on average of 52.83 acceleration
samples with a standard deviation of 0.4 g. The longest step
spans 106 samples. The probability threshold for a window
of data to hint at a step thstep is tested for values from 0.05
to 0.95 while the number of consecutive windows exceeding
thstep needed to actually count a step is fixed at 5. A range of
values for σn from 0.1 to 1.0 g was evaluated using the same
constant σn for the generation of each probability matrix as
well as the corresponding test sequences for both experiments.
The level shift δ is fixed at 0.2 g.



The evaluation of walking detection uses an evaluation set
of 3000 sequences of equal length for each: true walking and
noise. The walking sequences are extracted as non-overlapping
windows of 100 samples from previously unused walking
examples containing multiple steps. The noise examples are
generated with the same parameters as in the training set. An
example is counted as walking if at least one step is detected
in it. However, in order to guarantee that zero crossings
which occur near the end of a sequence are evaluated across
the whole window length of the step detector, the evaluated
sequence is extended using the value of its last entry. We
compare the walking detection using zero crossings with a
method using the actual spectral markers of the FFT of the
window of data, similar to [2]. However, we were not able to
replicate the exact spectral properties that were observed there.
Instead, we are classifying a signal as walking if the energy
of the peak between 1 Hz and 4 Hz exceeds a multiple of
the average energy up to 10 Hz. The performance for several
settings of this multiplier thspec will be discussed in the next
section.

The evaluation of step counting is straight forward. Unin-
terrupted sequences of true walking are extracted from the
training set. Again, the ends of these sequences are extended
to ensure that zero crossings near the end of a sequence
are evaluated across the whole step detector window length.
The step detector is applied to the walking sequence and the
resulting step count is compared to the true step count. The
test set consist of 8700 true steps from 281 participants.

VII. EXPERIMENTAL RESULTS

For the spectral classifier (SP), a high thspec results in
better sensitivity and specificity, while the opposite applies
to precision. A equilibrium of 0.89 for all three measures is
reached at a thspec of about 5.90. The performance measures
are constant for every setting of σn.

In contrast, the performance of the zero crossing approach
(ZC) depends highly on σn and the choice of thstep. At σn
of 0.45 g and lower, ZC performs better than SP for adequate
choices of thstep that result in an equilibrium between the
three performance measures. However, at higher σn, thstep
also needs to be higher to maintain superior performance.
A higher thstep lessens the sensitivity, while precision and
specificity improve.

The receiver operating characteristic (ROC) for ZC and SP
at σn of 0.4 g is shown in Fig. 3. The curve for ZC shows
superior performance for sensitivities above 0.8. For thstep at
0.5, sensitivity, precision and specificity are at 0.97, 0.77 and
0.70, indicating a sufficient capability to count actual steps but
also a tendency for false positives when presented with noise.
A more balanced performance is reached at 0.8 for thstep with
sensitivity, precision and specificity at 0.93, 0.89 and 0.89.

The second evaluation concerns only true walking examples.
The absolute average error in the step count is 4.99 % for
a thstep of 0.5 and 8.04 % for a thstep of 0.8. The result
are competitive with commercially available pedometers [22],
[23]. Fig. 4 shows the distribution of step count errors for
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Figure 3: ROC of the SP and ZC classifier with σn of 0.4 g,
including the area under curve (AUC)

the evaluated participants and a thstep of 0.5. Here, there
is no error for 98 out of 281 participants. Unsurprisingly, a
thstep of 0.8 shows a tendency to under-count. Fig. 5 shows
the determined step probability over time for an example of
walking.
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Figure 4: Histogram of step count error for 281 participants
at a thstep of 0.5 and σn of 0.4 g.

VIII. CONCLUSION

In this paper, we describe a Bayesian estimator for step
counting based on zero crossing interval analysis and demon-
strate its capability using data of the OU-ISIR Gait Database.
We demonstrate the statistical discrimination of zero crossing
vectors, differentiating between taking a step and random
noise. The extraction of the zero crossing interval vector
requires no explicit AD-conversion and the step probability
is retrieved at runtime from a pre-computed matrix. Addi-
tionally and in contrast to a FFT based spectral approach,
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Figure 5: A walking sequence with the step probability over
time, including one missed step at the end. Individual steps
are separated by vertical lines. Trained using a σn of 0.4 g

the evaluation of sliding windows of data is done by adding
and evaluating new values without explicit re-computation of
the window as a whole. This fact leads to an extremely low
computational complexity and thus a potentially low power
consumption. We compare the results with a spectral estimator
and show that the presented method performs competitively to
the state of the art. The quantity of possible energy savings
has to be shown in future work.

A fundamental limitation of this analysis is the synthetic
nature of the noise counterexamples. Further analysis with data
of actual scenarios of daily life and work is needed. It should
also be noted that the the participants of the dataset are highly
diverse, with ages ranging from toddlers to seniors. We suspect
that certain age groups show differing walking motion. How
this affects step detection in detail will be investigated in the
future as well.
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