
Evaluation and Extension of OPC UA
Publish/Subscribe MQTT Binding

Hannes Raddatz∗, Eman Mahmoud∗, Fabian Hölzke∗, Peter Danielis†, Dirk Timmermann∗ and Frank Golatowski∗
∗ Institute of Applied Microelectronics and CE

† Department of Computer Science University of Rostock, Rostock, Germany

Email: hannes.raddatz@uni-rostock.de

Abstract—Currently, Open Platform Communication Unified
Architecture (OPC UA) is nominated as a reference standard to
meet all Industry 4.0 demands with one protocol, enabling an
efficient communication between devices in industrial systems.
Recently, OPC UA has been extended by a publish/subscribe
pattern to support multicast communication since there is a need
for an efficient data aggregation and distribution to cope with the
increasing number of controllers, sensors, and measured values in
industries. Message Queuing Telemetry Transport (MQTT) is the
most widely used publish/subscribe communication protocol and
is based on a central broker for message exchange. In this paper,
the communication latency of OPC UA end devices exchanging
data over MQTT as a broker-based middleware is investigated
and compared to the client/server-based communication. In par-
ticular, we analyze the use case of one-to-many communication
for a crane model from the material handling domain. We
provide a prototype implementation of the OPC UA MQTT
extension and our evaluation results show the reduced traffic
overhead and communication latency compared to client/server-
based communication.

Index Terms—OPC UA, publish/subscribe, OPC UA part 14,
MQTT, material handling, Industry 4.0, open62541

I. INTRODUCTION

The development of the Industrial IoT in the context of the

Industry 4.0 trend requires the standardization and sharing of

data from individual components of industrial companies. The

large number of industrial mechatronic systems, automation

tools, and industrial communication systems represents a new

challenge in this regard [1]. The requirements placed on

Industry 4.0 components or systems to achieve horizontal and

vertical interoperability over the entire life cycle are flexibility,

adaptability, transparency, and many others [2]. Currently,

Open Platform Communication Unified Architecture (OPC

UA) is developing as a reference standard that fulfills all In-

dustry 4.0 requirements with one protocol thereby offering the

flexibility of chosing from different communication protocols

like HTTP, TCP, and others [3]. OPC UA is supported by a

reasonable amount of PLCs on the industrial market. Despite

the fact that OPC UA starts to replace legacy communication

protocols in facilities and offers the advantage of semantic data

modelling, the common communication patterns are remained

unchanged. Therefore, one-to-one connections, also known as

client/server or request-response scheme are still the majority.

Consequently, such connections are also used in cases where

many devices are interested in information of a single device,

or a monitor device is gathering specific information from all

controllers in a network. These cases are also known as one-

to-many and many-to one communication. Their combination

is known as many-to-many communication. This demand has

also been realized by the OPC Foundation and consequently,

they published the OPC UA standard amendment part 14, the

publish/subscribe extension [4]. This paper investigates the

communication between OPC UA end devices over Message

Queuing Telemetry Transport (MQTT) as a broker-based mid-

dleware to exchange data from the OPC UA address space in

term of message latency, targeting the use case one-to-many

and proposing further extensions to support functionality of

this communication pattern.

The remainder of this paper is organized as follows. Sec-

tion II discusses related work and Section III introduces OPC

UA part 14. Section IV presents the developed OPC UA-

MQTT binding. Section V describes results from the testbed

evaluation before Section VI concludes the paper.

II. RELATED WORK

In terms of the time spent to send and receive messages

and the message size, the work in [5] compares the perfor-

mance of MQTT and OPC UA separately, as opposed to

our approach. It was mainly observed that MQTT is more

suitable for the distribution of messages when there is a large

number of subscribers that are interested in receiving the

same topic. Hence, it is advisable to use MQTT as extension

to UPC UA to support this use case which we do in this

paper. In [6], the performance and resource usage of the

most common protocols in the field of industrial automation

and IoT are evaluated. In addition to OPC UA and MQTT,

Data Distribution Service (DDS) and Robot Operating System

(ROS) are analyzed. Unlike our approach, the work again

evaluates OPC UA and MQTT separately and concludes that

OPC UA’s major strength is the semantic description of the

address space while MQTT is a lightweight publish/subscribe

protocol which focuses on a small footprint and low network

bandwidth usage. Interestingly, the authors state that UPC UA

publish/subscribe does not include any QoS mechanism so it

should be combined with MQTT, which supports additional

QoS principles (re-sending of messages, caching of topic data

on the broker), which motivates the contribution in our paper.

In [7], the authors evaluate the performance of MQTT in

three different distributions of publishers and subscribers, i.e.,

system architectures under various traffic load scenarios. They

arrive at the conclusion that the underlying network layers such

as TCP and IP have a stronger impact on message latency

than the system architecture. Again, they propose to combine

the semantic publish/subscribe capability of MQTT with the

information model of OPC UA to replace fieldbusses in indus-

trial applications, which supports our contribution. The authors

propose an OPC UA publish/subscribe implementation also

using the open62541 software development kit in [8]. Their

focus is on implementing it in the binary message format with

brokerless transport over time-sensitive networking-enabled

Ethernet thereby achieving realtime while our focus is on non-

realtime networks using the broker-based lightweight MQTT

protocol. The work in [9] also examines the performance

of OPC UA as a client/server variant and contrasts it with

various publish/subscribe options. Unlike in our paper, the

communication latencies that can be achieved are not based

on measurements, but on expert estimates. However, the work

offers an interesting overview of which OPC UA implemen-

tation is suitable for which application (Enterprise, human-

machine interface, control-to-control, field level). Performance

bottlenecks for OPC UA publish/subscribe communication

using typical application profiles from industrial automation

are investigated in [10]. However, the authors mainly analyze

resource utilization rather then latencies and use switches

with Internet Group Management Protocol (IGMP) support

for multicast filtering, i.e., no application-layer broker such as

an MQTT broker.

III. OPC UA PUBLISH SUBSCRIBE AMENDMENT

To prepare OPC UA for the future, the publish/subscribe

extension of OPC UA specification part 14 [4] was released

to support many-to-many, one-to-many and many-to-one com-

munication. However, the OPC Foundation is limiting the

publish/subscribe extension to the use case one-to-many. Such

a communication pattern consists of up to three entity roles.

The publisher provides its data to the network, while the

subscriber is the consumer of this information. Both entities

are defined to be decoupled, maybe also without having

knowledge about the existence of each other. Publish/subscribe

protocols are subdivided into broker-based and broker-less

middleware. A broker-based approach uses the third entity

role, the broker, to link data publisher and consumer. Both

register at the broker with their specific interest, such as topic

or queue of interest. The broker forwards data sent by a

publisher to all interested subscribers. The second type, the

broker-less middleware, delegates the broker functionality to

the underlying network technology and requires in general

apriori knowledge, such as UDP multicast addresses. The

amendment can be interpreted to be protocol agnostic. How-

ever, for the broker-based middleware, MQTT and Advanced

Message Queuing Protocol (AMQP) are highlighted and basic

mapping information is provided. UDP multicast is described

as a candidate for broker-less middleware.
An MQTT broker offers the optional feature to retain a

message and forward it later to the subscribers, supporting the

decoupling of publisher and subscriber. However, the broker

functionality is out of scope of part 14.
The amendment discusses also different types of data en-

coding for publish/subscribe communication. To send data to

the cloud or to analytics systems, JavaScript Object Nota-

tion(JSON) encoding is highlighted, especially the combina-

tion of MQTT/AMQP with JSON is presented as a common

use case. A binary data encoding that is already used in

the common OPC UA client/server communication pattern

may also be supported by publish/subscribe extensions. The

combination of UDP multicast and binary encoding, also

known as UA Datagram (UADP), is recommended for frequent

data exchange in production environments.
Applying JSON encoding in a scenario where only devices

with an OPC UA stack exist is not very advantageous because

the payload of the message is increased and OPC UA data

processing takes place after reception anyway. In case of data

distribution by an OPC UA publisher to MQTT subscribers

with no additional OPC UA stack, JSON can be a valid choice

for cloud access or data processing when no OPC UA stack

is required or possible.
Following, components are described that are defined in part

14 to extend OPC UA by publish/subscribe capabilities [11].

Component details that are beyond the scope of this paper are

not mentioned due to the high number of available parameters

in the OPC UA publish/subscribe extension.

• DataSet (DS): List of name-value pairs that contain real

values of entities in the OPC UA address space. A name-

value pair is referred to as DataSet field.

• DataSetMetaData (DSMD): Additional semantic infor-

mation about the content of DS, such as the full name of

variables and its data types. Transmitted only on demand

or change of published data.

• Published DataSet (PDS): A structure that contains the

DSs to be collected from the OPC UA address space

for publication. Further, it contains configuration and

semantic meta information (DSMD), properties, IDs of

standardized DataSets and filter functions.

• DataSetMessage (DSM): Contains the PDS and addi-

tional header information.

• NetworkMessage (NWM): Final message sent by the

publisher that can contain multiple DSMs and additional

information, such as publisher ID.

The publisher holds in Figure 1 a list of predefined Pub-

lishedDataSets and PubSubConnections and manages the pub-

lication of these data sets over the available connections. A

PubSubConnection defines the transport protocol and mid-

dleware to be used. Further, it contains the WriterGroups

that create the NetworkMessages. A WriterGroup can manage

multiple DataSetWriters and holds information for the creation

of a single NetworkMessage, such as the publishing interval.

A DataSetWriter creates a DataSetMessage out of a single

OPC UA Server

Publisher

PubSubConnection

WriterGroup

DataSetWriter

DataSet
Message

Network
Message

PublisherID
...

Post
Middleware

PubInterval
...

 PDS

PublishedDataSet
DataSet
MetaData

name:value
...

DataSet

Data Encoding
...

Fig. 1. Publisher components of OPC UA standard part 14.

PDS using a specific data encoding. One PDS can be used by

multiple DataSetWriters.

The subscriber receives in Figure 2 a NetworkMessage via

a secific middleware and forwards it internally to the Pub-

SubConnection component responsible for this middleware.

The PubSubConnection on subscriber side contains multiple

ReaderGroups. These groups orchestrate several DataSetRead-

ers and hold some common information. A DataSetReader is

responsible to receive and filter NetworkMessages and decode

the included DSMs with the help of the DataSetMetaData.

The extracted DataSets are finally processed according to

parameters defined in the component SubscribedDataSet, such

as storing the received values in objects of the local address

space. Finally, the dashed line in the Figures 1 and 2 represent

the acyclical exchange of the DSMD information. According

to OPC UA part 14, OPC UA servers and clients can be

both publisher and subscriber. However, we question the role

of the client as publisher. The amendment specifies that a

publish/subscribe implementation should support at least one

transport profile. Such a profile is a combination of specific

mappings for DSM, NWM, and transport protocol. Examples

for a transport profile are UADP binary data encoding (in-

cludes definition of header fields for DSM and NWM) over

UDP multicast or JSON encoding (with DSM and NWM

details) over MQTT (TCP). Publisher and subscriber can

therefore agree on a common transport profile. However, this

involves direct communication between both entities. An idea

to solve this issue is proposed in Section IV-A.

OPC UA Server / Client

Subscriber

PubSubConnection

ReaderGroup

DataSetReader

Post
Middleware

Filter
...DataSet

Message

DataSet
Subscribed
DataSet

Data Encoding
MetaData

Fig. 2. Subscriber components of OPC UA standard part 14.

IV. OPC UA - MQTT BINDING

OPC UA supports a subscription mechanism for the

client/server pattern, eliminating the need to frequently request

the same data to receive updates. This mechanism is still a one-

to-one connection, realized by a separate connection for each

interested client. This requires to create an individual session

and may encrypt context for each client that may leads to

a notable resource consumption, given a certain number of

interested clients. Assuming resource constrained devices in a

facility, this behaviour may represent a bottleneck in certain

use cases for the application of OPC UA in large networks.

OPC UA part 14 was published to counter this issue and

adopt best practices from the IoT domain, such as decoupling

of end devices and asynchronous communication. By applying

the publish/subscribe extension, the described bottleneck can

be avoided with the help of a broker-based middleware by

shifting the resource-intensive session management to a broker

device with sufficient resources. Alternatively, this task can be

delegated to the underlying network infrastructure by using a

broker-less middleware like UDP multicast.

Since MQTT is currently the most known communication

protocol applying the publish/subscribe pattern, we used it

to realize a prototypical implementation of the OPC UA

publish/subscribe extension. OPC UA provides the advantage

of a semantic data model that adds meta information to

the actual data to support the interpretation of data on the

receiver side. However, MQTT is advertised as a rather simple

protocol, being agnostic of the content it is transmitting.

Therefore, there is a need to bridge the gap between these

protocols by encapsulating the OPC UA data (actual data and

associated meta information) before sending it as a payload of

a MQTT message in order to reconstruct the information at the

subscriber. Although protocol mappings are described in part

14, only the UADP has been elaborated in detail, while MQTT

and AMQP are described only superficially. It is helpful that

the standard outlines the binary and JSON encoding more

precisely, since a complete mapping from OPC UA to MQTT

is currently missing. The OPC UA standard part 14 only

states that in case of a broker-based middleware the data

exchange via the broker should be parameterized according

to specifications such as queue name, routing key, and topic.

To realize a data distribution over MQTT, the WriterGroup

needs to be modified since it holds the primary configuration

flags to create the DSM. We defined the MQTT topic as one

of these parameters. Therefore, a WriterGroup is limited to

one MQTT topic and creates only NWMs with this topic in

the defined publication interval. This behaviour is compliant

with the respective definitions in part 14.

To be able to add non-OPC UA devices to the network in

future, we changed the data encoding from binary encoding

to JSON encoding. According to part 14, this parameter is

part of the DataSetWriter. Using another data encoding than

binary encoding adds the effort to distribute this convention

to all subscribers before the middleware-based communication

channel can be used.

The NWM created by the WriterGroup is finalized with

information of the PubSubConnection entity, such as its Pub-

lisherID. The message is now ready to be transmitted via

a function that realizes the MQTT publish task. However,

a registration or initial connection establishment is required

before an MQTT publisher can send messages to a broker.

After this process, the NWM can be send to the broker

according to the specified publishing interval. While the NWM

is the payload of the MQTT message, the MQTT topic, defined

in the WriterGroup, is stored in the dedicated header field

of the MQTT message. The QoS level is also defined in the

MQTT header and can be realized as an additional parameter

of the WriterGroup. The goal of this message building process

is to create an MQTT message that can be consumed by

any standard-compliant MQTT broker. Therefore, we did not

modified the broker in our scenario.

The message processing on the subscriber side is similar

to the one on publisher side. The subscriber needs to register

at the broker to declares its interest in a specific topic. This

requires again an agreement out of band between publisher

and subscriber to exchange information via a common topic.

This can either be realized in combination with the settlement

on a common data encoding or by a convention, such as a

Companion Specification (a common subset of device data).

Once receiving the MQTT message from the broker, the

OPC UA subscriber forwards the incoming MQTT message

to the PubSubConnection that has registered at the broker.

Here, the NMW is extracted from the MQTT message and

delegated to all ReaderGroups. In contrast to a WriterGroup,

the ReaderGroup simply forwards the received NWM withour

modification to its DataSetReaders. As shown in Figure 2,

a DataSetReader filters the NWM by a predefined set and

disassembles the NWM to DSMs. In a next step, the predefined

JSON encoding and the pre-exchanged DSMD are used to

Fig. 3. Concept of remote publication mechanism

decode the DSM in one step to a PDS and further into its

DataSets. As a last step, the DataSets are processed according

to instructions saved as so called subscribed DataSets. The

most simple example of such an instruction is the logging of

this data or a print to standard output of the application. This

last step can also be used to integrate the received information

into the local address space of the subscriber device, assuming

an OPC UA server.

Since our proposed OPC UA-MQTT binding is an early

version, security is currently out of scope. However, one

can rely on MQTT built-in security with the advantage of

a rather simple configuration of the existing approach MQTT

standard. This approach requires trust in the broker since the

communication is only secured on the subsections publisher-

broker and broker-subscriber. On the other hand, a complete

end-to-end security between publisher and subscriber would

require shared key material between all subscribers.

Currently, the exchange of DSMD is not fully integrated. A

simple solution could be the definition of a separate topic at

the broker.

A. Remote Publication Mechanism

Although the proposed concept used to enable a broker

based publish/subscribe data exchange is convenient for pro-

viding an efficient data distribution using MQTT, it adds con-

straints for the subscriber regarding the client features of OPC

UA, such as the ability to control and browse the data provided

by the publisher. The reason behind these constraints is based

mainly on the new release part 14 of OPC UA standard, the

decoupling of publisher and subscriber as well as the one way

principle of publish/subscribe pattern. Hence, the subscriber

has no control over the data published by the publisher.

Therefore, we propose the idea to extend the publish/subscribe

concept in order to circumvent this limitation. The subscriber

shall be able to control the data published by the publisher.

An temporary feedback channel using client/server pattern

between subscriber and publisher allows the subscriber to

browse and modify the data in the address space of the

publisher. The feedback channel is illustrated in Figure 3. In

a next step, a new object is defined in the address space of

Fig. 4. Simple OPC UA data model of a material handling crane.

the publisher. The object contains a PublicationList method

that requires an array as input argument. The subscriber can

invoke this method by using the feedback channel and provide

an array with NodeIds of all data it is interested in to be

published via publish/subscribe communication. Consequently,

the publisher defines a new PDS, and adds DS fields accord-

ing to the NodeId array. The last step is the modification

of the WriterGroup and DataSetWriter that are part of the

publish/subscribe extension.

V. EVALUATION AND RESULTS

This section contains a description for the testbed, scenarios

and measurements used to evaluate the implementation of the

proposed concept. As a basis we used the open source OPC

UA implementation open62541 for C programming language.

We created the data structure of a crane from the material

handling domain in the address space of the server, see

Figure 4. Selected variables of this model are published via

different communication channels to evaluate our solution.
The testbed consists of a 100 Mbps full duplex switch and

two end devices represented by Raspberry Pi 3 development

boards. A router with DHCP and NTP servers is connected to

the switch to provide IP addresses and time synchronization

to the end devices.
We conducted measurements to evaluate the OPC UA

performance using the three different communication chan-

nels client/server subscription, publish/subscribe using UDP

multicast (UADP), and publish/subscribe using MQTT. First,

the performance of OPC UA is evaluated regarding the overall

transmission time of data form the OPC UA address space for

the three different kinds of communication mentioned before.

In a next measurement, we focus on the OPC UA performance

using the MQTT channel and investigate the influence of

different messages sizes on the communication.

A. Comparison of OPC UA communication channels
In this experiment, we measure the time required to ex-

change data between pure OPC UA client and server (subscrip-

tion) as well as between OPC UA publisher and subscriber

extensions in order to evaluate the performance for the differ-

ent communication channels. The communication partners are

located on different end devices in the network.
For the subscription via the client/server pattern, the mea-

surement starts when the subscription request of the client is

Fig. 5. Average of latency measurements.

confirmed by the server. The measurements stops when the

client receives a notification message from the server. The

OPC UA server responds immediately after subscription with a

first notification containing the current value of the subscribed

variable.

In case of OPC UA publish/subscribe pattern with UADP,

we measure the latency between subscriber and publisher

using UDP as with OPC UA binary data encoding. Since

this communication represents a broker-less middleware, the

publisher sends its data to a predefined multicast address,

while the subscribers listen to this network address. The

measurement starts when the publisher sends its data and stops

after the subscriber receives the published message.

The measurement of OPC UA publish/subscribe using

MQTT with JSON data encoding is conducted as follows.

We apply the open source MQTT broker from the Mosquitto

project in our testbed. Therefore, three devices are involved in

the data exchange. The publisher publishes and the subscribers

subscribe to a specific MQTT topic at the broker. We defined

two timing measurements in the communication flow. The first

one is taken directly after the publisher sends a message to the

broker. The second timestamp is taken when the subscriber

received the forwarded message.

The average transmission time for each communication

channel is presented in Figure 5. The delay to exchange a

message using the client/server pattern is quite high compared

to the time required to send the same message using one of

the publish/subscribe channels. The communication between

the publisher and subscriber using MQTT requires more time

to exchange a message than the UADP variant. One reason

is the delay introduced by the broker to process and forward

the message. The UDP-based communication channel does not

require this processing time as there is no broker in between.

B. Influence of message sizes on OPC UA communication via
MQTT

The timestamps created in this scenario are basically similar

to the former test with MQTT. However, we added two

measurements on the broker. The first timestamp defines the

point in time shortly after the broker received the published

message. The second one is created right after the broker has

forwarded the message to the subscriber. Figure 6 depicts an

overview of these timing measurements.

Figure 7 shows the different averaged delay for every part of

the communication between publisher and subscriber. The time

Fig. 6. Overview of latency measurements.

Fig. 7. Latency by number of transmitted OPC UA variables

required to receive the published message by the subscriber is

increasing progressively as the message length increases. The

latency between broker and subscriber shows an unexpected

growth in transmission time regarding the size of message

when compared to publisher-broker delay. The delay generated

by the broker during processing and filtering the published

message is almost constant for all message sizes. This confirms

that MQTT is agnostic of the payload and its task is limited

to filtering the incoming message based on the topic.

VI. CONCLUSION

The OPC UA standard with amendment part 14 provides

a comprehensive solution for data distribution in industrial

networks. It has the ability to map onto many communication

protocols such as UDP and MQTT, improving the flexibility

of industrial production and the interoperability between in-

dustrial systems. Additionally, it solves the scalability issue

by supporting one-to-many communication with its new pub-

lish/subscribe part 14. In this work, OPC UA with its semantic

data model has been extended by MQTT following the OPC

UA publish/subscribe amendment to enable a broker-based

data exchange. As both OPC UA and MQTT have different

messaging concepts, the data mapping issue between OPC UA

and MQTT has been solved in this work. In addition, we

have proposed a remote publication mechanism as an extended

approach. Using this mechanism, subscribers have the ability

to control the data published via MQTT. Our evaluation

showed that OPC UA using client/server subscription creates

the largest delay for a data exchange between client and server.

OPC UA publish/subscribe using UDP has advantages to send

data in a local area network, as it generates a small overhead

and the transmission time is lower when compared to our

broker-based middleware using MQTT. On the other hand,

OPC UA Publish/Subscribe using MQTT has the advantage

of aggregating data in an effective way and also sending it

into the cloud. Furthermore, the broker-less approach requires

special network hardware such as IGMP switches, which can

lead to high costs. A possible use case could be a monitoring

device that is not bound to latency requirements and aggregates

sensor information across the entire facility to send it to the

cloud.
In future work, we will investigate the performance of this

implementation in a larger network with multiple subscribers

and test it against the other OPC UA communication channels.

ACKNOWLEDGEMENT

This work has been achieved in the European ITEA

project ”OPTimised Industrial IoT and Distributed Control

Platform for Manufacturing and Material Handling” (OPTI-

MUM) and has been funded by the German Federal Ministry

of Education and Research (BMBF) under reference number

01IS17027. We want to thank all partners in the OPTIMUM

project for the stimulating discussions and their contribu-

tions to the project. All project partners can be found on

https://itea3.org/project/optimum.html.

REFERENCES

[1] P. Drahoš, E. Kučera, O. Haffner, and I. Klimo, “Trends in industrial
communication and opc ua,” in 2018 Cybernetics & Informatics (K&I).
IEEE, 2018, pp. 1–5.

[2] M. Schleipen, S.-S. Gilani, T. Bischoff, and J. Pfrommer, “Opc ua &
industrie 4.0-enabling technology with high diversity and variability,”
Procedia Cirp, vol. 57, pp. 315–320, 2016.

[3] H. Renjie, L. Feng, and P. Dongbo, “Research on opc ua security,” in
5th IEEE Conference on Industrial Electronics and Applications, 2010.

[4] OPC Foundation, “OPC Unified Architecture Specification, Part14:
PubSub,” 2018.

[5] M. S. Rocha, G. S. Sestito, A. L. Dias, A. C. Turcato, and D. Brandão,
“Performance comparison between opc ua and mqtt for data exchange,”
in Workshop on Metrology for Industry 4.0 and IoT. IEEE, 2018.

[6] S. Profanter, A. Tekat, K. Dorofeev, M. Rickert, and A. Knoll, “Opc
ua versus ros, dds, and mqtt: performance evaluation of industry 4.0
protocols,” in Proceedings of the IEEE International Conference on
Industrial Technology (ICIT), 2019.

[7] P. Nenninger, M. Gierl, and R. Kriesten, “A contribution to publish-
subscribe based communication in industrial applications,” in 2019
IEEE 10th Annual Information Technology, Electronics and Mobile
Communication Conference (IEMCON). IEEE, 2019, pp. 0424–0429.

[8] J. Pfrommer, A. Ebner, S. Ravikumar, and B. Karunakaran, “Open source
opc ua pubsub over tsn for realtime industrial communication,” in 2018
IEEE 23rd International Conference on Emerging Technologies and
Factory Automation (ETFA), vol. 1. IEEE, 2018, pp. 1087–1090.

[9] A. Eckhardt, S. Müller, and L. Leurs, “An evaluation of the applicability
of opc ua publish subscribe on factory automation use cases,” in 2018
IEEE 23rd International Conference on Emerging Technologies and
Factory Automation (ETFA), vol. 1. IEEE, 2018, pp. 1071–1074.

[10] A. Burger, H. Koziolek, J. Rückert, M. Platenius-Mohr, and
G. Stomberg, “Bottleneck identification and performance modeling of
opc ua communication models,” in Proceedings of the 2019 ACM/SPEC
International Conference on Performance Engineering, 2019, pp. 231–
242.

[11] W. Mahnke, OPC Unified Architecture OPC
UA PubSub. Unified Automation, 2018. [Online].
Available: https://industrie40.vdma.org/documents/4214230/27125486/
4 PubSub Mahnke 1542713548405.pdf

