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Abstract—Indoor positioning plays an increasingly important
role in industrial spaces. Self-localizing autonomous machines are
already well established and indoor positioning for pedestrians
increases safety and productivity when interacting with (semi)
autonomous machines. Positioning methods for pedestrians com-
monly use wearable or handheld sensors that rely on extensive
calibration to tune gait detection heuristics. We present a method
to automatically derive the target variables of these heuristics,
stride length and stride orientation, for each individual user
stride by using parallel location measurements during normal
operation. We show that our method fits real world measurements
of stride length. Additionally, we conduct simulations to verify the
variance and bias of the derived stride length and orientation at
varying accuracies of the reference position measurements. Our
method provides a means for online annotation of raw data for
pedestrian positioning, enabling both the online calibration of
gait detection heuristics as well as data annotation for machine
learning applications.

Index Terms—Ultra-Wideband, Pedestrian Dead Reckoning,
Stride Length, Virtual Sensor, Data Annotation

I. INTRODUCTION

Indoor positioning for pedestrians is increasingly relevant
for applications in modern industrial and public spaces, as
it enables a wide range of location aware digital services:
Reliable location updates allow workers to collaborate safely
and efficiently with machinery and visitors are guided to
their destination in places like hospitals, shopping centers or
conventions. Additionally, indoor localization in living spaces
is explored as a means of smart assistance for the elderly [1].

Two key technologies enable indoor localization: Infras-
tructure based systems with fixed base stations and mobile
transceivers, and systems based on wearable Inertial Mea-
surement Units (IMU). Among the Infrastructure based ap-
proaches, Ultra-Wideband (UWB) is becoming increasingly
popular as it can provide high-frequency centimeter-level
accuracy at reasonable cost [2]. Wearable IMUs, on the other
hand, enable tracking of a user’s path by detecting steps
and their orientation. This approach is called Pedestrian Dead
Reckoning (PDR) [3].

The two approaches complement each other. While UWB
provides location updates in the world reference frame, PDR
tracks location change more closely. In addition, PDR works
independently of infrastructure and can be used to bridge areas
without UWB coverage, such as factory floors divided by a

corridor [4]. However, because PDR measures only the change
of location, it is dependent on sporadic updates by absolute
references, e.g. by an UWB-System. In addition, many PDR
approaches rely on regression-based models that convert the
raw inertial data into the user’s step length and orientation.
Such models need a reference (dependend variable) to tune
their parameters, i.e. the current length and orientation of a
users step.

Therefore, it is necessary to convert UWB data into a virtual
measurement of the step that allows online calibration of the
PDR method to limit its drift and serve as a reference for
tuning the regression-based PDR.

In this work, we develop a model of consecutive UWB
measurements and their distribution during a user’s stride1.
Based on this model, we derive an approach to derive length
and orientation of individual strides by statistically analyzing
a set of noisy UWB measurements. We call the resulting set
of length and orientation the virtual stride vector. The method
is validated by comparison with reference measurements and
by simulations.

This paper is structured as follows: Section II describes
related work regarding previous methods of stride or step
estimation. The construction of the virtual stride vector is
presented in Section III. The evaluation approach is described
in Section IV and the results of the evaluation are presented in
Section V. Section VI provides an analysis of the sources of
stride length bias in the results. Final conclusions are drawn
in Section VII.

II. RELATED WORK

The Zero Velocity Update (ZUPT) method produces com-
paratively accurate estimates of the stride length and direction.
It is based on double integration of inertial measurements of
the users’ foot, resulting in an estimate of the stride length and
direction change. The method is exploiting the short moments
of stand-still during contact of the foot with the ground. During
this stance phase, the velocity estimate of the integrated inertial
measurements is reset to zero. Consequently, the long term

1There is a distinction between step and stride: A stride refers to the
movement of one foot from ground contact (stance) via swing to ground
contact. A step on the other hand refers to the ground contact of either foot.
The length of one stride is therefore twice the step length.



accumulation of errors is mitigated with each stride of the
user [5]. In order to use ZUPT, the IMU has to be attached to
the foot of the user, which may hinder widespread adaptation
of this method [6].

Methods for estimating stride length using sensors that
are not attached to the foot but are held in the hand or
worn on other parts of the body are more common. These
methods depend on heuristics with either tunable parameters,
knowledge of the users height or leg length, or both [7]–
[9]. However, because of the parameter tuning required, none
of these methods are guaranteed to work well on new users
without repeated adjustment of these parameters.

The calibration of stride length or orientation with simul-
taneous reference measurements has been explored in other
works: Orientation and postion calibration of PDR is presented
in [10]. However, step length calibration is left as future
work. The combination of low-frequency position updates by
a global navigation system to calibrate PDR is presented in
[11]. The authors of [12] present a scheme of combined PDR
and UWB positioning with orientation drift compensation and
online step length estimation. It is unclear however, how
the reference for the step length is derived from UWB and
if certain requirements of the users gait, such as walking
in a straight line, must be met. The challenge of deriving
an absolute reference for the orientation (not the orientation
change) is left open.

Recently, machine learning methods are used for PDR [13].
One work employs unsupervised training on neural networks
to mitigate the problem of scarce labled data at the cost of
reduced accuracy [14].

The aforementioned methods depend on reference data to
tune step length heuristics or try to cope with limited annotated
data at the cost of accuracy. The methods that do employ
online calibration offer no complete solution for a reference
of both step length as well as orientation from high-frequency
location updates.

To solve this problem, we present a method that provides a
ground truth for stride length estimation as well as the stride
orientation from UWB measurements at runtime. This data
may be used to calibrate a PDR system in real time, or to
annotate raw data with an estimate of the stride length and
orientation.

III. CONSTRUCTION OF VIRTUAL STRIDE VECTOR FROM
UWB MEASUREMENTS

The virtual stride vector V is constructed from two polar
components: the stride orientation φ̃ and the stride length ϱ̃.
This vector maps the relative motion of a person’s foot from
stance phase to stance phase.

V =

(
ϱ̃ · cos(φ̃)
ϱ̃ · sin(φ̃)

)
(1)

The polar coordinates are obtained by statistical analysis of
a set P of n consecutive UWB position measurements, which
are modeled as realizations of the random vector P = (X,Y ).
A sample Pi at time i is thus composed of realizations on

the x- and y-axes of the coordinate system within which the
positioning by UWB occurs. The samples are collected in the
sets X = {X0, X1, . . . , Xn−1} and Y = {Y0, Y1, . . . , Yn−1}:(

Xi

Yi

)
= Pi ∈ P ⊂ R2 with 0 ≤ i < n (2)

The set P is sampled during one whole stride of the user,
which is detected by separate step detection scheme.

In the following chapters III-A and III-B the stride orienta-
tion φ̃ and stride length ϱ̃ are derived, respectively.

A. Principal Component Analysis and Stride Orientation

The basis of the following calculations is a principal com-
ponent analysis of the (sample) covariance matrix Σ of P :

Σ =

(
V ar(X) Cov(X,Y )

Cov(Y ,X) V ar(Y )

)
(3)

The first principal component maps the orientation and
magnitude of the dominant dispersion in P . The dispersion
along this component is mainly generated by the locomotion
of the user.

For the principal component analysis, it is necessary to
first find the eigenvalues λ = (λ1, λ2) and the corresponding
eigenvectors v = (v1, v2) by solving the eigenvalue problem

0 = (Σ− λI2)v (4)

Without further proof, the solution of this problem results in
the following eigenvalues and eigenvectors with a = V ar(X),
b = Cov(X,Y ) = Cov(Y ,X) and c = V ar(Y ):

λ1/2 =
1

2

(
±
√
(a− c)2 + 4b2 + a+ c

)
(5)

v(λ) =

(
b

λ− a

)
=

(
λ− c
b

)
(6)

The desired first principal component is defined by the
largest eigenvalue λmax = max(λ1, λ2) and the correspond-
ing eigenvector v(λmax). This eigenvector can now be used
as an estimate of the direction of motion. A check of cosine
similarity with the history of UWB measurements determines
the mirroring of the motion vector:

r⃗ =

(
rx
ry

)
= v(λmax) · sgn((Pn−1 − P0) · v(λmax)) (7)

with sgn() as the signum function. The translation of the
direction vector into the desired orientation angle φ̃ of the
virtual stride vector is trivial:

φ̃ = atan2(ry, rx) (8)



B. Stride Length through Variance Decomposition

The length of the virtual stride vector ϱ̃ is determined
by an analysis of the composite sample variance along the
direction vector. This composite variance is composed of an
equidistributed and a normally distributed component.

First, a model that describes the realization of the sample P
is developed. Then, the composite variance is dissected and a
formula for calculating the stride length from the two principal
components of the sample covariance matrix of P is derived.

The UWB samples Pi ∈ P with 0 ≤ i < n and sample size
n are equidistributed over the actual stride length ϱ along the
stride direction r⃗:

Pi = P0 + i · ϱ
n
· r⃗

∥r⃗∥
+ εi (9)

The normally distributed noise component εi of the in-
dividual UWB measurements is assumed to be isotropically
distributed and thus estimated by the smallest principal com-
ponent λmin:

εi ∼ N (0, σ2
rI2) with σ2

r ≈ λmin = min(λ1, λ2) (10)

The following calculations relate to the magnitude of the
sample variance SP = λmax component. Thus, for clarity,
the following calculations omit vector space notation and are
performed in scalar space along the direction vector of the first
principal component r⃗.

It can be shown that SP is itself a random variable com-
posed of a constant, normally distributed and chi-squared
distributed random variables.

SP =
1

n− 1

n−1∑
i=0

(Pi − E[P ])2 = λmax

=
1

n− 1

[
ϱ2

12

n2 − 1

n
+A1 +A2 + σ2

rB

] (11)

The random variables A1, A2 and σ2
rB have the following

distributions:

A1 ∼ N
(
0,

ϱ2(n− 1)2

n
σ2
r

)
A2 ∼ N

(
0,

2ϱ2(n− 1)(2n− 1)

3n
σ2
r

)
σ2
rB ∼ σ2

rχ
2
n−1

(12)

We will continue to work with the expected value E[SP ],
in order to extract the underlying stride length.

E[SP ] =
ϱ2

12

(
1 +

1

n

)
+ σ2

r (13)

The composite variance SP can also be described by
variance decomposition:

V ar(P ) = E[V ar(P |d)] + V ar(E[P |d]) (14)

Where P is the UWB measurement and d is the distance
traveled along the current stride (0 ≤ d ≤ ϱ). Here, V ar(P )
is estimated by SP :

V ar(P ) = E[SP ] ≈ SP = λmax (15)

An estimate is also available for E[V ar(P |d)] by the
magnitude of the second principal component λmin:

E[V ar(P |d)] = V ar(ε) = σ2
r ≈ λmin (16)

This now allows us to estimate the last unknown term
of (14). The variance component of the UWB measurement
induced by locomotion alone results in:

V ar(E[P |d]) = E[SP − σ2
r ] ≈ λmax − λmin

=
ϱ2

12

(
1 +

1

n

)
(17)

Finally, rearranging to ϱ and using the estimated variances
from the principal component analysis, the length of the virtual
stride vector ϱ̃ is:

ϱ̃ =

√
12n

n+ 1
(λmax − λmin) ≈ ϱ (18)

IV. EXPERIMENTAL SETUP

Our method is verified using simulations of the model
described in (9) and with comparisons to actual measurements
using a ZUPT system. All simulations assume an actual stride
length of 1.4 m and 8 samples per stride, which is the average
stride length and sample count in our real world comparison.

In the real world test, a Hillcrest FSM-9 IMU is attached to
the top of the users foot and is sampling at a rate of 125 Hz.
The corresponding ZUPT algorithm is described in [15]. The
algorithm detects swing and stance phases of the users gait
and produces estimates of the stride length at the beginning
of a each stance phase. The ZUPT thesholds were adapted to
each user individually.

The UWB system by COMNOVO is producing location
measurements at a frequency of 7.15 Hz. The tests are carried
out in the Demag Research Factory hall, shown in Figure 1,
in an area of about 8 m by 22 m with 8 UWB base stations
evenly distributed above the factory floor. Here, three users
were instructed to walk along fixed paths around the hall with
a handheld UWB-Transceiver. UWB data was segmented at
the beginning of each stance phase. The paths that the users
walked and the placement of the UWB base stations is shown
in Figure 2. Each path was walked five times from start to end
by each user.

Both the IMU and the UWB transceiver were connected via
USB to a Raspberry Pi 3, which recorded the data.



Fig. 1: The environment of the experiment at the Demag
Research Factory
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Fig. 2: The two paths, GT S and GT P, walked in the
experiment and the placement of the UWB base stations (BS).
All units in meters.

V. EXPERIMENTAL RESULTS

In the previous chapters, the estimates of stride orientation
φ̃ (8) and stride length ϱ̃ (18) were derived. This chapter now
evaluates how random errors influence these estimates and how
well the stride length estimate compares to real measurements
of a ZUPT system. This is done through boxplots to visualize
and compare the respective error distributions. It should be
noted, that the whiskers of all plots are chosen to enclose
90 % of the samples.

First, the distribution of stride length estimation error is
simulated for a range of typical UWB noise variances. Figure
3 shows the results of the simulation.

It is apparent that the error of the estimated length increases
with the noise of the UWB system. There is also a slight
increase in the median error, indicating a small systematic bias
in the step length estimate that increases with UWB noise.

The distribution of the measured stride length error in
the real-world experiment is shown in Figure 4. The real
distribution fits the simulated ones at noise standard deviations
between 0.12 m and 0.14 m. Like the simulation, it also
exhibits a slight positive bias, here at an average of 0.0248 m.

When comparing the reference and simulation data, it
should be noted that the virtual stride length estimates are
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Fig. 3: The error distribution of the stride length estimate using
10 000 simulated strides with exactly 1.4 m length and 8 UWB
samples per stride.
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Fig. 4: The error distribution of stride length estimates from
real UWB data compared to simultaneous measurements by
ZUPT with 355 strides ranging between 1.2 m and 1.6 m length
and an average of 8 UWB samples per stride.

compared to the inexact measurements by ZUPT. Thus, the
actual error distribution of the presented method is expected
to be smaller than the one shown in Figure 4.

Finally the error in the orientation estimate is simulated.
The results are shown in Figure 5. It can be seen that the
orientation error increases with increasing UWB noise. There
is no apparent bias in the orientation estimate.

An example of the ZUPT measuremts, virtual stride vectors
and the corresponding simulations is shown in Figure 6. Figure
6a shows the simulated realizations of noisy UWB measure-
ments and their corresponding virtual stride vectors based on a
single reference stride. Here, the varying orientation and length
of the individual realizations is clearly visible. In Figure 6b,
the variation of the stride vector length compared to the ZUPT
measurements can be seen. The ZUPT measurements and the
corresponding virtual stride vectors are shifted and rotated to a
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Fig. 5: The error distribution of the stride orientation estimate
using 10 000 simulated strides with exactly 1.4 m length and
8 UWB samples per stride.

common origin and orientation, due to a missing ground truth
for the true orientation of the individual strides.

The following chapter provides an analysis regarding the
sources of bias in the step length estimate.

VI. SOURCES OF STEP LENGTH BIAS

We identify two systematic sources of bias that skew the
accuracy of stride length estimation:

Bias 1: The first principal component of the scattered UWB
measurements never corresponds exactly to the movement
direction. This can be seen, for example, in the varying
orientation of the simulated virtual stride vectors in Figure
6a. As such, the variance in the walking direction tends to
be overestimated, while the variance orthogonal to it tends to
be underestimated. Consequently, the estimate of the variance
component V ar(E[P |d]) = E[SP − σ2

r ] ≈ λmax − λmin

introduced in (17) has a positive bias.
Bias 2: The transformation of the variance estimate to the

step length, on the other hand, is subject to a negative bias. Due
to the nonlinear transformation between the variance estimate
and the step length estimate ϱ̃, under- and overestimated
variances have an unequal influence on ϱ̃.

According to Jensen’s inequality for a concave function
f(x) such as (18):

f(E[x]) ≥ E[f(x)] (19)

With the expected value of the estimate of the uniformly
distributed variance component

E[SP − σ2
r ] ≈ E[λmax − λmin] (20)

this results in:

f(E[λmax − λmin]) ≥ E[f(λmax − λmin)] (21)
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(a) Simulated strides of exactly 1.4 m length
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(b) Real strides between 1.2 m and 1.6 m length. Shifted into the
coordinate origin and rotated.

Fig. 6: The distribution of (on average) eight UWB measure-
ments along 125 strides in the xy-plane and the derived virtual
stride vectors

Which expands to:√
12n

n+ 1
E [λmax − λmin]

≥ E

[√
12n

n+ 1
(λmax − λmin)

]
(22)

Thus, the expected value of the individual step length
estimates is smaller than the step length estimated from the ex-
pected value of the variance estimates. In other words, assum-
ing that the expected value E[SP −σ2

r ] ≈ E[λmax−λmin] has
no bias (i.e. corresponds to the true variance V ar(E[P |d])),
the step length estimate turns out to be too small on average,
even if the underlying variance is correct on average. However,
it was established as bias 1 that E[SP−σ2

r ] < E[λmax−λmin].



Accordingly, the two effects are expected to partially cancel
each other out.

VII. CONCLUSION

We present a method to derive individual stride lengths
and orientations from a series of position measurements.
Because we analyze the trend of position measurements in the
users’ absolute reference frame, we can derive the absolute
orientation of individual strides. This may be used to tune
pedestrian localization with inertial sensors, i.e. to calibrate
stride length and orientation heuristics, for arbitrary user paths.
The derived virtual strides can also serve as annotations for
machine learning based PDR. We verify the stride length
estimate with reference measurements by a ZUPT system.
Additionally, we provide simulations that show the evolution
of bias and variance of the derived parameters at varying noise
levels of the positioning reference data. Lastly, the sources
of step length bias are analyzed, which provides a basis for
further research to predict and compensate it.

A limitation of our method could be the slight positive bias
in the stride length estimates (less than 3 cm in the real world
test). The variance of the virtual estimates should be mitigated
by simply collecting more data for use as a target variable in
a regression task.
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