
Design Space Exploration
at the Electronic System Level⋆

Luise Müller[0000−0002−3924−5852] and Christian Haubelt[0000−0002−1568−5423]

Applied Microelectronics and Computer Engineering, University of Rostock, Germany
{luise.mueller,christian.haubelt}@uni-rostock.de

1 Introduction

The continuous advance of application-specific computer systems has made tech-
nology more accessible and affordable to various domains, industries and con-
sumers. Simultaneously, the demands for the system’s performance, reliability
and energy consumption have increased drastically. Regarding the complexity of
individual systems, including the number of internal components, processes and
their heterogeneity, a vast number of design decisions have to be made in the de-
velopment process. Therefore, an efficient Design Space Exploration (DSE; [7]) is
essential to enable a product designer to identify valid system implementations
as well as the most favorable design alternatives. Our project aims at improving
the DSE based on Answer Set Programming (ASP) and investigating ways to
handle the enormous complexity of real-world examples.

2 Design Space Exploration

In the context of design space exploration for application-specific computer sys-
tems, we aim at finding feasible and preferably optimal solutions to the system
synthesis problem, i.e., we look for the best transformation of a specification of
a computer system into its implementation. The specification consists of three
main aspects: the application, which contains a graph-based high-level descrip-
tion of the system’s behavior; the architecture template, defined as a heteroge-
neous hardware platform organized as a mesh-based network on chip at the elec-
tronic system level; and mapping options indicating how the application graph
could be mapped to the hardware template. The implementation represents the
structure and characteristics of the final system, including decisions on the fol-
lowing synthesis steps: allocation, binding, routing and scheduling. The binding
selects for each task of the application one processing unit from the hardware
template for execution, while the routing ensures that messages from communi-
cating tasks are correctly delivered through the network. Accordingly, the used
hardware resources are allocated. Finally, the scheduling assigns start times to
all tasks and communications so that there are no conflicts during the execution
of the applications.
⋆ Supported by the German Science Foundation (DFG) under grants HA 4463/4-2.



2 L. Müller and C. Haubelt

By assigning worst-case execution times to tasks and energy consumption
and costs to resources, we can optimize three objectives, namely latency, energy
consumption and hardware cost. The quality of each solution is evaluated via
a Pareto preference, i.e., a design point is better if it is at least as good in all
criteria and strictly better in at least one when compared to other design points.

A compact representation of the vast design space is achieved by a symbolic
encoding of the system synthesis problem. That way, the design space exploration
is reduced to computing stable models, i.e., answer sets. Within, each variable
assignment, meeting all specified system requirements and hardware constraints,
represents a feasible implementation.

Our framework is based on ASP. ASP supports expressing reachability, which
allows the efficient encoding of multi-hop message routing in densely connected
networks [2]. Further, ASP is tailored to knowledge representation and reasoning,
but since it is inefficient for numerical problems, we rely on an extension to
the ASP solver clingo, namely clingo-dl [4], which supports integer difference
constraints. Validity checks regarding the schedulability as well as the Pareto
optimization are tightly integrated into clingo’s theory interface via background
theories [6]. Hence, we can handle non-linear objectives and also check partial
solutions to identify infeasible or dominated regions of the design space early.

3 Challenges

Despite enhancements in the solving process, deciding on a valid implementa-
tion of a system remains a NP-complete problem. Among other things, problem
complexity scales with the size of the problem instances, i.e., with the number of
tasks, communications and hardware resources. Especially real-world examples
can be extremely complex, and thus, the vast design space cannot be exhaus-
tively explored in a reasonable time. In this case, when we stop the search after a
certain timeout, we cannot provide any information whether the optimal solution
has been discovered nor how much of the design space remains unexplored. We
see the need for a search space coverage tool for the ASP solver, e.g., following
the approaches of Aloul et al. [1] or of Schuurmans and Southey [8].

An approach to handling the enormous complexity is to exploit the available
ASP methods by, e.g., restricting the size of the feasible search space or guid-
ing the search towards desired solutions. This usually requires domain-specific
knowledge of the problem definition and the instances. Considering industrial
product design strategies, we have investigated the use case of evolutionary prod-
uct design [3, 5]. Given a launched product, the goal is to guide the development
process of a derived product based on the knowledge of equal and unequal design
decisions. Thus, we offer a formalized definition of the similarity information and
employ strategies, domain-specific heuristics or preferences. Adapting the DSE,
we can find good solutions, that are close to the previous product version, early.

Nevertheless, to be able to handle the complexity of real-world examples,
we plan to further investigate efficient solution approaches based on iterative or
evolutionary search organization, symmetry detection and task graph clustering.



Design Space Exploration at the Electronic System Level 3

References

1. Aloul, F., Sierawski, B., Sakallah, K.: Satometer: how much have we searched? In:
Proceedings 2002 Design Automation Conference (IEEE Cat. No.02CH37324). pp.
737–742 (2002). https://doi.org/10.1109/DAC.2002.1012720

2. Andres, B., Gebser, M., Schaub, T., Haubelt, C., Reimann, F., Glaß, M.: Symbolic
System Synthesis Using Answer Set Programming. In: Cabalar, P., Son, T.C. (eds.)
Logic Programming and Nonmonotonic Reasoning. pp. 79–91. Springer Berlin Hei-
delberg, Berlin, Heidelberg (2013)

3. Haubelt, C., Müller, L., Neubauer, K., Schaub, T., Wanko, P.: Evolution-
ary system design with answer set programming. Algorithms 16(4) (2023).
https://doi.org/10.3390/a16040179

4. Janhunen, T., Kaminski, R., Ostrowski, M., Schellhorn, S., Wanko,
P., Schaub, T.: Clingo goes linear constraints over reals and integers.
Theory and Practice of Logic Programming 17(5-6), 872–888 (2017).
https://doi.org/10.1017/S1471068417000242

5. Müller, L., Neubauer, K., Haubelt, C.: Exploiting similarity in evolutionary prod-
uct design for improved design space exploration. In: Orailoglu, A., Jung, M., Re-
ichenbach, M. (eds.) Embedded Computer Systems: Architectures, Modeling, and
Simulation. vol. 13227, pp. 33–49. Springer International Publishing, Cham (2022)

6. Neubauer, K., Wanko, P., Schaub, T., Haubelt, C.: Enhancing symbolic system
synthesis through ASPmT with partial assignment evaluation. In: Design, Automa-
tion & Test in Europe Conference & Exhibition (DATE), 2017. pp. 306–309. IEEE,
Lausanne, Switzerland (Mar 2017). https://doi.org/10.23919/DATE.2017.7927005

7. Pimentel, A.D.: Exploring exploration: A tutorial introduction to embedded sys-
tems design space exploration. IEEE Design & Test 34(1), 77–90 (Feb 2017).
https://doi.org/10.1109/MDAT.2016.2626445

8. Schuurmans, D., Southey, F.: Local search characteristics of incom-
plete sat procedures. Artificial Intelligence 132(2), 121–150 (2001).
https://doi.org/https://doi.org/10.1016/S0004-3702(01)00151-5


