
In: M.H. Hamza (ed.), Proceedings of the 21st IASTED Conference on Applied Informatics, pp. 1278-1283.

Held February, 10-13, 2003, Insbruck, Austria

Evolving High-Dimensional, Adaptive Camera-Based Speed Sensors
Ralf Salomon

Department of Electrical Engineering and Information Technology
University of Rostock, 18051 Rostock Germany

email: ralf.salomon@etechnik.uni-rostock.de

ABSTRACT
This paper reviews some attempts that exploit a phe-
nomenon, also known as motion parallax, to estimate the
distance of closest approach of a moving object. Despite
their success, the existing methods lack some desirable
properties, such as reasonable scalability and online learn-
ing. To overcome these practically-relevant limitations, this
paper proposes a new model that is based on Hebbian learn-
ing. Due to its scalability and online learning capabilities,
this model is especially suited to mobile robots.
KEY WORDS
Intelligent Agents, Robotics, Computer Vision

1 Introduction

Since the beginning of the 90ies a new research area has
emerged, for which Brooks has coined the term new arti-
ficial intelligence (new AI for short). New AI aims at un-
derstanding (natural) intelligence and its underlying mech-
anisms by building systems that exhibit “intelligent” be-
havior [1, 2, 7]. These systems are often realized as mo-
bile robots, which are supposed to operate in dynamically
changing, partially unknown environments without any hu-
man control (that is why they are attributed autonomous).
New AI prefers a synthetic approach, i.e., understanding by
building. In order to reach its research goals, new AI draws
a significant amount of inspiration from natural systems.
It therefore often investigates (biological) hypotheses and
aims at validating them in simulation or on particularly-
designed robots.

Even though the ultimate goal is to build physical
robots, most attempts resort to simulation for obvious lim-
itations of evolvable hardware available today (see, for ex-
ample, the conference series Simulation of Adaptive Behav-
ior), A very nice exception is the eyebot on which Licht-
ensteiger and Eggenberger have evolved simplified insect
eyes [6]. Section 2 briefly explains how Lichtensteiger
and Eggenberger used evolutionary algorithms to evolve
the eye’s morphology that allows the robot to consistently
estimate the distance of closest approach. Despite its suc-
cesses, previous research [6, 8] has indicated that this ap-
proach is practically limited to about 10-20 sensors, since
the evaluation of a particular sensor distributions requires
approximately one minute on a physical robot.

Furthermore, evolutionary algorithms, like

backpropagation-type learning procedures, require a
preselected training set for offline learning and thus lack
any online adaptation capabilities. By way contrast, living
creatures are inherently adaptive, scale very well over
their visual system, and apparently do not suffer from
overlearning effects (that much). Section 3 proposes a
new, simple model that achieves these design goals to a
large extent by using a simple Hebbian-based learning
rule. Section 3 also discusses some of the model’s basic
properties.

Sections 4 and 5 discuss the methods and results of
some representative experiments. The results show that
the proposed learning method is able to train the network
model such that it can consistently determine the robot’s
speed and thus can determine the distance of closest ap-
proach. Section 6 concludes with a brief discussion.

2 Background and Previous Research

2.1 The Eyebot

Inspired by biological evidence [3, 4, 5], Lichtensteiger
and Eggenberger [6] constructed a robot, called eyebot,
to model the eye of an insect, such as the house fly. The
robot consists of a chassis, an on-board controller, and six-
teen independently-controllable facet units, which are all
mounted on a common vertical axis. A facet unit basically
consists of the sensor, a thin tube, two cog-wheels, a mo-
tor, and a potentiometer. By means of the cog-wheels, the
motor can position the facet within a range of about 200
degrees, and the potentiometer provides feedback about its
actual position, i.e., its angle ��� . A thin opaque tube is used
to reduce the sensor’s aperture to about two degrees. These
tubes are the primitive equivalent to the biological omma-
tidia [3, 4, 5]. It should be noted that such a low-cost con-
struction is subject to several imprecisions and tolerances,
which might be sensed as noise during operation.

2.2 Motion Parallax: A Mathematical De-
scription

Figure 1 sketches how a phenomenon, also known as mo-
tion parallax, can be utilized to avoid obstacles. Let us as-
sume that the compound eye is at a fixed position. If the
obstacle

�
is moving at constant speed � , the eye views

t3
X

α1

α2

α3

t 2
X

&

&

&

τ

Distance d

τ1

t 1
X

τ

τ

τ

3

1

2

2

Facets

Speed &
Avoidance
Network

Figure 1. Due to their small aperture of about two degrees, the insect eye’s facets recognize a moving object at different times�������������
	
. If the time delays � � correspond to the object’s traveling time

� �
� � - � � , the robot can consistently detect too small a
distance of closest approach to an obstacle. For further details, see text.

the obstacle under different angles �
��� ��� , and �

	
at differ-

ent time steps
������� � , and

�
	
.

Let us assume that a facet views the obstacle under
the angle � � at time

� � . The distance � � to the baseline
(indicated by the dashed line labeled �) is given by � ���
��������� � � . At the next time step

� ��� � � � � + � � , this distance
reduces to � �
� � � ��������� � ��� � . With � �
� � - � � � �"!#� � the
following relation holds:

�
�
� $� �&%

����� � �(' ����� � �
� �
����� � � % ����� � �
� �

�
(1)

If the time difference � � between two neighboring
facets corresponds to the time delay � � , a neural network
can estimate the distance � of closest approach by a simple
and-operation. To this end, the robot has to assess its own
speed � , what it can do by, for example, a flow sensor or its
motor activation system. Depending on the assessed dis-
tance � , the robot might trigger an appropriate avoidance
action.

2.3 Previous Results

Lichtensteiger and Eggenberger [6] used a simple neural
network with all weights being constant and equal and ap-
plied evolutionary algorithms to evolve a suitable sensor
distribution, i.e, the different angles � , such that a prede-
fined fitness function) �+* ��, � �
� � ' � � ' �.- � minimizes.
Even with significantly improved algorithms [8], the results
clearly indicate that this approach is practically limited to
about 10-20 sensors due to the experimentation time and
convergence problems.

Alternatively, the sensor distribution could be fixed
and an algorithm like backpropagation could be applied
to train the individual time delays � � . However, this ap-
proach as well as using evolutionary algorithms require the
preselection of suitable training cases and offline learning,
which immediately excludes any suitable online adaptation
to changing conditions, such as broken sensors or a tilted
camera.

3 The Model

As Fig. 2 shows, a high-resolution input device, such as a
CCD camera, feeds its activation to a speed sensor module,
which in turn communicates with a motor (sub-) system
via reciprocal connections. The remainder of this section
is devoted to some of the model’s architectural details, the
learning procedure, as well as some of the model’s proper-
ties.

3.1 The Architecture

As has already been discussed in the background section,
an object passing by the input device activates the input
units / for a constant duration 0 at different time steps

� � .
Now, let 1 denote units of the input device and let 2 de-
note units of the speed sensor module. Every speed unit 2 �
directly connects to exactly one (randomly chosen) input
unit 1�3 with the index 4 referencing to the speed unit’s po-
sition (relative to the input device). Furthermore, all speed
units also connect the neighborhood of their reference input
unit. For example, speed unit 2 � connects to the reference
input unit 165 and also connects to 1�5�798 ����� 165 � 8 for some:<;>= . Except for the reference connection, all signals
are delayed by � and have to pass a gate. The time delays
� may vary across all connections, and the gate has to be
activated by the reference unit. That is, a speed sensor 2 �
receives delayed signals from the input device only during
the time window defined by the reference unit 1 5 .

It should be noted here that all sensor units 2 � are
treated in the same way. For readability purposes, these
neurons are arranged on a grid with columns and rows rep-
resenting reference position ? and speed, respectively. All
speed sensors belonging to the same speed value, commu-
nicate with corresponding units in the motor system.

Sensors
Speed

System
Motor

Actuators

Camera

Reciprocal
Connections

ττττ

The Model Some Details

Gate

Delay

Speed Neuron

One Neuron

Sensors

Motion

Gauge

Figure 2. This figure sketches the model’s architecture with increasingly more details when going from left to right. For further
detail, see text.

3.2 The Learning Rule

Without loss of generality, the model makes the following
assumptions: the input unit’s activation 1 is either 0 or 1,
the gate either passes the incoming activation or sets it to 0,
if an input sensor views an object it sets its activation to 1
for the duration 0 , the activation of the speed sensor units
is bounded by =�� 2 � � $.

The operation of the speed sensor units is inspired by
biological integrate-and-fire neurons. For each connection,
2 � first calculates the overlap � � 3 of its reference (1 5) and
incoming delayed signals (1 3��� 5). More formally, the over-
lap is given by � � 3 � , $ ��0 -��	� 1 5 , � -
1�3 , � -�� � . Due to the
division by the signal duration constant 0 , the overlap is
normalized =
� � � 3 � $. To sharpen the edges, the over-
lap is modified by (with � denoting an arbitrarily-chosen,
small, positive constant):

�
�� 3�� � � , � � 3���� - ' � ���� ��� �
(2)

If activated by the reference signal 1�5 , the speed
sensor unit 2 � then applies the following, rather generic
Hebbian-based learning rule (for some properties, see be-
low): �

� 3 �
�
� 3��������� 3 ' , �.� � -

�
� 3 � (3)

with

�
� 3 denoting the connection (weight) connecting in-

put unit 1�3 and speed sensor unit 2 � , � denoting a learning
constant, and � denoting a unlearning constant.

3.3 Model Properties and Behaviors

The learning rule, as defined by eq. (3) has the following
properties: due to the unlearning constant � , the connection
weight is bounded by

�
� 3�� � � �� 3 , and since � �� 3 � $, the

relation

�
� 3
� � holds. Due to this bounding, the repet-

itive application of the learning rule eq. (3) lets the con-
nections approach this bound, i.e.,

����� �! #" �
� 3 � � �� 3 . In

other words, the network’s connections assume values pro-
portional to their incoming overlap values during the time
window defined by the reference signal 1 5 . Without loss of
generality, the unlearning constant can be set to � =1.

The learning constant � in eq. (3) determines the slope
with which the final values are approached; it does not in-
fluence the final values. With smaller � values, the learning
procedure consumes more time to saturate but is less sensi-
tive to changing environmental conditions. Large � values
have the opposite effect.

Like the high-resolution input device, the speed sen-
sor module features very many units, to which learning
applies as described above. The speed sensor module ar-
ranges all units on a grid with the $ and � axes representing
position ? and speed, respectively. All units in one row are
responsible for the same speed and are collectively coupled
with corresponding units in the motor system. Within one
row, the speed sensor units connect to different reference
input units.

In the very beginning, all connections are initialized
to some, randomly-chosen values. When the robot is mov-
ing with a particular speed � , the operating motor system

activates the appropriate row of the speed sensors. When
these active speed sensor units receive their reference sig-
nal (what they do at different time steps), they update their
connections

�
� 3 by applying learning rule (3). During the

initial leaning (exploration) phase, the robot repetitively
moves with different speeds in order to train all speed sen-
sor units.

After the initial learning phase, the speed sensor units
may also by activated by the following activation rule:

2 � � � �� 3
�
� 3* 3
�
� 3
�

(4)

with � �� 3 denoting the modified overlap with the reference
signal as described above. As cn be seen from eq. (4), the
speed sensor unit integrates all incoming delayed signals
during the time window given by the reference signal 1�5 .
This integration is weighted by the

�
� 3 ’s and then normal-

ized. This normalization has the effect that the parameter
� has no effect and that only slightly varies with changing
configurations (i.e., signal duration 0 and number of con-
nected inputs).

The main idea behind this model is as follows: Since
all speed sensor units are treated in the same way and con-
nected only to some local region of the input device, the
model allows for simple scaling over very many input units
of high-resolution sensor devices.

4 Methods

Unless otherwise stated, all experiments have used the fol-
lowing parameter settings: signal duration 0 =2, learning
rate � =0.01, unlearning rate � =1, overlap-modification pa-
rameter � =0.001 (see, eq. (2)). During the initial training
phase, the speed was set to values, such that the object trav-
els about one sensor per time unit.

5 Results

This section presents some results, obtained with a com-
puter simulation. In order to be comprehensible, this sec-
tion presents figures with only a few units. Since learning
of just an arbitrarily-chosen input is very simple (see also
subsection 3.3), this section does not present any such fig-
ure due to space limitations.

Fig. 3 demonstrates the model’s adaptation capability.
After the network has learned an initial input distribution,
which has been arbitrarily chosen for illustration purposes,
the network can easily adapt to input changes. In the figure,
the input values from position 0-15 have been changed, and
the adaptation process takes about 140 epochs. It can be
seen that the model just adapts the changed input.

As Section 3 has already discussed, the speed
sensor module employs neural populations for differ-
ent speed values � . Fig. 4 shows five different units
that are particularly trained for varying speeds � �

� = � ��� � = � � $ � $ � =�= � $ � $ = � $ ��� =	� . In this test, an object passes
by with speed � � $ � = , and the figure shows how the units’
activations change over time (each tic marks a particular
test point). It can be clearly seen that the units’ responses
decrease with the difference of the test and its inherent
(trained) speed. In this figure, the $ and � axes represent
time and activation, respectively. It should be noted that
the depicted units have been particularly chosen, such that
a moving object activates them at different time steps (oth-
erwise it would became impossible to read the figure).

Fig. 4 suggests that the speed sensor units, as has been
expected, react quite sensitively to a passing object. The
next experiment investigates the sensor module’s behav-
ior with respect to varying object speeds. To this end, an
object is passing the input device several times each time
with a different speed �

�����������
� 8 . For each pass, the sys-

tems monitors the activation of a set of selected speed sen-
sor units 2 � and remembers each unit’s maximal activation.
These maximal activations are then plotted in a graph. Fig.
5 presents such a graph with five selected units. It can be
clearly seen that the speeds are �

�
=0.77, � � =0.88, �

	
=1.00,

��
 =1.14, and �
� =1.30 units per time step. All units exhibit
their maximal activation (not necessarily 1 due to eq. (4))
at their particular training speed, and are less active else-
where. It is obvious that a subsequent layer, e.g., another
neural layer or a fuzzy controller, can easily reconstruct the
object’s/robot’s speed.

6 Discussion

This paper has proposed a new model to overcome existing
deficiencies in the area of autonomous agents. The pro-
posed model allows the utilization of a high-resolution in-
put device, such as a CCD camera, by featuring a simple
Hebbian-based learning rule. This learning procedure has
the following advantages over currently used methods: en-
tire online learning without any need to preselect any train-
ing pattern set, straight forward scaling property by using
only local information among units, and no overlearning
deficiencies and thus constant applicability with inherent
adaptation properties.

The model’s design is largely inspired by biological
observations. However, no claim is made that in turn, any
part is biological plausible; it is a just a technical applica-
tion.

When setting up the system, the speed sensor module
may be equipped with as many units as desired, and then
each has to connected to a reference input sensor as well
as the reference unit’s neighborhood. In the initial training
phase, the speed sensor units may be grouped to popula-
tions with each population being responsible for a particu-
lar speed.

Future research will be devoted to the following steps:
The first step will be concentrating on implementing this
model on a physical robot that features a two-dimensional
CCD camera. The second step will be trying to substitute
the gate functionality that is activated by the reference sig-

Online Adaptation Capability

0 5 10 15 20 25 30 35 40
Position 0

20
40

60
80

100
120

140

Epoch

2

2.5

3

3.5

4

4.5

5

Connection weights

Figure 3. After the network has learned a certain input distribution (arbitrarily chosen for illustration purposes), it can adapt to
a new distribution (positions 0-15) within 140 epochs.

nal by more natural mechanism; this reference signal is cur-
rently required, but substituting it would probably simplify
the model.

Acknowledgements

The author gratefully thanks Lukas Lichtensteiger for
pointing me to his research and all the experimental details,
including the data, the robot, as well as the background lit-
erature. The author is also very grateful to the anonymous
reviewers for their feedback.

References

[1] R. A. Brooks, Intelligence Without Reason. Proceedings of the 12th
Intl. Conference on Artificial Intelligence (IJCAI-91), 1991, 569-
595.

[2] R. A. Brooks, Intelligence without representation. Artificial Intelli-
gence, 47, 1991, 139-159.

[3] T. S. Collett, Peering – a locust behavior pattern for obtaining mo-
tion parallax. Journal of Experimental Biology, 76, 1978, 237-241.

[4] N. Franceschini, J. Pichon, and C. Blanes, From insect vision to
robot vision. Philosophical Transactions of the Royal Society of
London B, 337, 1992, 283-294.

[5] G. A. Horridge, Insects which turn and look. Endeavour 1, 1978,
7-17.

[6] L. Lichtensteiger and P. Eggenberger, Evolving the Morphology of
a Compound Eye on a Robot. Proceedings of the Third European
Workshop on Advanced Mobile Robots (Eurobot ’99), 1999.

[7] R. Pfeifer and C. Scheier, Understanding Intelligence (MIT Press,
Cambridge, MA, 1999).

[8] R. Salomon and L. Lichtensteiger, Exploring different Coding
Schemes for the Evolution of an Artificial Insect Eye. Proceedings
of The First IEEE Symposium on Combinations of Evolutionary
Computation and Neural Networks, 2000, 10-16.

0

0.2

0.4

0.6

0.8

1

-30 -20 -10 0 10 20 30

A
ct

iv
at

io
n

Time

Activation of Differently Trained Neurons

v=0.83

v=0.91

v=1.00

v=1.10

v=1.20

Figure 4. This figure shows the activation of five speed sensor units, each trained with a different speed � , when an object is
passing by with � =1 unit per time step.

0

0.2

0.4

0.6

0.8

1

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

A
ct

iv
at

io
n

Speed

Maximal Activation as a Function of Speed

v=0.77
v=0.88

v=1.00
v=1.14

v=1.30

Figure 5. This figure shows how the speed sensor units 1 react to varying speeds. Each figure point represent the maximal
activation of a unit during a complete pass of an object passing the robot.

